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 Simplifications 
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Basic assumptions and notations 

 Input formulas are in NNF 
 Input formulas are checked for satisfiability 

 
 Formula with Uninterpreted Functions: UF 

 Equality formula: E 
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First: conjunction of equalities 

 Input: A conjunction of equalities and disequalities 
 

1. Define an equivalence class for each variable. For 
each equality x = y unite the equivalence classes of 
x  and y. Repeat until convergence. 

2. For each disequality u  v if u is in the same 
equivalence class as v return 'UNSAT'.  

3. Return 'SAT'. 
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Example 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 
 

Equivalence class Equivalence class 

Is there a disequality between members of the same class ?  
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Next: add Uninterpreted Functions 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2) 
 

Equivalence class Equivalence class 

Equivalence class 

Equivalence class 
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Next: Compute the Congruence Closure 

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2) 
 

Equivalence class Equivalence class 

Now - is there a disequality between members of the same class ? 
This is called the Congruence Closure  
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And now: consider a Boolean structure 

 x1 = x2 Ç (x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1)  F(x2)) 
 

case 1 case 2 

Syntactic case splitting: this is what we want to avoid!  

Equivalence class Equivalence classes 
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Deciding Equality Logic with UFs 

 Input: Equality Logic formula UF 
 Convert UF to DNF 
 For each clause: 

 Define an equivalence class for each variable and each 
function instance.  

 For each equality x = y unite the equivalence classes of x 
and y. For each function symbol F, unite the classes of 
F(x) and F(y). Repeat until convergence. 

 If all disequalities are between terms from different 
equivalence classes, return 'SAT'.   

 Return 'UNSAT'. 
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Basic notions 

    E:  x = y Æ y = z Æ z  x 

 The Equality predicates: {x = y, y = z, z  x} 
which we can break to two sets:  
 E= ={x = y, y = z},  E = {z  x} 

 The Equality Graph GE(E) = hV,E=,Ei 
(a.k.a “E-graph”) 
 

x 

y 

z 
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Basic notions 

    1
E:  x = y Æ y = z Æ z  x   unsatisfiable 

   2
E:  x = y Æ y = z Ç z  x    satisfiable 

 
 
 
 
The graph GE(E) represents an abstraction of E  
It ignores the Boolean structure of E  
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Basic notions 

     
 Dfn: a path made of E= edges is an Equality Path. 

we write x =*z. 
 Dfn: a path made of E= edges + exactly one edge 

from E is a Disequality Path. We write x *y. 
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Basic notions 

 Dfn. A cycle with one disequality edge is a 
Contradictory Cycle. 

 In a Contradictory Cycle, for every two nodes x,y it 
holds that x =* y and x * y. 
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Basic notions 

 Dfn: A subgraph is called satisfiable iff the 
conjunction of the predicates represented by its edges 
is satisfiable. 

 Thm: A subgraph is unsatisfiable iff it contains a 
Contradictory cycle 
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Basic notions 

     
 Thm: Every Contradictory Cycle is either simple or 

contains a simple contradictory cycle 
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Simplifications, again 

 Let S be the set of edges that are not part of any 
Contradictory Cycle 

 Thm: replacing all solid edges in S with False, and 
all dashed edges in S with True, preserves 
satisfiability 
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Simplification: example 

x1 

x2 

x3 

x4 

 (x1 = x2 Ç x1 = x4) Æ 
(x1  x3 Ç x2 = x3) 

 (x1 = x2 Ç True) Æ 
(x1  x3 Ç x2 = x3) 

 (:False Ç True) = True 

 Satisfiable! 

Fa
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e 
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Syntactic vs. Semantic splits 

 So far we saw how to handle disjunctions through 
syntactic case-splitting.  

 There are much better ways to do it than simply 
transforming it to DNF:  
 Semantic Tableaux,  
 SAT-based splitting,  
 others… 

 We will investigate some of these methods later in the 
course. 
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 Now we start looking at methods that split the search 
space instead. This is called semantic splitting. 
 

 SAT is a very good engine for performing semantic 
splitting, due to its ability to guide the search, prune 
the search-space etc. 
 

Syntactic vs. Semantic splits 


