
Daniel Kroening and Ofer Strichman 1

Decision Procedures in
First Order Logic

Decision Procedures for
Equality Logic

Decision Procedures
An algorithmic point of view 2

Outline
 Introduction

 Definition, complexity
 Reducing Uninterpreted Functions to Equality Logic
 Using Uninterpreted Functions in proofs
 Simplifications

 Introduction to the decision procedures
 The framework: assumptions and Normal Forms
 General terms and notions
 Solving a conjunction of equalities
 Simplifications











Decision Procedures
An algorithmic point of view 3

Basic assumptions and notations

 Input formulas are in NNF
 Input formulas are checked for satisfiability

 Formula with Uninterpreted Functions: UF

 Equality formula: E

Decision Procedures
An algorithmic point of view 4

First: conjunction of equalities

 Input: A conjunction of equalities and disequalities

1. Define an equivalence class for each variable. For
each equality x = y unite the equivalence classes of
x and y. Repeat until convergence.

2. For each disequality u  v if u is in the same
equivalence class as v return 'UNSAT'.

3. Return 'SAT'.

Decision Procedures
An algorithmic point of view 5

Example

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1

Equivalence class Equivalence class

Is there a disequality between members of the same class ?

Decision Procedures
An algorithmic point of view 6

Next: add Uninterpreted Functions

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2)

Equivalence class Equivalence class

Equivalence class

Equivalence class

Decision Procedures
An algorithmic point of view 7

Next: Compute the Congruence Closure

 x1 = x2 Æ x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1) F(x2)

Equivalence class Equivalence class

Now - is there a disequality between members of the same class ?
This is called the Congruence Closure

Decision Procedures
An algorithmic point of view 8

And now: consider a Boolean structure

 x1 = x2 Ç (x2 = x3 Æ x4=x5 Æ x5  x1 Æ F(x1)  F(x2))

case 1 case 2

Syntactic case splitting: this is what we want to avoid!

Equivalence class Equivalence classes

Decision Procedures
An algorithmic point of view 9

Deciding Equality Logic with UFs

 Input: Equality Logic formula UF
 Convert UF to DNF
 For each clause:

 Define an equivalence class for each variable and each
function instance.

 For each equality x = y unite the equivalence classes of x
and y. For each function symbol F, unite the classes of
F(x) and F(y). Repeat until convergence.

 If all disequalities are between terms from different
equivalence classes, return 'SAT'.

 Return 'UNSAT'.

Decision Procedures
An algorithmic point of view 10

Decision Procedures
An algorithmic point of view 11

Decision Procedures
An algorithmic point of view 12

Basic notions

 E: x = y Æ y = z Æ z  x

 The Equality predicates: {x = y, y = z, z  x}
which we can break to two sets:
 E= ={x = y, y = z}, E = {z  x}

 The Equality Graph GE(E) = hV,E=,Ei
(a.k.a “E-graph”)

x

y

z

Decision Procedures
An algorithmic point of view 13

Basic notions

 1
E: x = y Æ y = z Æ z  x unsatisfiable

 2
E: x = y Æ y = z Ç z  x satisfiable

The graph GE(E) represents an abstraction of E
It ignores the Boolean structure of E

x

y

z

Decision Procedures
An algorithmic point of view 14

Basic notions

 Dfn: a path made of E= edges is an Equality Path.

we write x =*z.
 Dfn: a path made of E= edges + exactly one edge

from E is a Disequality Path. We write x *y.

x

y

z

Decision Procedures
An algorithmic point of view 15

Basic notions

 Dfn. A cycle with one disequality edge is a
Contradictory Cycle.

 In a Contradictory Cycle, for every two nodes x,y it
holds that x =* y and x * y.

x

y

z

Decision Procedures
An algorithmic point of view 16

Basic notions

 Dfn: A subgraph is called satisfiable iff the
conjunction of the predicates represented by its edges
is satisfiable.

 Thm: A subgraph is unsatisfiable iff it contains a
Contradictory cycle

x

y

z

Decision Procedures
An algorithmic point of view 17

Basic notions

 Thm: Every Contradictory Cycle is either simple or

contains a simple contradictory cycle

Decision Procedures
An algorithmic point of view 18

Decision Procedures
An algorithmic point of view 19

Simplifications, again

 Let S be the set of edges that are not part of any
Contradictory Cycle

 Thm: replacing all solid edges in S with False, and
all dashed edges in S with True, preserves
satisfiability

Decision Procedures
An algorithmic point of view 20

Simplification: example

x1

x2

x3

x4

 (x1 = x2 Ç x1 = x4) Æ
(x1  x3 Ç x2 = x3)

 (x1 = x2 Ç True) Æ
(x1  x3 Ç x2 = x3)

 (:False Ç True) = True

 Satisfiable!

Fa
ls

e

Decision Procedures
An algorithmic point of view 21

Syntactic vs. Semantic splits

 So far we saw how to handle disjunctions through
syntactic case-splitting.

 There are much better ways to do it than simply
transforming it to DNF:
 Semantic Tableaux,
 SAT-based splitting,
 others…

 We will investigate some of these methods later in the
course.

Decision Procedures
An algorithmic point of view 22

 Now we start looking at methods that split the search
space instead. This is called semantic splitting.

 SAT is a very good engine for performing semantic
splitting, due to its ability to guide the search, prune
the search-space etc.

Syntactic vs. Semantic splits

