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 Using Uninterpreted Functions in proofs 
 Simplifications 

 Introduction to the decision procedures 
 The framework: assumptions and Normal Forms 
 General terms and notions 
 Solving a conjunction of equalities 
 Simplifications 
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Basic assumptions and notations 

 Input formulas are in NNF 
 Input formulas are checked for satisfiability 

 
 Formula with Uninterpreted Functions: UF 

 Equality formula: E 
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First: conjunction of equalities 

 Input: A conjunction of equalities and disequalities 
 

1. Define an equivalence class for each variable. For 
each equality x = y unite the equivalence classes of 
x  and y. Repeat until convergence. 

2. For each disequality u  v if u is in the same 
equivalence class as v return 'UNSAT'.  

3. Return 'SAT'. 
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Example 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 
 

Equivalence class Equivalence class 

Is there a disequality between members of the same class ?  
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Next: add Uninterpreted Functions 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2) 
 

Equivalence class Equivalence class 

Equivalence class 

Equivalence class 
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Next: Compute the Congruence Closure 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2) 
 

Equivalence class Equivalence class 

Now - is there a disequality between members of the same class ? 
This is called the Congruence Closure  
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And now: consider a Boolean structure 

 x1 = x2 Ç (x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1)  F(x2)) 
 

case 1 case 2 

Syntactic case splitting: this is what we want to avoid!  

Equivalence class Equivalence classes 
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Deciding Equality Logic with UFs 

 Input: Equality Logic formula UF 
 Convert UF to DNF 
 For each clause: 

 Define an equivalence class for each variable and each 
function instance.  

 For each equality x = y unite the equivalence classes of x 
and y. For each function symbol F, unite the classes of 
F(x) and F(y). Repeat until convergence. 

 If all disequalities are between terms from different 
equivalence classes, return 'SAT'.   

 Return 'UNSAT'. 
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Basic notions 

    E:  x = y Æ y = z Æ z  x 

 The Equality predicates: {x = y, y = z, z  x} 
which we can break to two sets:  
 E= ={x = y, y = z},  E = {z  x} 

 The Equality Graph GE(E) = hV,E=,Ei 
(a.k.a “E-graph”) 
 

x 

y 

z 
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Basic notions 

    1
E:  x = y Æ y = z Æ z  x   unsatisfiable 

   2
E:  x = y Æ y = z Ç z  x    satisfiable 

 
 
 
 
The graph GE(E) represents an abstraction of E  
It ignores the Boolean structure of E  

x 

y 

z 
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Basic notions 

     
 Dfn: a path made of E= edges is an Equality Path. 

we write x =*z. 
 Dfn: a path made of E= edges + exactly one edge 

from E is a Disequality Path. We write x *y. 

x 

y 

z 
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Basic notions 

 Dfn. A cycle with one disequality edge is a 
Contradictory Cycle. 

 In a Contradictory Cycle, for every two nodes x,y it 
holds that x =* y and x * y. 

x 

y 

z 
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Basic notions 

 Dfn: A subgraph is called satisfiable iff the 
conjunction of the predicates represented by its edges 
is satisfiable. 

 Thm: A subgraph is unsatisfiable iff it contains a 
Contradictory cycle 

x 

y 

z 
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Basic notions 

     
 Thm: Every Contradictory Cycle is either simple or 

contains a simple contradictory cycle 
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Simplifications, again 

 Let S be the set of edges that are not part of any 
Contradictory Cycle 

 Thm: replacing all solid edges in S with False, and 
all dashed edges in S with True, preserves 
satisfiability 
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Simplification: example 

x1 

x2 

x3 

x4 

 (x1 = x2 Ç x1 = x4) Æ 
(x1  x3 Ç x2 = x3) 

 (x1 = x2 Ç True) Æ 
(x1  x3 Ç x2 = x3) 

 (:False Ç True) = True 

 Satisfiable! 

Fa
ls

e 
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Syntactic vs. Semantic splits 

 So far we saw how to handle disjunctions through 
syntactic case-splitting.  

 There are much better ways to do it than simply 
transforming it to DNF:  
 Semantic Tableaux,  
 SAT-based splitting,  
 others… 

 We will investigate some of these methods later in the 
course. 
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 Now we start looking at methods that split the search 
space instead. This is called semantic splitting. 
 

 SAT is a very good engine for performing semantic 
splitting, due to its ability to guide the search, prune 
the search-space etc. 
 

Syntactic vs. Semantic splits 


