
Daniel Kroening and Ofer Strichman 1

Decision Procedures in
First Order Logic

Decision Procedures for
Equality Logic

Decision Procedures
An algorithmic point of view 2

Outline
 Introduction

 Definition, complexity
 Reducing Uninterpreted Functions to Equality Logic
 Using Uninterpreted Functions in proofs
 Simplifications

 Introduction to the decision procedures
 The framework: assumptions and Normal Forms
 General terms and notions
 Solving a conjunction of equalities
 Simplifications

Decision Procedures
An algorithmic point of view 3

Basic assumptions and notations

 Input formulas are in NNF
 Input formulas are checked for satisfiability

 Formula with Uninterpreted Functions: UF

 Equality formula: E

Decision Procedures
An algorithmic point of view 4

First: conjunction of equalities

 Input: A conjunction of equalities and disequalities

1. Define an equivalence class for each variable. For
each equality x = y unite the equivalence classes of
x and y. Repeat until convergence.

2. For each disequality u v if u is in the same
equivalence class as v return 'UNSAT'.

3. Return 'SAT'.

Decision Procedures
An algorithmic point of view 5

Example

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5 x1

Equivalence class Equivalence class

Is there a disequality between members of the same class ?

Decision Procedures
An algorithmic point of view 6

Next: add Uninterpreted Functions

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5 x1 Æ F(x1) F(x2)

Equivalence class Equivalence class

Equivalence class

Equivalence class

Decision Procedures
An algorithmic point of view 7

Next: Compute the Congruence Closure

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5 x1 Æ F(x1) F(x2)

Equivalence class Equivalence class

Now - is there a disequality between members of the same class ?
This is called the Congruence Closure

Decision Procedures
An algorithmic point of view 8

And now: consider a Boolean structure

 x1 = x2 Ç (x2 = x3 Æ x4=x5 Æ x5 x1 Æ F(x1) F(x2))

case 1 case 2

Syntactic case splitting: this is what we want to avoid!

Equivalence class Equivalence classes

Decision Procedures
An algorithmic point of view 9

Deciding Equality Logic with UFs

 Input: Equality Logic formula UF
 Convert UF to DNF
 For each clause:

 Define an equivalence class for each variable and each
function instance.

 For each equality x = y unite the equivalence classes of x
and y. For each function symbol F, unite the classes of
F(x) and F(y). Repeat until convergence.

 If all disequalities are between terms from different
equivalence classes, return 'SAT'.

 Return 'UNSAT'.

Decision Procedures
An algorithmic point of view 10

Decision Procedures
An algorithmic point of view 11

Decision Procedures
An algorithmic point of view 12

Basic notions

 E: x = y Æ y = z Æ z x

 The Equality predicates: {x = y, y = z, z x}
which we can break to two sets:
 E= ={x = y, y = z}, E = {z x}

 The Equality Graph GE(E) = hV,E=,Ei
(a.k.a “E-graph”)

x

y

z

Decision Procedures
An algorithmic point of view 13

Basic notions

 1
E: x = y Æ y = z Æ z x unsatisfiable

 2
E: x = y Æ y = z Ç z x satisfiable

The graph GE(E) represents an abstraction of E
It ignores the Boolean structure of E

x

y

z

Decision Procedures
An algorithmic point of view 14

Basic notions

 Dfn: a path made of E= edges is an Equality Path.

we write x =*z.
 Dfn: a path made of E= edges + exactly one edge

from E is a Disequality Path. We write x *y.

x

y

z

Decision Procedures
An algorithmic point of view 15

Basic notions

 Dfn. A cycle with one disequality edge is a
Contradictory Cycle.

 In a Contradictory Cycle, for every two nodes x,y it
holds that x =* y and x * y.

x

y

z

Decision Procedures
An algorithmic point of view 16

Basic notions

 Dfn: A subgraph is called satisfiable iff the
conjunction of the predicates represented by its edges
is satisfiable.

 Thm: A subgraph is unsatisfiable iff it contains a
Contradictory cycle

x

y

z

Decision Procedures
An algorithmic point of view 17

Basic notions

 Thm: Every Contradictory Cycle is either simple or

contains a simple contradictory cycle

Decision Procedures
An algorithmic point of view 18

Decision Procedures
An algorithmic point of view 19

Simplifications, again

 Let S be the set of edges that are not part of any
Contradictory Cycle

 Thm: replacing all solid edges in S with False, and
all dashed edges in S with True, preserves
satisfiability

Decision Procedures
An algorithmic point of view 20

Simplification: example

x1

x2

x3

x4

 (x1 = x2 Ç x1 = x4) Æ
(x1 x3 Ç x2 = x3)

 (x1 = x2 Ç True) Æ
(x1 x3 Ç x2 = x3)

 (:False Ç True) = True

 Satisfiable!

Fa
ls

e

Decision Procedures
An algorithmic point of view 21

Syntactic vs. Semantic splits

 So far we saw how to handle disjunctions through
syntactic case-splitting.

 There are much better ways to do it than simply
transforming it to DNF:
 Semantic Tableaux,
 SAT-based splitting,
 others…

 We will investigate some of these methods later in the
course.

Decision Procedures
An algorithmic point of view 22

 Now we start looking at methods that split the search
space instead. This is called semantic splitting.

 SAT is a very good engine for performing semantic
splitting, due to its ability to guide the search, prune
the search-space etc.

Syntactic vs. Semantic splits

