
Daniel Kroening and Ofer Strichman

Decision Procedures
An Algorithmic Point of View

Deciding ILPs with Branch & Bound
ILP References:
‘Integer Programming’ / Laurence Wolsey
‘Intro. To mathematical programming’ / Hillier, Lieberman

Decision Procedures
An algorithmic point of view

We will see…

n  Solving a linear (continues) system
¨ Good old Gaussian Elimination for linear equations.
¨ Feasibility test a-la Simplex for linear inequalities.
¨ Fourir-Motzkin for linear inequalities.

n  Solving a linear (discrete) system
¨ Branch and Bound for integer linear inequalities.
¨ The Omega-Test method for integer linear inequalities.

Decision Procedures
An algorithmic point of view

Integer Linear Programming

n  Problem formulation
max cx

 Ax · b
 x ¸ 0 and integer

Where A is an m £ n coefficients matrix
c is an n-dimensional row vector
b an m - dimensional column vector
x an n - dimensional column vector of variables.

Decision Procedures
An algorithmic point of view

Feasibility of a linear system

n  The decision problem associated with ILP is NP-hard.
n  But once again… we are not actually interested in

ILP: we do not have an objective…
n  All we want to know is whether a given system is

feasible.

 Ax · b
 x ¸ 0 and integer

n  Still, NP-hard…

Decision Procedures
An algorithmic point of view

How different can it be from LP ?

x1

x2

LP Solution

Integer Solution

Objective line

Feasible region

n  Rounding cannot help!

Decision Procedures
An algorithmic point of view

How different can it be from LP ?

n  The LP problem can be feasible, whereas its ILP
version is not.

x1

x2

Feasible region

Decision Procedures
An algorithmic point of view

n  From hereon we will assume that all variables are
finite.

n  Enumerate all solutions with a tree

n  Guaranteed to find a feasible solution if it exists
n  But, exponential growth in the size of the tree /

computation time

A naïve solution strategy

x1=0

x2=0 x2=2 x2=1

x1=1 x1=2

x2=0 x2=2 x2=1 x2=0 x2=2 x2=1

Decision Procedures
An algorithmic point of view

A family of algorithms: Branch & Bound

n  Probably the most popular method for solving Integer
Linear Programming (ILP) problems (First presented
in 1960) is B & B.

n  That is, the optimization problem.
n  Recall, however, that we are interested in deciding

feasibility of a linear system.
n  In practice that’s a little easier. The algorithm is quite

similar.

Decision Procedures
An algorithmic point of view

Branch and Bound

n  The main idea:
¨ Solve the ‘relaxed’ problem, i.e. no integrality constraints.
¨  If the relaxed problem is infeasible – backtrack (there is no

integer solution in this branch)
¨  If the solution is integral – terminate (‘feasible’).
¨ Otherwise split on a variable for which the assignment is

non-integral, and repeat for each case.

n  More details to come…

Decision Procedures
An algorithmic point of view

Splitting on non-integral LP solutions.

x1

x2

x1

x2

x2≤1

n  Solve LP Relaxation to get fractional solutions
n  Create two sub-branches by adding constraints

x2≥2

Feasible real solution

Decision Procedures
An algorithmic point of view

Example

n  Suppose our system A has variables x1… x4, and that

the LP solver returned a solution (1, 0.7, 2.5, 3).
n  Choose one of x2, x3. Suppose we choose x2.
n  Solve two new problems:

¨ A1 = A [{x2 · 0}
¨ A2 = A [{x2 ¸ 1}

n  Clearly A1 or A2 are satisfiable iff A is.

Decision Procedures
An algorithmic point of view

x2≤2

Splitting on non-integral LP solutions.

x1

x2

x1

x2

n  The linear relaxation can also be infeasible…
n  …which prunes the search for an integral solution.

x2≥3

Feasible real solution This branch is not feasible

Decision Procedures
An algorithmic point of view

The branch and bound tree

A

A2 A1

A12 A11

(1,0 .7,2.5,3)

(1,-1.5,1.5,4.1)

x2 · 0 x2 ¸ 1

x3 ¸ 1

(1,3,0.5,2)

(1,3,0.5,2)

x3 · 0

(1,3,4,1) x

n  Sub trees can be pruned away before reaching a leaf…
n  Each leaf is a feasible solution.

Pruned due to
infeasibility

Decision Procedures
An algorithmic point of view

Aside: B & B for optimality

n  More reasons to prune the search.
n  In a maximality problem:

¨ Prune a branch if an over-approximation of the largest
solution under this branch is still smaller than an under-
approximation of the solution in another branch.

¨  If the solution at the node is integral, update lower bound
on the optimal solution, and backtrack.

Decision Procedures
An algorithmic point of view

Preprocessing (LP)…

n  Constraints can be removed…
n  Example:

¨ x1 + x2 · 2, x1 · 1, x2 · 1
¨ First constraint is redundant.

n  In general, for a set:

 is redundant if

Decision Procedures
An algorithmic point of view

Preprocessing (LP)…

n  …and bounds can be tightened…
n  Example:

¨ 2x1 + x2 · 2, x2 ¸ 4, x1 · 3
¨ From 1st and 2nd constraints: x1 · -1

n  In general, if a0 > 0

n  And, if a0 < 0

Decision Procedures
An algorithmic point of view

Preprocessing (ILP)

n  Clearly
n  Consider a 0-1 ILP constraint:5x1 – 3 x2 · 4

¨ x1 = 1 implies x2 = 1
¨ Hence, we can add x1 · x2

n  (Again, a 0-1 ILP problem) Combine pairs:

from x1 + x2 · 1 and x2 ¸ 1 conclude x1 = 0;

n  More simplifications and preprocessing is possible…
n  The rule is: preprocess as long as it is cost-effective.

Decision Procedures
An algorithmic point of view

Improvement - Cutting Planes

n  Eliminate non-integer solutions by adding constraints
to LP (i.e. improve tightness of relaxation).

n  All feasible integer
solutions remain
feasible

n  Current LP solution is
not feasible

x1

x2

Added Cut

Decision Procedures
An algorithmic point of view

Cutting planes

n  Adding valid inequalities
n  Examples:

1.  x1, x2 , x3 ,x4 2 B
 From x1 – x2 + x3 – x4 · -1
 … we can conclude x2 + x4 ¸ 1

2.  x 2 Z
 From 2x · 11
 …we can conclude x · 5

