Propositional Encodings
Chapter 11 S

Decision Procedures
An Algorithmic Point of View

D.Kroening  O.Strichman Revision 1.0



© Overview

© Notation

© A Basic Encoding Algorithm

@ Integration into DPLL

© Theory Propagation and the DPLL(T) Framework
@ Theory Propagation and the DPLL(T) Framework

@ Optimizations and Implementation Issues

Decision Procedures — Propositional Encodings 2



Propositional Encodings

o Let T be a first-order Y-theory such that:

e T is quantifier-free.
o There exists a decision procedure, denoted D Py, for the
conjunctive fragment of 7.

Decision Procedures — Propositional Encodings 3



Propositional Encodings

e Example 1:

e T is equality logic.
o DPr is the congruence closure algorithm.

o Example 2:

e T'is disjunctive linear arithmetic.
e DPr is the Simplex algorithm.

Decision Procedures — Propositional Encodings 4



Propositional Encodings

We will now study a framework that combines
e DPr, and
@ a SAT solver,

in various ways, in order to construct a decision procedure for 7T'.

Decision Procedures — Propositional Encodings 5



Propositional Encodings

We will now study a framework that combines

e DPr, and

@ a SAT solver,
in various ways, in order to construct a decision procedure for 7T'.

This method is
@ modular,

o efficient,
e competitive (all state-of-the-art SMT solvers work this way).

Decision Procedures — Propositional Encodings



Propositional Encodings

The two main engines in this framework work in tight
collaboration:

o The SAT solver chooses those literals that need to be satisfied
in order to satisfy the Boolean structure of the formula, and

@ The theory solver D Pp checks whether this choice is
consistent in 7.

Decision Procedures — Propositional Encodings 6



Let [ be a X-literal.

@ Denote by ¢(l) the Boolean encoder of this literal.

Let ¢ be a >-formula,

e Denote by ¢(t) the Boolean formula resulting from
substituting each X-literal in ¢ with its Boolean encoder.

Decision Procedures — Propositional Encodings 7



Let [ be a X-literal.

@ Denote by ¢(l) the Boolean encoder of this literal.

Let ¢ be a >-formula,

e Denote by ¢(t) the Boolean formula resulting from
substituting each X-literal in ¢ with its Boolean encoder.

For a ¥-formula ¢, the resulting Boolean formula e(t) is called the
propositional skeleton of ¢.

Decision Procedures — Propositional Encodings 7



Boolean encoders — examples

e Example I: Let [ := = = y be a X-literal. Then e(z =vy), a
Boolean variable, is its encoder.

Decision Procedures — Propositional Encodings 8



Boolean encoders — examples

e Example I: Let [ := = = y be a X-literal. Then e(z =vy), a
Boolean variable, is its encoder.

o Example II: Let

is its Boolean encoder.

Decision Procedures — Propositional Encodings 8



Overview by an example

Let T" be equality logic. Given an NNF formula

pi=x=yAN((y=zAx#2)Ver=2z), (1)

we begin by computing its propositional skeleton:

Decision Procedures — Propositional Encodings 9



Overview by an example

Let T" be equality logic. Given an NNF formula

p=c=yN((y=zANx#z)Var=z),

we begin by computing its propositional skeleton:

e(p) = e(x =y)A((ely = 2z) Ae(z # 2)) Ve(r = 2)) .

Decision Procedures — Propositional Encodings



Overview by an example

Let T" be equality logic. Given an NNF formula

pi=x=yAN((y=zAx#2)Ver=2z), (1)

we begin by computing its propositional skeleton:

e(p):= e =y)A(le(y=z)Ne(x #2)) Ve(r=2)). (2

Note that since we are encoding literals and not atoms, e¢(y) has
no negations and hence is trivially satisfiable.

Decision Procedures — Propositional Encodings 9



Overview by an example

Let B be a Boolean formula, initially set to e(y), i.e.,

B:= e(p).

Decision Procedures — Propositional Encodings 10



Overview by an example

Let B be a Boolean formula, initially set to e(y), i.e.,

B:= e(p).

As a second step, we pass 3 to a SAT solver.

Decision Procedures — Propositional Encodings 10



Overview by an example

Let B be a Boolean formula, initially set to e(y), i.e.,

B:= e(p).
As a second step, we pass 3 to a SAT solver.
Assume that the SAT solver returns the satisfying assignment

a:= {e(r =y) — TRUE, e(y = z) — TRUE, e(x # z) — TRUE,
e(r = z) — FALSE} .

Decision Procedures — Propositional Encodings 10



Overview by an example

o Denote by T'h(c) the conjunction of the literals corresponding
to this assignment.

Th(a) = x=yANy=zAx#zN~(x==z).

Decision Procedures — Propositional Encodings 11



Overview by an example

e Denote by 7'h(c) the conjunction of the literals corresponding
to this assignment.

Th(a) = x=yANy=zAx#zN~(x==z).

° TAhe decision procedure D Pr now has to decide whether
Th(«) is satisfiable.

Decision Procedures — Propositional Encodings 11



Overview by an example

e Denote by 7'h(c) the conjunction of the literals corresponding
to this assignment.

Th(a) = x=yANy=zAx#zN~(x==z).

° TAhe decision procedure D Pr now has to decide whether
Th(«) is satisfiable.

Th(e) is not satisfiable, which means that the negation of
this formula is a tautology.

Decision Procedures — Propositional Encodings 11



Overview by an example

Thus B is conjoined with e(—7'h(«)), the Boolean encoding of this
tautology:

e(-Th(a)) := (me(z =y)V —e(y =2)V —e(x # 2z) Ve(z = 2)) .

Decision Procedures — Propositional Encodings 12



Overview by an example

Thus B is conjoined with e(—7'h(«)), the Boolean encoding of this
tautology:

e(-Th(a)) := (me(z =y)V —e(y =2)V —e(x # 2z) Ve(z = 2)) .

@ This clause contradicts the current assignment, and hence
blocks it from being repeated.

@ Such clauses are called blocking clauses.

Decision Procedures — Propositional Encodings 12



Overview by an example

Thus B is conjoined with e(—7'h(«)), the Boolean encoding of this
tautology:

e(-Th(a)) := (me(z =y)V —e(y =2)V —e(x # 2z) Ve(z = 2)) .

@ This clause contradicts the current assignment, and hence
blocks it from being repeated.

@ Such clauses are called blocking clauses.

o We denote by ¢ the formula — also called the lemma —
returned by D Pr (in this example ¢ := =Th(«)).

Decision Procedures — Propositional Encodings 12



Overview by an example

After the blocking clause has been added, the SAT solver is
invoked again and suggests another assignment, for example

o := {e(r =y) — TRUE, e(y = z) — TRUE, e(z = z) — TRUE,
e(r # z) — FALSE} .

Decision Procedures — Propositional Encodings 13



Overview by an example

After the blocking clause has been added, the SAT solver is
invoked again and suggests another assignment, for example

o := {e(r =y) — TRUE, e(y = z) — TRUE, e(z = z) — TRUE,
e

(x # z) — FALSE} .

The corresponding >-formula

Th(d'):= x=yAy=z2zAx=2A~(x #2) (3)

is satisfiable, which proves that ¢, the original formula, is
satisfiable.

Indeed, any assignment that satisfies fh(o/) also satisfies .

Decision Procedures — Propositional Encodings 13



Overview

« Th(a)

Propositional DPyp - A Decision procedure

SAT Solver

for a conjunction of Y-terms

The information flow between the two components of
the decision procedure.

Decision Procedures — Propositional Encodings 14



Overview

There are many improvements to this basic procedure.

Decision Procedures — Propositional Encodings 15



Overview

There are many improvements to this basic procedure.

One such improvement is:
“Invoke the decision procedure D Pr after partial assignments,
rather than waiting for a full assignment.”

Decision Procedures — Propositional Encodings 15



Overview

There are many improvements to this basic procedure.

One such improvement is:
“Invoke the decision procedure D Pr after partial assignments,
rather than waiting for a full assignment.”

@ A contradicting partial assignment leads to a more powerful
lemma ¢, as it blocks all assignments that extend it.

Decision Procedures — Propositional Encodings 15



Overview

There are many improvements to this basic procedure.

One such improvement is:
“Invoke the decision procedure D Pr after partial assignments,
rather than waiting for a full assignment.”

@ A contradicting partial assignment leads to a more powerful
lemma ¢, as it blocks all assignments that extend it.

@ Theory propagation: When the partial assignment is not
contradictory, it can be used to derive implications that are
propagated back to the SAT solver.

Decision Procedures — Propositional Encodings 15



Overview by an example

Continuing the example above, consider the partial assignment

a:= {e(x =y) — TRUE, e(y = z) — TRUE} , (4)

Decision Procedures — Propositional Encodings 16



Overview by an example

Continuing the example above, consider the partial assignment
a:= {e(x =y) +— TRUE, e(y = z) — TRUE} , (4)
and the corresponding formula that is transferred to D Py,

~

Th(a) = x=yANy==z. (5)

Decision Procedures — Propositional Encodings 16



Overview by an example

Continuing the example above, consider the partial assignment
a:= {e(x =y) +— TRUE, e(y = z) — TRUE} , (4)

and the corresponding formula that is transferred to D Py,

~

Th(a) = x=yANy==z. (5)

D Pp concludes that = z is implied, and hence inform the SAT
solver that e(x = z) — TRUE and e(x # z) +— FALSE are implied
by the current partial assignment a.

Decision Procedures — Propositional Encodings 16



We will now formalize three versions of the algorithm:
@ Simple
@ Incremental
© DPLL(T)

Decision Procedures — Propositional Encodings 17



@ lit(p) — the set of literals in a given NNF formula .

o [iti(yp) — the i-th distinct literal in ¢
(assuming some predefined order on the literals).

Decision Procedures — Propositional Encodings 18



@ lit(p) — the set of literals in a given NNF formula .

o [iti(yp) — the i-th distinct literal in ¢
(assuming some predefined order on the literals).

e « — For a given encoding e(y), denotes an assignment (either
full or partial), to the encoders in e(yp).

Decision Procedures — Propositional Encodings 18



e Th(lit;, ) — For an encoder e(lit;) that is assigned a truth
value by «, denotes the corresponding literal:

lit; a(lit;) = TRUE

Th(lit;, o) = { —lit; a(lit;) = FALSE .

(6)

Decision Procedures — Propositional Encodings 19



e Th(lit;, ) — For an encoder e(lit;) that is assigned a truth
value by «, denotes the corresponding literal:

lit; a(lit;) = TRUE
—lit; a(lit;) = FALSE .

Th(lit;, ) = { (6)

e Th(a) = {Th(lit;,«) | e(lit;) is assigned by a}

Decision Procedures — Propositional Encodings 19



e Th(lit;, ) — For an encoder e(lit;) that is assigned a truth
value by «, denotes the corresponding literal:

lit; a(lit;) = TRUE
—lit; a(lit;) = FALSE .

Th(lit;, ) = { (6)

e Th(a) = {Th(lit;,«) | e(lit;) is assigned by a}
e Th(a) — a conjunction over the elements in Th(«).

Decision Procedures — Propositional Encodings 19



Example Use of the Notation

Let
lity = (x =y), lita = (y = 2), lits = (z=w) , (7)

Decision Procedures — Propositional Encodings 20



Example Use of the Notation

Let
lity = (x =y), lita = (y = 2), lits = (z=w) , (7)

and let « be a partial assignment such that

a := {e(lity) — FALSE, e(lits) — TRUE} .

Decision Procedures — Propositional Encodings 20



Example Use of the Notation

Let
lity = (x =y), lita = (y = 2), lits = (z=w) , (7)

and let « be a partial assignment such that
a = {e(lity) — FALSE, e(lity) — TRUE} .
Then

Th(lity, ) := =(x =vy), Th(lite,a) := (y = z),

Decision Procedures — Propositional Encodings 20



Example Use of the Notation

Let
lity = (x =y), lita = (y = 2), lits = (z=w) , (7)

and let « be a partial assignment such that
a = {e(lity) — FALSE, e(lity) — TRUE} .
Then
Th(lity, ) := =(x =vy), Th(lite,a) := (y = z),

and

Decision Procedures — Propositional Encodings 20



Example Use of the Notation

Let
lity = (x =y), lita = (y = 2), lits = (z=w) , (7)

and let « be a partial assignment such that
a = {e(lity) — FALSE, e(lity) — TRUE} .
Then
Th(lity, ) := =(x =vy), Th(lite,a) := (y = z),

and
Th(a) == {~(z=y),(y=2)}.
Conjoining these terms gives us

~

Th(a) = =(z=y)A(y==z).

Decision Procedures — Propositional Encodings 20



o T — a X-theory.

Decision Procedures — Propositional Encodings 21



o 1" —a X-theory.

@ DPr a decision procedure for the conjunctive fragment of 7.

Decision Procedures — Propositional Encodings 21



o 1" —a X-theory.

@ DPr a decision procedure for the conjunctive fragment of 7.

o Let DEDUCTION be a procedure based on D Pr, which
receives a conjunction of X-literals as input, and

o decides whether it is satisfiable, and,
e if the answer is negative, returns constraints over these literals.

Decision Procedures — Propositional Encodings 21



1. A Basic Algorithm

1: function LAzy-BaAsic(y)

2 B = e(yp);

3 while (TRUE) do

4 (o, res) == SAT-SOLVER(B);

5: if res ="Unsatisfiable” then return “Unsatisfiable”;
6 else

7 (t,res) := DEDUCTION(Th(c));

8 if res ="Satisfiable” then return “Satisfiable”;
9 B :=BAe(t);

Decision Procedures — Propositional Encodings 22



1. DEDUCTION

Consider the following three requirements from the clause ¢ that is
returned by DEDUCTION:

© The formula ¢ is T-valid, i.e., ¢ is a tautology in T". For
example, if 7' is the theory of equality, then
r=yANy=z— x=zis T-valid.

Decision Procedures — Propositional Encodings 23



1. DEDUCTION

Consider the following three requirements from the clause ¢ that is
returned by DEDUCTION:

© The formula ¢ is T-valid, i.e., ¢ is a tautology in T". For
example, if 7' is the theory of equality, then
r=yANy=z— x=zis T-valid.

@ The atoms in ¢ are restricted to those appearing in .

Decision Procedures — Propositional Encodings 23



1. DEDUCTION

Consider the following three requirements from the clause ¢ that is
returned by DEDUCTION:

© The formula ¢ is T-valid, i.e., ¢ is a tautology in T". For
example, if 7' is the theory of equality, then
r=yANy=z— x=zis T-valid.

@ The atoms in ¢ are restricted to those appearing in .

@ The encoding of ¢ contradicts «, i.e., e(t) is a blocking clause.

Decision Procedures — Propositional Encodings 23



1. DEDUCTION

Consider the following three requirements from the clause ¢ that is
returned by DEDUCTION:

© The formula ¢ is T-valid, i.e., ¢ is a tautology in T". For
example, if 7' is the theory of equality, then
r=yANy=z— x=zis T-valid.

@ The atoms in ¢ are restricted to those appearing in .

@ The encoding of ¢ contradicts «, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness.

Decision Procedures — Propositional Encodings 23



1. DEDUCTION

Consider the following three requirements from the clause ¢ that is
returned by DEDUCTION:

© The formula ¢ is T-valid, i.e., ¢ is a tautology in T". For
example, if 7' is the theory of equality, then
r=yANy=z— x=zis T-valid.

@ The atoms in ¢ are restricted to those appearing in .

@ The encoding of ¢ contradicts «, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness.

The second and third requirements are sufficient for guaranteeing
termination.

Decision Procedures — Propositional Encodings 23



1. DEDUCTION

Two of the requirements can be weakened:

Decision Procedures — Propositional Encodings 24



1. DEDUCTION

Two of the requirements can be weakened:

@ Requirement 1: the clause ¢ can be any formula that is
implied by ¢, and not just a 7T-valid formula.

Decision Procedures — Propositional Encodings 24



1. DEDUCTION

Two of the requirements can be weakened:

@ Requirement 1: the clause ¢ can be any formula that is
implied by ¢, and not just a 7T-valid formula.

@ Requirement 2: the clause ¢t may refer to atoms that do not
appear in ¢, as long as the number of such new atoms is

finite.

Decision Procedures — Propositional Encodings

24



1. DEDUCTION

Two of the requirements can be weakened:

@ Requirement 1: the clause ¢ can be any formula that is
implied by ¢, and not just a 7T-valid formula.

@ Requirement 2: the clause ¢t may refer to atoms that do not
appear in ¢, as long as the number of such new atoms is
finite.

e For example, in equality logic, we may allow ¢ to refer to all

atoms of the form z; = =; where x;, z; are variables in var(y),
even if only some of these equality predicates appear in .

Decision Procedures — Propositional Encodings 24



2. We can do better...

o Let 3’ be the formula 13 in the i-th iteration of the loop.

Decision Procedures — Propositional Encodings 25



2. We can do better...

o Let 3’ be the formula 13 in the i-th iteration of the loop.

e The constraint B+! is strictly stronger than B’ for all i > 1,
because clauses are added but not removed between iterations.

Decision Procedures — Propositional Encodings 25



2. We can do better...

o Let 3’ be the formula 13 in the i-th iteration of the loop.

e The constraint B+! is strictly stronger than B’ for all i > 1,
because clauses are added but not removed between iterations.

e As a result, any conflict clause that is learned while solving 3’
can be reused when solving B’ for i < j.

Decision Procedures — Propositional Encodings 25



2. We can do better...

o Let 3’ be the formula 13 in the i-th iteration of the loop.

e The constraint B+! is strictly stronger than B’ for all i > 1,
because clauses are added but not removed between iterations.

As a result, any conflict clause that is learned while solving 13’
can be reused when solving B’ for i < j.

This is a special case of incremental satisfiability.

Decision Procedures — Propositional Encodings 25



2. We can do better...

@ Hence, invoking an incremental SAT solver in line 4 can
increase the efficiency of the algorithm.

Decision Procedures — Propositional Encodings 26



2. We can do better...

@ Hence, invoking an incremental SAT solver in line 4 can
increase the efficiency of the algorithm.

@ A better option is to integrate DEDUCTION into the
DPLL-SAT algorithm, as shown in the following algorithm.

Decision Procedures — Propositional Encodings 26



2. We can do better...

@ Hence, invoking an incremental SAT solver in line 4 can
increase the efficiency of the algorithm.

@ A better option is to integrate DEDUCTION into the
DPLL-SAT algorithm, as shown in the following algorithm.

o This algorithm uses a procedure ADDCLAUSES, which adds
new clauses to the current set of clauses at run time.

Decision Procedures — Propositional Encodings 26



2. We can do better...

@ Hence, invoking an incremental SAT solver in line 4 can
increase the efficiency of the algorithm.

@ A better option is to integrate DEDUCTION into the
DPLL-SAT algorithm, as shown in the following algorithm.

This algorithm uses a procedure ADDCLAUSES, which adds
new clauses to the current set of clauses at run time.

Before seeing this algorithm let us first recall DPLL...

Decision Procedures — Propositional Encodings 26



2. A Reminder: DPLL

AT
DECIDE full S
assignment
partial
assignment
dl >0

no
conflict conflict ANALYZE-
—_— BCP CONFLICT UNSAT

Decision Procedures — Propositional Encodings 27



2. Pseudo-code for DPLL

function DPLL
if BCP() = “conflict” then return “Unsatisfiable”;

1:

2

3 while (TRUE) do

4 if “DECIDE() then return “Satisfiable”;

5: else

6 while (BCP() = “conflict”) do

7 backtrack-level := ANALYZE-CONFLICT();

8 if backtrack-level < 0 then return
“Unsatisfiable”;

o: else BackTrack(backtrack-level);

Decision Procedures — Propositional Encodings 28



2. Integration into DPLL

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:

function LAazy-DPLL

ADDCLAUSES(cenf (e(v)));
if BCP() = “conflict” then return “Unsatisfiable”;

while (TRUE) do
if “DECIDE() then > Full assignment

(t,res):=DEDUCTION(Th(c));

if res="Satisfiable” then return “Satisfiable”;

ADDCLAUSES(e(t));

while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();
if backtrack-level < 0 then return “Unsatisfiable”;
else BackTrack(backtrack-level);

else
while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();
if backtrack-level < 0 then return “Unsatisfiable”;
else BackTrack(backtrack-level);

Decision Procedures — Propositional Encodings 29



3. DPLL(T)

o Consider a formula ¢ that contains an integer variable 21 and,
among others, the literals z1 > 10 and x7 < 0.

Decision Procedures — Propositional Encodings 30



3. DPLL(T)

o Consider a formula ¢ that contains an integer variable 21 and,
among others, the literals z1 > 10 and x7 < 0.

@ Assume that the DECIDE procedure assigns
e(r1 > 10) — TRUE and e(z1 < 0) — TRUE.

Decision Procedures — Propositional Encodings 30



3. DPLL(T)

o Consider a formula ¢ that contains an integer variable 21 and,
among others, the literals z1 > 10 and x7 < 0.

@ Assume that the DECIDE procedure assigns
e(r1 > 10) — TRUE and e(z1 < 0) — TRUE.

@ Inevitably, any call to DEDUCTION results in a contradiction
between these two facts, independently of any other decisions
that are made.

Decision Procedures — Propositional Encodings 30



3. DPLL(T)

o However, the algorithms we saw so far do not call
DEDUCTION until a full satisfying assignment is found.

e Thus, the time taken to complete the assignment is wasted.

Decision Procedures — Propositional Encodings 31



3. DPLL(T)

o However, the algorithms we saw so far do not call
DEDUCTION until a full satisfying assignment is found.

e Thus, the time taken to complete the assignment is wasted.

o Further, the refutation of this full assignment may be due to
other reasons (i.e., a proof that a different subset of the
assignment is contradictory).

e Hence, additional assignments that include the same wrong
assignment to e(x; > 10) and e(x; < 0) are not ruled out.

Decision Procedures — Propositional Encodings 31



3. DPLL(T)

Early call to DEDUCTION can serve two purposes:

Decision Procedures — Propositional Encodings 32



3. DPLL(T)

Early call to DEDUCTION can serve two purposes:
@ Contradictory partial assignments are ruled out early.

Decision Procedures — Propositional Encodings 32



3. DPLL(T)

Early call to DEDUCTION can serve two purposes:
@ Contradictory partial assignments are ruled out early.
@ Allows theory propagation.

o Continuing our example, once e(z; > 10) has been assigned
TRUE, we can infer that e(z; < 0) must be FALSE and avoid
the conflict altogether.

This brings us to the next version of the algorithm, called
DPLL(T).

Decision Procedures — Propositional Encodings 32



3. Reminder: DPLL

SAT
DECIDE full
assignment
partial
assignment
dl >0

no
conflict conflict ANALYZE-
—_— BCP CONFLICT UNSAT

Decision Procedures — Propositional Encodings 33



. and now DPLL(T)

(TL

ECIDE ull SAT

assignment

partial
assignment BACKTRACK

dl >0
R .
BOP conflict | ANALYZE- UNSAT
CONFLICT dl <0
fh(()z) «
D t e(t) A
EDUCTION Theory DDCLAUSES
propagation
/ conflict

Decision Procedures — Propositional Encodings

34



1. function DPLL(T)

2 ADDCLAUSES(cnf (e(v)));

3: if BCP() = “conflict” then return “Unsatisfiable”;
4

5

while (TRUE) do

if “DECIDE() then return “Satisfiable”; > Full

assignment

6: repeat

7: while (BCP() = “conflict”) do

8: backtrack-level := ANALYZE-CONFLICT();

o: if backtrack-level < 0 then return
“Unsatisfiable”;

10: else BackTrack(backtrack-level);

11: (t,res):=DEDUCTION(Th(ev));

12: ADDCLAUSES(e(t));

13: until ¢ = TRUE

Decision Procedures — Propositional Encodings

35



3. Restrictions on

If Th(c) is satisfiable, we require ¢ to fulfill one of the following
two conditions in order to guarantee termination:

Decision Procedures — Propositional Encodings 36



3. Restrictions on

If Th(c) is satisfiable, we require ¢ to fulfill one of the following
two conditions in order to guarantee termination:

@ The clause e(t) is an asserting clause under «.. This implies

that the addition of ¢(¢) to 13 and a call to BCP leads to an
assignment to the encoder of some literal.

Decision Procedures — Propositional Encodings

36



3. Restrictions on

If Th(c) is satisfiable, we require ¢ to fulfill one of the following
two conditions in order to guarantee termination:

@ The clause e(t) is an asserting clause under «.. This implies
that the addition of ¢(¢) to 13 and a call to BCP leads to an
assignment to the encoder of some literal.

@ When DEDUCTION cannot find an asserting clause ¢ as
defined above, ¢ and ¢(t) are equivalent to TRUE.

The second case occurs, for example, when all the Boolean

variables are already assigned, and thus the formula is found to be
satisfiable.

Decision Procedures — Propositional Encodings

36



3. Theory Propagation

Various ways to perform theory propagation:

o After every decision / after every assignment

Decision Procedures — Propositional Encodings 37



3. Theory Propagation

Various ways to perform theory propagation:

o After every decision / after every assignment

e Partial / Exhaustive theory propagation — propagate all that is
implied by the current partial assignment.

Decision Procedures — Propositional Encodings 37



3. Theory Propagation

Various ways to perform theory propagation:

o After every decision / after every assignment

e Partial / Exhaustive theory propagation — propagate all that is
implied by the current partial assignment.

@ Refer only to existing predicates / add auxiliary ones.

Exhaustive theory propagation after each assignment: what does
this mean 7

Decision Procedures — Propositional Encodings 37



3. Theory Propagation

Various ways to perform theory propagation:

o After every decision / after every assignment

e Partial / Exhaustive theory propagation — propagate all that is
implied by the current partial assignment.

@ Refer only to existing predicates / add auxiliary ones.

Exhaustive theory propagation after each assignment: what does
this mean 7

That’s right, no possible conflicts on the theory side.

Decision Procedures — Propositional Encodings 37



3. Theory Propagation

How to check whether a predicate p is implied by Th(a) ?
o Plunging —is Th(a) A —p satisfiable ?

Decision Procedures — Propositional Encodings 38



3. Theory Propagation

How to check whether a predicate p is implied by Th(oz) ?
o Plunging —is Th(a) A —p satisfiable ?

@ Theory-specific propagation. For example, in equality logic
build the equality graph corresponding to T'h(«). Infer
equalities/disequalities from the graph.

Decision Procedures — Propositional Encodings 38



3. Theory Propagation

How to check whether a predicate p is implied by Th(oz) ?
o Plunging —is Th(a) A —p satisfiable ?

@ Theory-specific propagation. For example, in equality logic
build the equality graph corresponding to T'h(«). Infer
equalities/disequalities from the graph.

@ Note that theory propagation matters for efficiency, not
correctness.

Decision Procedures — Propositional Encodings 38



3. Theory Propagation

How to check whether a predicate p is implied by Th(a) ?
o Plunging —is Th(a) A —p satisfiable ?

@ Theory-specific propagation. For example, in equality logic
build the equality graph corresponding to T'h(«). Infer
equalities/disequalities from the graph.

@ Note that theory propagation matters for efficiency, not
correctness.

@ How much propagation is cost-effective is a subject for
research, and depends on T'.

Decision Procedures — Propositional Encodings 38



3. Theory Propagation — How?

o Normally theory propagation is done by transferring clauses to
the the DPLL solver.

@ It turns out to be inefficient — few (less than 0.5%) are
actually used.

@ Instead — add implied literals directly to the implication stack.

o This causes a problem in ANALYZE-CONFLICT() — can you see
what problem ?

Decision Procedures — Propositional Encodings 39



3. Theory Propagation — How?

@ The problem: ANALYZE-CONFLICT() requires an antecedent
clause for each implication, in order to compute the conflict
clause and backtrack level.

Decision Procedures — Propositional Encodings 40



3. Theory Propagation — How?

@ The problem: ANALYZE-CONFLICT() requires an antecedent
clause for each implication, in order to compute the conflict
clause and backtrack level.

@ Theory propagation without clauses breaks this mechanism —
there are implications without antecedents.

Decision Procedures — Propositional Encodings 40



3. Theory Propagation — How?

@ The problem: ANALYZE-CONFLICT() requires an antecedent
clause for each implication, in order to compute the conflict
clause and backtrack level.

@ Theory propagation without clauses breaks this mechanism —
there are implications without antecedents.

@ Solution — D Py should be able to explain an implication
post-mortem, in the form of a clause.

Decision Procedures — Propositional Encodings 40



3. Strong Lemmas

o When T'h(«) is unsatisfiable, the lemma (clause returned by
DEDUCTION) rules out c.

Decision Procedures — Propositional Encodings 41



3. Strong Lemmas

o When T'h(«) is unsatisfiable, the lemma (clause returned by
DEDUCTION) rules out c.

o Ideally, it should be generalized as much as possible.

Decision Procedures — Propositional Encodings 41



3. Strong Lemmas

o When T'h(«) is unsatisfiable, the lemma (clause returned by
DEDUCTION) rules out c.

o Ideally, it should be generalized as much as possible.

@ Solution: analyze the reason for unsatisfiability.
Build lemma accordingly.

Decision Procedures — Propositional Encodings 41



3. Strong Lemmas — An Example

Decision Procedures — Propositional Encodings 42



	Overview
	Notation
	A Basic Encoding Algorithm
	Integration into DPLL
	Theory Propagation and the DPLL(T) Framework
	Theory Propagation and the DPLL(T) Framework
	Optimizations and Implementation Issues

