Decision Procedures in First Order Logic

Decision Procedures for Equality Logic
Outline

- Introduction
 - Definition, complexity
 - Reducing Uninterpreted Functions to Equality Logic
 - Using Uninterpreted Functions in proofs
 - Simplifications

- Introduction to the decision procedures
 - The framework: assumptions and Normal Forms
 - General terms and notions
 - Solving a conjunction of equalities
 - Simplifications
Basic assumptions and notations

- Input formulas are in NNF
- Input formulas are checked for satisfiability

- Formula with Uninterpreted Functions: ϕ_{UF}
- Equality formula: ϕ_{E}
First: conjunction of equalities

- **Input**: A conjunction of equalities and disequalities

1. Define an *equivalence class* for each variable. For each equality \(x = y \) unite the equivalence classes of \(x \) and \(y \). Repeat until convergence.

2. For each disequality \(u \neq v \) if \(u \) is in the same equivalence class as \(v \) return 'UNSAT'.

3. Return 'SAT'.

Example

- \(x_1 = x_2 \not\in \equiv x_2 = x_3 \not\in \equiv x_4 = x_5 \not\in \equiv x_5 \neq x_1 \)

Is there a disequality between members of the same class?
Next: add Uninterpreted Functions

\[x_1 = x_2 \land x_3 = x_4 = x_5 \neq x_1 \land \neg F(x_1) \neq F(x_2) \]
Next: Compute the *Congruence Closure*

\[x_1 = x_2 \land x_3 \land x_4 = x_5 \land x_1 \neq x_1 \land \neg F(x_1) \neq F(x_2) \]

Equivalence class

Now - is there a disequality between members of the same class?

This is called the *Congruence Closure*
And now: consider a Boolean structure

- $x_1 = x_2 \land (x_2 = x_3 \land \forall x_4 \neq x_5 \land \forall x_5 \neq x_1 \land \forall F(x_1) \neq F(x_2))$

Syntactic case splitting: this is what we want to avoid!
Deciding Equality Logic with UF

- Input: Equality Logic formula ϕ^{UF}
- Convert ϕ^{UF} to DNF
- For each clause:
 - Define an equivalence class for each variable and each function instance.
 - For each equality $x = y$ unite the equivalence classes of x and y. For each function symbol F, unite the classes of $F(x)$ and $F(y)$. Repeat until convergence.
 - If all disequalities are between terms from different equivalence classes, return 'SAT'.
- Return 'UNSAT'.

Decision Procedures
An algorithmic point of view
Algorithm 3.3.1: ACKERMANN’S-REDUCTION

Input: An EUF formula φ^UF with m instances of an uninterpreted function F.

Output: An equality logic formula φ^E such that φ^E is valid if and only if φ^UF is valid.

1. Assign indices to the uninterpreted-function instances from subexpressions outwards. Denote by F_i the instance of F that is given the index i, and by $\text{arg}(F_i)$ its single argument.
2. Let $\text{flat}^E \doteq T(\varphi^\text{UF})$, where T is a function that takes an EUF formula (or term) as input and transforms it to an equality formula (or term, respectively) by replacing each uninterpreted-function instance F_i with a new term-variable f_i (in the case of nested functions, only the variable corresponding to the most external instance remains).
3. Let FC^E denote the following conjunction of functional consistency constraints:

$$FC^E := \bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^m (T(\text{arg}(F_i)) = T(\text{arg}(F_j))) \implies f_i = f_j.$$

4. Let

$$\varphi^E := FC^E \implies \text{flat}^E.$$

Return φ^E.

Decision Procedures
An algorithmic point of view
10
Algorithm 3.3.2: BRYANT’S-REDUCTION

Input: An EUF formula \(\varphi_{\text{UF}} \) with \(m \) instances of an uninterpreted function \(F \)

Output: An equality logic formula \(\varphi^E \) such that \(\varphi^E \) is valid if and only if \(\varphi_{\text{UF}} \) is valid

1. Assign indices to the uninterpreted-function instances from subexpressions outwards. Denote by \(F_i \) the instance of \(F \) that is given the index \(i \), and by \(\text{arg}(F_i) \) its single argument.

2. Let \(\text{flat}^E = T^*(\varphi_{\text{UF}}) \), where \(T^* \) is a function that takes an EUF formula (or term) as input and transforms it to an equality formula (or term, respectively) by replacing each uninterpreted-function instance \(F_i \) with a new term-variable \(F_i^* \) (in the case of nested functions, only the variable corresponding to the most external instance remains).

3. For \(i \in \{1, \ldots, m\} \), let \(f_i \) be a new variable, and let \(F_i^* \) be defined as follows:

 \[
 F_i^* := \begin{cases}
 \text{case } T^*(\text{arg}(F_i^*)) = T^*(\text{arg}(F_i^*)) : f_1 \\
 \vdots \\
 \vdots \\
 \text{TRUE} : f_i \\
 \end{cases} \quad (3.19)

 \]

 Finally, let

 \[
 FC^E := \bigwedge_{i=1}^{m} F_i^* \quad (3.20)

 \]

4. Let

 \[
 \varphi^E := FC^E \implies \text{flat}^E \quad (3.21)

 \]

Return \(\varphi^E \).
Basic notions

$\phi^E: \ x = y \land y = z \land z \neq x$

- The **Equality predicates**: $\{x = y, y = z, z \neq x\}$
 which we can break to two sets:
 $E = \{x = y, y = z\}, \quad E \neq = \{z \neq x\}$

- The **Equality Graph** $G^E(\phi^E) = \langle V, E =, E \neq \rangle$
 (a.k.a “E-graph”)

\[\begin{array}{c}
\text{y} \\
\text{x} \\
\text{z} \\
\end{array} \]
Basic notions

\[\phi_1^E: \quad x = y \land \forall y = z \land \forall z \neq x \quad \text{unsatisfiable} \]
\[\phi_2^E: \quad x = y \land \forall y = z \land z \neq x \quad \text{satisfiable} \]

The graph \(G^E(\phi^E) \) represents an abstraction of \(\phi^E \).

It ignores the Boolean structure of \(\phi^E \).
Basic notions

- **Dfn:** a path made of E_\equiv edges is an *Equality Path.* We write $x =^* z$.

- **Dfn:** a path made of E_\equiv edges + exactly one edge from $E_\not\equiv$ is a *Disequality Path.* We write $x \not=^* y$.

Decision Procedures
An algorithmic point of view
14
Basic notions

- **Dfn.** A cycle with one disequality edge is a Contradictory Cycle.

- In a Contradictory Cycle, for every two nodes x, y it holds that $x =^* y$ and $x \neq^* y$.

Basic notions

- **Dfn:** A subgraph is called *satisfiable* iff the conjunction of the predicates represented by its edges is satisfiable.

- **Thm:** A subgraph is unsatisfiable iff it contains a **Contradictory cycle**
Basic notions

Thm: Every Contradictory Cycle is either simple or contains a simple contradictory cycle
Algorithm 4.3.1: SIMPLIFY-EQUALITY-FORMULA

Input: An equality formula φ^E

Output: An equality formula φ_E' equisatisfiable with φ^E, with

length less than or equal to the length of φ^E

1. Let $\varphi_E' := \varphi^E$.
2. Construct the equality graph $G^E(\varphi_E')$.
3. Replace each pure literal in φ_E' whose corresponding edge is not part of a simple contradictory cycle with TRUE.
4. Simplify φ_E' with respect to the Boolean constants TRUE and FALSE (e.g., replace TRUE $\lor \phi$ with TRUE, and FALSE $\land \phi$ with FALSE).
5. If any rewriting has occurred in the previous two steps, go to step 2.
6. Return φ_E'.
Simplifications, again

Let S be the set of edges that are not part of any Contradictory Cycle

Thm: replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability
Simplification: example

- $(x_1 = x_2 \land x_1 = x_4) \not\equiv (x_1 \neq x_3 \land x_2 = x_3)$
- $(x_1 = x_2 \land \text{True}) \not\equiv (x_1 \neq x_3 \land x_2 = x_3)$
- $(\text{False} \land \text{True}) = \text{True}$

Satisfiable!
Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.

- There are much better ways to do it than simply transforming it to DNF:
 - Semantic Tableaux,
 - SAT-based splitting,
 - others…

- We will investigate some of these methods later in the course.
Syntactic vs. Semantic splits

- Now we start looking at methods that split the search space instead. This is called *semantic splitting*.

- SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.