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We will see… 

n  Solving a linear (continues) system 
¨ Good old Gaussian Elimination for linear equations. 
¨ Feasibility test a-la Simplex for linear inequalities. 
¨ Fourir-Motzkin for linear inequalities. 

n  Solving a linear (discrete) system 
¨ Branch and Bound for integer linear inequalities. 
¨ The Omega-Test method for integer linear inequalities. 
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Integer Linear Programming 

n  Problem formulation 
max cx 

 Ax · b 
 x ¸ 0 and integer 

 
Where A is an m £ n coefficients matrix 
c is an n-dimensional row vector 
b an m - dimensional column vector 
x an n - dimensional column vector  of variables. 
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Feasibility of a linear system   

n  The decision problem associated with ILP is NP-hard. 
n  But once again… we are not actually interested in 

ILP: we do not have an objective… 
n  All we want to know is whether a given system is 

feasible. 
  

  Ax · b 
   x ¸ 0 and integer 

n  Still, NP-hard… 
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How different can it be from LP ? 

x1 

x2 

LP Solution 

Integer Solution 

Objective line 

Feasible region 

n  Rounding cannot help! 
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How different can it be from LP ? 

n  The LP problem can be feasible, whereas its ILP 
version is not. 

x1 

x2 

Feasible region 
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n  From hereon we will assume that all variables are 
finite.  

n  Enumerate all solutions with a tree 

n  Guaranteed to find a feasible solution if it exists 
n  But, exponential growth in the size of the tree / 

computation time 

A naïve solution strategy 

x1=0 

x2=0 x2=2 x2=1 

x1=1 x1=2 

x2=0 x2=2 x2=1 x2=0 x2=2 x2=1 
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A family of algorithms: Branch & Bound 

n  Probably the most popular method for solving Integer 
Linear Programming (ILP) problems (First presented 
in 1960) is B & B.  

n  That is, the optimization problem. 
n  Recall, however, that we are interested in deciding 

feasibility of a linear system.  
n  In practice that’s a little easier. The algorithm is quite  

similar. 
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Branch and Bound 

n  The main idea:  
¨ Solve the ‘relaxed’ problem, i.e. no integrality constraints. 
¨  If the relaxed problem is infeasible – backtrack (there is no 

integer solution in this branch)  
¨  If the solution is integral – terminate (‘feasible’). 
¨ Otherwise split on a variable for which the assignment is 

non-integral, and repeat for each case. 

n  More details to come…  
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Splitting on non-integral LP solutions. 

x1 

x2 

x1 

x2 

x2≤1 

n  Solve LP Relaxation to get fractional solutions 
n  Create two sub-branches by adding constraints 

x2≥2 

Feasible real solution 
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Example 
 
n  Suppose our system A has variables x1… x4, and that 

the LP solver returned a solution (1, 0.7, 2.5, 3). 
n  Choose one of x2, x3. Suppose we choose x2. 
n  Solve two new problems: 

¨ A1 = A [ {x2 · 0} 
¨ A2 = A [ {x2 ¸ 1} 

n  Clearly A1 or A2 are satisfiable iff A is. 
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x2≤2 

Splitting on non-integral LP solutions. 

x1 

x2 

x1 

x2 

n  The linear relaxation can also be infeasible… 
n  …which prunes the search for an integral solution. 

x2≥3 

Feasible real solution This branch is not feasible 
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The branch and bound tree 

A 

A2 A1 

A12 A11 

(1,0 .7,2.5,3) 

(1,-1.5,1.5,4.1) 

x2 · 0 x2 ¸ 1 

x3 ¸ 1 

(1,3,0.5,2) 

(1,3,0.5,2) 

x3 ·  0 

(1,3,4,1) x  

n  Sub trees can be pruned away before reaching a leaf… 
n  Each leaf is a feasible solution. 
 

Pruned due to  
infeasibility 
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Aside: B & B for optimality 

n  More reasons to prune the search.  
n  In a maximality problem: 

¨ Prune a branch if an over-approximation of the largest 
solution under this branch is still smaller than an under-
approximation of the solution in another branch. 

¨  If the solution at the node is integral, update lower bound 
on the optimal solution, and backtrack. 
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Preprocessing (LP)… 

n  Constraints can be removed… 
n  Example:  

¨ x1 + x2 · 2,    x1 · 1,    x2 · 1 
¨ First constraint is redundant. 

n  In general, for a set: 

    
 is redundant if 
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Preprocessing (LP)… 

n  …and bounds can be tightened… 
n  Example:  

¨ 2x1 + x2 · 2,  x2 ¸ 4, x1 · 3 
¨ From 1st and 2nd constraints: x1 · -1 

n  In general, if a0 > 0 

n  And, if a0 < 0       
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Preprocessing (ILP) 

n  Clearly  
n  Consider a 0-1 ILP constraint:5x1 – 3 x2 · 4 

¨ x1 = 1 implies x2 = 1 
¨ Hence, we can add x1 · x2 

n  (Again, a 0-1 ILP problem) Combine pairs:  
 
from x1 + x2 · 1 and x2 ¸ 1 conclude x1 = 0; 
 

n  More simplifications and preprocessing is possible… 
n  The rule is: preprocess as long as it is cost-effective. 
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Improvement - Cutting Planes 

n  Eliminate non-integer solutions by adding constraints 
to LP (i.e. improve tightness of relaxation). 

n  All feasible integer 
solutions remain 
feasible 

n  Current LP solution is 
not feasible 

x1 

x2 

Added Cut 
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Cutting planes 

n  Adding valid inequalities 
n  Examples: 

1.   x1, x2 , x3 ,x4 2 B  
 From x1 – x2 + x3 – x4 · -1 
 … we can conclude x2 + x4 ¸ 1 

2.   x 2  Z 
 From 2x · 11 
 …we can conclude x · 5 


