Decision Procedures In

First Order Logic

Decision Procedures for
Equality Logic

Daniel Kroening and Ofer Strichman 1

'—
Outline

L]
VO
L]
Vo O

m [ntroduction to the decision procedures
1 The framework: assumptions and Normal Forms
1 General terms and notions
1 Solving a conjunction of equalities
0 Simplifications

Decision Procedures
An algorithmic point of view

"

Basic assumptions and notations

m Input formulas are in NNF
m |[nput formulas are checked for satisfiability

m Formula with Uninterpreted Functions: ¢YF
m Equality formula: ¢F

Decision Procedures
An algorithmic point of view

"

First: conjunction of equalities

Input: A conjunction of equalities and disequalities

Define an equivalence class for each variable. For
each equality X =y unite the equivalence classes of

X andy. Repeat until convergence.

For each disequality u = v if u Is in the same
equivalence class as v return 'UNSAT".

Return 'SAT".

Decision Procedures
An algorithmic point of view

" M

Example

B X, =X, £ X, = X5 £ X=X £ Xg # Xy

-
Equivalence class Equivalence class

Is there a disequality between members of the same class ?

Decision Procedures
An algorithmic point of view

Next: add Uninterpreted Functions

B X, =X, B X, = Xg £ X=X £ Xe # X, £ F(X)# F(X,)

Equivalence class Equivalence class

Equivalence class
Decision Procedures
An algorithmic point of view

"

Next: Compute the Congruence Closure

B X, =X, B X, = Xg £ X=X £ Xe # X, £ F(X)# F(X,)

-
Equivalence class Equivalence class

NOW - is there a disequality between members of the same class ?
This i1s called the Congruence Closure

Decision Procedures
An algorithmic point of view 7

=
And now: consider a Boolean structure

B X; =X, C (X, = X5 £ X=X £ X # X, £ F(Xq) #F(X5))

Equivalence class

Equivalence classes

case 1 case 2

Syntactic case splitting: this is what we want to avoid!

Decision Procedures
An algorithmic point of view 8

|
Deciding Equality Logic with UFs

m Input: Equality Logic formula ¢4F
m Convert ¢¥F to DNF

m For each clause:

1 Define an equivalence class for each variable and each
function instance.

1 For each equality X =y unite the equivalence classes of x
and y. For each function symbol F, unite the classes of
F(x) and F(y). Repeat until convergence.

01 If all disequalities are between terms from different
equivalence classes, return 'SAT".

m Return 'UNSAT".

Decision Procedures
An algorithmic point of view

"

Algorithm 3.3.1: ACKERMANN'S-REDUCTION

Input: An EUF formula ¢"" with m instances of an uninterpreted

function F

Output: An equality logic formula ¥ such that ©* is valid if and only

if V" is valid

. Assign indices to the uninterpreted-function instances from subexpressions
outwards. Denote by F; the instance of I’ that is given the index i, and
by arg(F;) its single argument.

. Let flat® = T(¢"F), where T is a function that takes an EUF formula
(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance F; with a
new term-variable fi (in the case of nested functions, only the variable
corresponding to the most external instance remains).

. Let FCE denote the following conjunction of functional consistency con-
straints:

m—-1 m
FC® = N\ N (Targ(F)) =T(arg(Fy)) = fi=1;.
i=1 j=i41
. Let
"= FC® = flat®.
Return ©F.

Decision Procedures
An algorithmic point of view

E

)

lat®

aiﬁa
E

FCE®

10

" N

flat®

*

Bl

Algorithm 3.3.2: BRYANT'S-REDUCTION

Input: An EUF formula ¢"" with m instances of an uninterpreted

function F

Output: An equality logic formula ¢* such that ¢¥ is valid if and only

if " is valid

1. Assign indices to the uninterpreted-function instances from subexpressions

outwards. Denote by F; the instance of F' that is given the index i, and
by arg(F;) its single argument.

. Let flat® = T*(¢""), where T* is a function that takes an EUF formula

(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance F; with a
new term-variable F;" (in the case of nested functions, only the variable
corresponding to the most external instance remains).

. For i € {1,...,m}, let fi be a new variable, and let F;" be defined as

follows:
case T*(arg(F{)) =T*(arg(FY)) : f
Ff = : : (3.19)
T*(arg(Fi_,)) = T*(arg(FY)) : fiza
TRUE i e
Finally, let
Fe%= A (3.20)
i=1
. Let
% = FC® = flat®. (3:21)
Return *.

Decision Procedures
An algorithmic point of view

11

= B
Basic notions

O X=yEy=zEzZ#X

m The {X=y,y=2,2#X}
which we can break to two sets:
E.={x=y,y=2}, E.={z=#x}

m The GE(¢5) = hV,E_,E_I
(a.k.a“ ”)
y

O\
e N
. N
7’ ~
. N

Decision Procedures
An algorithmic point of view

12

"

Basic notions

0,5 x=yEy=zEz+#x unsatisiiable
05 Xx=yEy=zCz=#x satisfiable

.\
g S
. N
. N
- N

.
S
e ~
. N
., A
., A
4 N
.,
. N

The graph GE&(¢F) represents an abstraction of ¢F
It ignores the Boolean structure of ¢F

Decision Procedures
An algorithmic point of view

13

"

Basic notions

’
’ ~
- N
’ N
’ N
e ~
N
’
. N

m Dfn: a path made of E. edges is an Equality Path.
we write X =*z.

m Dfn: a path made of E. edges + exactly one edge
from E_ Is a Disequality Path. We write X #*y.

Decision Procedures
An algorithmic point of view

14

"
Basic notions
oY

m Dfn. A cycle with one disequality edge Is a
Contradictory Cycle.

m |In a Contradictory Cycle, for every two nodes X,y it
holds that x =* y and x #* y.

Decision Procedures
An algorithmic point of view

15

" S
Basic notions
oY

m Dfn: A subgraph is called satisfiable iff the
conjunction of the predicates represented by its edges
IS satisfiable.

m [hm: A subgraph is unsatisfiable iff it contains a
Contradictory cycle

Decision Procedures
An algorithmic point of view 16

"

Basic notions

m [Thm: Every Contradictory Cycle is either simple or
contains a simple contradictory cycle

Decision Procedures
An algorithmic point of view

17

Algorithm 4.3.1: SIMPLIFY-EQUALITY-FORMULA

Input: An equality formula ¢®
Output: An equality formula ¢ equisatisfiable with ¢®, with
length less than or equal to the length of ¢*

1. Let & := pF.

Construct the equality graph G®(p®').

3. Replace each pure literal in ¢® whose corresponding edge is not part
of a simple contradictory cycle with TRUE.

4. Simplify ©*" with respect to the Boolean constants TRUE and FALSE

(e.g., replace TRUE V ¢ with TRUE, and FALSE A ¢ with FALSE).

If any rewriting has occurred in the previous two steps, go to step 2.

6. Return ¢®'.

A

(%]

Decision Procedures
An algorithmic point of view

18

Simplifications, again

‘\ ,.
~ 4 1
N -
~ - 1
~ -
- 1
~ -

~
< - 1
~ - 1
~ '
~ - 1
~ -
So - 1
N, i 1
‘ |
- I -
- e 1 -
- N .
e ~ ! e
. ~
~ 1 -z
R4 ~ -
~ 1 ’
4 ~ -
Pig o 1 R4
- ~ ! -
- ~ 1 .,
- ~ -
- ~ 1 -
. ~ -
- _.z

m et S be the set of edges that are not part of any
Contradictory Cycle

m [hm: replacing all solid edges in S with False, and
all dashed edges in S with True, preserves
satisfiability

Decision Procedures
An algorithmic point of view 19

" S
Simplification: example

X2@.

?{ae

D .

2 ‘\O X
= :

u /”/ 2

(X1 =X, C X =X%y) £
(X1 # X3 C X, = X3)
k=X CTrue)-A—
(X1 # X3 C Xy = X3)

(- False C True) = True

Satisfiable!

Decision Procedures
An algorithmic point of view

20

"

Syntactic vs. Semantic splits

m So far we saw how to handle disjunctions through
syntactic case-splitting.
m There are much better ways to do it than simply
transforming it to DNF:
O Semantic Tableaux,

O SAT-based splitting,
1 others...

m \We will investigate some of these methods later in the
course.

Decision Procedures
An algorithmic point of view 21

" N

Syntactic vs. Semantic splits

m Now we start looking at methods that split the search
space Instead. This Is called semantic splitting.

m SAT Is a very good engine for performing semantic
splitting, due to its ability to guide the search, prune
the search-space etc.

Decision Procedures
An algorithmic point of view

22

