Decision Procedures in First Order Logic

Decision Procedures for Equality Logic

Daniel Kroening and Ofer Strichman

Outline

√ Introduction

- ✓ □ Definition, complexity
- ✓ □ Reducing Uninterpreted Functions to Equality Logic
- ✓ □ Using Uninterpreted Functions in proofs
- ✓ □ Simplifications
- Introduction to the decision procedures
 - □ The framework: assumptions and Normal Forms
 - \Box General terms and notions
 - □ Solving a conjunction of equalities
 - □ Simplifications

Basic assumptions and notations

- Input formulas are in NNF
- Input formulas are checked for satisfiability
- Formula with Uninterpreted Functions: ϕ^{UF}
- Equality formula: ϕ^{E}

First: conjunction of equalities

- Input: A conjunction of equalities and disequalities
- Define an equivalence class for each variable. For each equality x = y unite the equivalence classes of x and y. Repeat until convergence.
- 2. For each disequality $U \neq V$ if U is in the same equivalence class as V return 'UNSAT'.
- 3. Return 'SAT'.

Example

• $\mathbf{X}_1 = \mathbf{X}_2 \not\in \mathbf{X}_2 = \mathbf{X}_3 \not\in \mathbf{X}_4 = \mathbf{X}_5 \not\in \mathbf{X}_5 \neq \mathbf{X}_1$

Is there a disequality between members of the same class ?

Next: add Uninterpreted Functions

 $\mathbf{x}_1 = \mathbf{x}_2 \not\in \mathbf{x}_2 = \mathbf{x}_3 \not\in \mathbf{x}_4 = \mathbf{x}_5 \not\in \mathbf{x}_5 \neq \mathbf{x}_1 \not\in \mathsf{F}(\mathbf{x}_1) \neq \mathsf{F}(\mathbf{x}_2)$

Equivalence class

Equivalence class

Next: Compute the *Congruence Closure*

$\mathbf{x}_1 = \mathbf{x}_2 \not\in \mathbf{x}_2 = \mathbf{x}_3 \not\in \mathbf{x}_4 = \mathbf{x}_5 \not\in \mathbf{x}_5 \neq \mathbf{x}_1 \not\in \mathsf{F}(\mathbf{x}_1) \neq \mathsf{F}(\mathbf{x}_2)$

Now - is there a disequality between members of the same class ? This is called the Congruence Closure

And now: consider a Boolean structure

• $x_1 = x_2 \ C \ (x_2 = x_3 \ A \ x_4 = x_5 \ A \ x_5 \neq x_1 \ A \ F(x_1) \neq F(x_2))$

Syntactic case splitting: this is what we want to avoid!

Deciding Equality Logic with UFs

- Input: Equality Logic formula ϕ^{UF}
- Convert **\$\$** Convert **\$** Con
- For each clause:
 - Define an equivalence class for each variable and each function instance.
 - For each equality x = y unite the equivalence classes of x and y. For each function symbol F, unite the classes of F(x) and F(y). Repeat until convergence.
 - □ If all disequalities are between terms from different equivalence classes, return 'SAT'.
- Return 'UNSAT'.

Algorithm 3.3.2: BRYANT'S-REDUCTION

- Input: An EUF formula φ^{UF} with m instances of an uninterpreted function F
- Output: An equality logic formula φ^{E} such that φ^{E} is valid if and only if φ^{UF} is valid
- 1. Assign indices to the uninterpreted-function instances from subexpressions outwards. Denote by F_i the instance of F that is given the index i, and by $arg(F_i)$ its single argument.

- 2. Let $flat^{\rm E} = \mathcal{T}^*(\varphi^{\rm UF})$, where \mathcal{T}^* is a function that takes an EUF formula (or term) as input and transforms it to an equality formula (or term, respectively) by replacing each uninterpreted-function instance F_i with a new term-variable F_i^* (in the case of nested functions, only the variable corresponding to the most external instance remains).
- 3. For $i \in \{1, \ldots, m\}$, let f_i be a new variable, and let F_i^* be defined as follows:

$$F_i^{\star} := \begin{pmatrix} \operatorname{case} \mathcal{T}^{\star}(\operatorname{arg}(F_1^{\star})) &= \mathcal{T}^{\star}(\operatorname{arg}(F_i^{\star})) : f_1 \\ \vdots & \vdots \\ \mathcal{T}^{\star}(\operatorname{arg}(F_{i-1}^{\star})) &= \mathcal{T}^{\star}(\operatorname{arg}(F_i^{\star})) : f_{i-1} \\ \operatorname{TRUE} &: f_i \end{pmatrix} .$$
(3.19)

Finally, let

$$FC^{\rm E} := \bigwedge_{i=1}^{m} F_i^{\star} . \tag{3.20}$$

4. Let

$$\varphi^{\mathrm{E}} := FC^{\mathrm{E}} \implies flat^{\mathrm{E}} . \tag{3.21}$$

Return $\varphi^{\rm E}$.

$$\phi^{E}: x = y \not A y = z \not A z \neq x$$

The Equality predicates: {x = y, y = z, z ≠ x} which we can break to two sets:

$$E_{=} = \{ x = y, y = z \}, \qquad E_{\neq} = \{ z \neq x \}$$

■ The Equality Graph $G^{E}(\phi^{E}) = hV, E_{=}, E_{\neq}i$ (a.k.a "E-graph")

$$\phi_1^{E}: x = y \not E y = z \not E z \neq x \quad unsatisfiable$$

$$\phi_2^{E}: x = y \not E y = z \ Q z \neq x \quad satisfiable$$

The graph $G^{E}(\phi^{E})$ represents an abstraction of ϕ^{E} It ignores the Boolean structure of ϕ^{E}

- *Dfn:* a path made of E₌ edges is an *Equality Path*.
 we write X =*Z.
- *Dfn:* a path made of E_{\pm} edges + exactly one edge from E_{\pm} is a *Disequality Path*. We write $x \neq *y$.

- Dfn. A cycle with one disequality edge is a Contradictory Cycle.
- In a Contradictory Cycle, for every two nodes x,y it holds that x =* y and x ≠* y.

- Dfn: A subgraph is called satisfiable iff the conjunction of the predicates represented by its edges is satisfiable.
- Thm: A subgraph is unsatisfiable iff it contains a Contradictory cycle

• Thm: Every Contradictory Cycle is either simple or contains a simple contradictory cycle

Algorithm 4.3.1: SIMPLIFY-EQUALITY-FORMULA
Input: An equality formula φ^{E} Output: An equality formula $\varphi^{\text{E}'}$ equisatisfiable with φ^{E} , with length less than or equal to the length of φ^{E}
1. Let $\varphi^{\mathbf{E}'} := \varphi^{\mathbf{E}}$.
 Construct the equality graph G^E(φ^{E'}). Replace each pure literal in φ^{E'} whose corresponding edge is not part of a simple contradictory cycle with TRUE.
4. Simplify $\varphi^{\mathbf{E}'}$ with respect to the Boolean constants TRUE and FALSE (e.g., replace TRUE $\lor \phi$ with TRUE, and FALSE $\land \phi$ with FALSE).
5. If any rewriting has occurred in the previous two steps, go to step 2. 6. Return $\varphi^{E'}$.

b#

- Let S be the set of edges that are not part of any Contradictory Cycle
- Thm: replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability

Simplification: example

- $(X_1 = X_2 \ C \ X_1 = X_4) \ \mathcal{A}$ $(X_1 \neq X_3 \ C \ X_2 = X_3)$
- $(X_1 = X_2 \ C \ True) \ A$ $(X_1 \neq X_3 \ C \ X_2 = X_3)$
- (: False Ç True) = True

Satisfiable!

Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.
- There are much better ways to do it than simply transforming it to DNF:
 - □ Semantic Tableaux,
 - □ SAT-based splitting,
 - \Box others...
- We will investigate some of these methods later in the course.

Syntactic vs. Semantic splits

- Now we start looking at methods that split the search space instead. This is called *semantic splitting*.
- SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.