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Propositional Encodings

Let T be a first-order Σ-theory such that:

T is quantifier-free.
There exists a decision procedure, denoted DPT , for the
conjunctive fragment of T .
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Propositional Encodings

Example 1:

T is equality logic.
DPT is the congruence closure algorithm.

Example 2:

T is disjunctive linear arithmetic.
DPT is the Simplex algorithm.
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Propositional Encodings

We will now study a framework that combines

DPT , and

a SAT solver,

in various ways, in order to construct a decision procedure for T .

This method is

modular,

efficient,

competitive (all state-of-the-art SMT solvers work this way).
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Propositional Encodings

The two main engines in this framework work in tight
collaboration:

The SAT solver chooses those literals that need to be satisfied
in order to satisfy the Boolean structure of the formula, and

The theory solver DPT checks whether this choice is
consistent in T .
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Notation

Let l be a Σ-literal.

Denote by e(l) the Boolean encoder of this literal.

Let t be a Σ-formula,

Denote by e(t) the Boolean formula resulting from
substituting each Σ-literal in t with its Boolean encoder.

For a Σ-formula t, the resulting Boolean formula e(t) is called the
propositional skeleton of t.
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Boolean encoders – examples

Example I: Let l := x = y be a Σ-literal. Then e(x = y), a
Boolean variable, is its encoder.

Example II: Let
t := x = y ∨ x = z

be a Σ-formula. Then

e(t) := e(x = y) ∨ e(x = z)

is its Boolean encoder.
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Overview by an example

Let T be equality logic. Given an NNF formula

ϕ := x = y ∧ ((y = z ∧ x 6= z) ∨ x = z) , (1)

we begin by computing its propositional skeleton:

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ e(x 6= z)) ∨ e(x = z)) . (2)

Note that since we are encoding literals and not atoms, e(ϕ) has
no negations and hence is trivially satisfiable.

Decision Procedures – Propositional Encodings 9



Overview by an example

Let T be equality logic. Given an NNF formula

ϕ := x = y ∧ ((y = z ∧ x 6= z) ∨ x = z) , (1)

we begin by computing its propositional skeleton:

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ e(x 6= z)) ∨ e(x = z)) . (2)

Note that since we are encoding literals and not atoms, e(ϕ) has
no negations and hence is trivially satisfiable.

Decision Procedures – Propositional Encodings 9



Overview by an example

Let T be equality logic. Given an NNF formula

ϕ := x = y ∧ ((y = z ∧ x 6= z) ∨ x = z) , (1)

we begin by computing its propositional skeleton:

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ e(x 6= z)) ∨ e(x = z)) . (2)

Note that since we are encoding literals and not atoms, e(ϕ) has
no negations and hence is trivially satisfiable.

Decision Procedures – Propositional Encodings 9



Overview by an example

Let B be a Boolean formula, initially set to e(ϕ), i.e.,

B := e(ϕ) .

As a second step, we pass B to a SAT solver.

Assume that the SAT solver returns the satisfying assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true, e(x 6= z) 7→ true,
e(x = z) 7→ false} .
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Overview by an example

Denote by T̂ h(α) the conjunction of the literals corresponding
to this assignment.

T̂ h(α) := x = y ∧ y = z ∧ x 6= z ∧ ¬(x = z) .

The decision procedure DPT now has to decide whether
T̂ h(α) is satisfiable.

T̂ h(α) is not satisfiable, which means that the negation of
this formula is a tautology.
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Overview by an example

Thus B is conjoined with e(¬T̂ h(α)), the Boolean encoding of this
tautology:

e(¬T̂ h(α)) := (¬e(x = y) ∨ ¬e(y = z) ∨ ¬e(x 6= z) ∨ e(x = z)) .

This clause contradicts the current assignment, and hence
blocks it from being repeated.

Such clauses are called blocking clauses.

We denote by t the formula – also called the lemma –
returned by DPT (in this example t := ¬T̂ h(α)).
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Overview by an example

After the blocking clause has been added, the SAT solver is
invoked again and suggests another assignment, for example

α′ := {e(x = y) 7→ true, e(y = z) 7→ true, e(x = z) 7→ true,
e(x 6= z) 7→ false} .

The corresponding Σ-formula

T̂ h(α′) := x = y ∧ y = z ∧ x = z ∧ ¬(x 6= z) (3)

is satisfiable, which proves that ϕ, the original formula, is
satisfiable.

Indeed, any assignment that satisfies T̂ h(α′) also satisfies ϕ.
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Overview

t

T̂ h(α)

for a conjunction of Σ-terms

DPT - A Decision procedurePropositional

SAT Solver

α

e(t)

The information flow between the two components of
the decision procedure.
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Overview

There are many improvements to this basic procedure.

One such improvement is:
“Invoke the decision procedure DPT after partial assignments,
rather than waiting for a full assignment.”

A contradicting partial assignment leads to a more powerful
lemma t, as it blocks all assignments that extend it.

Theory propagation: When the partial assignment is not
contradictory, it can be used to derive implications that are
propagated back to the SAT solver.
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Overview by an example

Continuing the example above, consider the partial assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true} , (4)

and the corresponding formula that is transferred to DPT ,

T̂ h(α) := x = y ∧ y = z . (5)

DPT concludes that x = z is implied, and hence inform the SAT
solver that e(x = z) 7→ true and e(x 6= z) 7→ false are implied
by the current partial assignment α.
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Plan

We will now formalize three versions of the algorithm:

1 Simple

2 Incremental

3 DPLL(T)
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Notation

lit(ϕ) – the set of literals in a given NNF formula ϕ.

lit i(ϕ) – the i-th distinct literal in ϕ
(assuming some predefined order on the literals).

α – For a given encoding e(ϕ), denotes an assignment (either
full or partial), to the encoders in e(ϕ).
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Notation

Th(lit i, α) – For an encoder e(lit i) that is assigned a truth
value by α, denotes the corresponding literal:

Th(lit i, α) .=
{

lit i α(lit i) = true
¬lit i α(lit i) = false .

(6)

Th(α) .= {Th(lit i, α) | e(liti) is assigned by α}
T̂ h(α) – a conjunction over the elements in Th(α).
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Example Use of the Notation

Let
lit1 = (x = y), lit2 = (y = z), lit3 = (z = w) , (7)

and let α be a partial assignment such that

α := {e(lit1) 7→ false, e(lit2) 7→ true} .

Then

Th(lit1, α) := ¬(x = y), Th(lit2, α) := (y = z) ,

and
Th(α) := {¬(x = y), (y = z)} .

Conjoining these terms gives us

T̂ h(α) := ¬(x = y) ∧ (y = z) .
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Notation

T – a Σ-theory.

DPT a decision procedure for the conjunctive fragment of T .

Let Deduction be a procedure based on DPT , which
receives a conjunction of Σ-literals as input, and

decides whether it is satisfiable, and,
if the answer is negative, returns constraints over these literals.
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1. A Basic Algorithm

1: function Lazy-Basic(ϕ)
2: B := e(ϕ);
3: while (true) do
4: 〈α, res〉 := SAT-Solver(B);
5: if res =“Unsatisfiable” then return “Unsatisfiable”;
6: else
7: 〈t, res〉 := Deduction(T̂ h(α));
8: if res =“Satisfiable” then return “Satisfiable”;

9: B := B ∧ e(t);
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1. Deduction

Consider the following three requirements from the clause t that is
returned by Deduction:

1 The formula t is T -valid, i.e., t is a tautology in T . For
example, if T is the theory of equality, then
x = y ∧ y = z −→ x = z is T -valid.

2 The atoms in t are restricted to those appearing in ϕ.

3 The encoding of t contradicts α, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness.

The second and third requirements are sufficient for guaranteeing
termination.
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1. Deduction

Two of the requirements can be weakened:

Requirement 1: the clause t can be any formula that is
implied by ϕ, and not just a T -valid formula.

Requirement 2: the clause t may refer to atoms that do not
appear in ϕ, as long as the number of such new atoms is
finite.

For example, in equality logic, we may allow t to refer to all
atoms of the form xi = xj where xi, xj are variables in var(ϕ),
even if only some of these equality predicates appear in ϕ.

Decision Procedures – Propositional Encodings 24



1. Deduction

Two of the requirements can be weakened:

Requirement 1: the clause t can be any formula that is
implied by ϕ, and not just a T -valid formula.

Requirement 2: the clause t may refer to atoms that do not
appear in ϕ, as long as the number of such new atoms is
finite.

For example, in equality logic, we may allow t to refer to all
atoms of the form xi = xj where xi, xj are variables in var(ϕ),
even if only some of these equality predicates appear in ϕ.

Decision Procedures – Propositional Encodings 24



1. Deduction

Two of the requirements can be weakened:

Requirement 1: the clause t can be any formula that is
implied by ϕ, and not just a T -valid formula.

Requirement 2: the clause t may refer to atoms that do not
appear in ϕ, as long as the number of such new atoms is
finite.

For example, in equality logic, we may allow t to refer to all
atoms of the form xi = xj where xi, xj are variables in var(ϕ),
even if only some of these equality predicates appear in ϕ.

Decision Procedures – Propositional Encodings 24



1. Deduction

Two of the requirements can be weakened:

Requirement 1: the clause t can be any formula that is
implied by ϕ, and not just a T -valid formula.

Requirement 2: the clause t may refer to atoms that do not
appear in ϕ, as long as the number of such new atoms is
finite.

For example, in equality logic, we may allow t to refer to all
atoms of the form xi = xj where xi, xj are variables in var(ϕ),
even if only some of these equality predicates appear in ϕ.

Decision Procedures – Propositional Encodings 24



2. We can do better...

Let Bi be the formula B in the i-th iteration of the loop.

The constraint Bi+1 is strictly stronger than Bi for all i ≥ 1,
because clauses are added but not removed between iterations.

As a result, any conflict clause that is learned while solving Bi

can be reused when solving Bj for i < j.

This is a special case of incremental satisfiability.
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2. We can do better...

Hence, invoking an incremental SAT solver in line 4 can
increase the efficiency of the algorithm.

A better option is to integrate Deduction into the
DPLL-SAT algorithm, as shown in the following algorithm.

This algorithm uses a procedure AddClauses, which adds
new clauses to the current set of clauses at run time.

Before seeing this algorithm let us first recall DPLL...
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2. A Reminder: DPLL
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2. Pseudo-code for DPLL

1: function DPLL
2: if BCP() = “conflict” then return “Unsatisfiable”;

3: while (true) do
4: if ¬Decide() then return “Satisfiable”;
5: else
6: while (BCP() = “conflict”) do
7: backtrack-level := Analyze-Conflict();
8: if backtrack-level < 0 then return

“Unsatisfiable”;
9: else BackTrack(backtrack-level);
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2. Integration into DPLL

1: function Lazy-DPLL
2: AddClauses(cnf (e(ϕ)));
3: if BCP() = “conflict” then return “Unsatisfiable”;

4: while (true) do
5: if ¬Decide() then . Full assignment

6: 〈t, res〉:=Deduction(T̂ h(α));
7: if res=“Satisfiable” then return “Satisfiable”;

8: AddClauses(e(t));
9: while (BCP() = “conflict”) do

10: backtrack-level := Analyze-Conflict();
11: if backtrack-level < 0 then return “Unsatisfiable”;
12: else BackTrack(backtrack-level);

13: else
14: while (BCP() = “conflict”) do
15: backtrack-level := Analyze-Conflict();
16: if backtrack-level < 0 then return “Unsatisfiable”;
17: else BackTrack(backtrack-level);
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3. DPLL(T)

Consider a formula ϕ that contains an integer variable x1 and,
among others, the literals x1 ≥ 10 and x1 < 0.

Assume that the Decide procedure assigns
e(x1 ≥ 10) 7→ true and e(x1 < 0) 7→ true.

Inevitably, any call to Deduction results in a contradiction
between these two facts, independently of any other decisions
that are made.
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3. DPLL(T)

However, the algorithms we saw so far do not call
Deduction until a full satisfying assignment is found.

Thus, the time taken to complete the assignment is wasted.

Further, the refutation of this full assignment may be due to
other reasons (i.e., a proof that a different subset of the
assignment is contradictory).

Hence, additional assignments that include the same wrong
assignment to e(x1 ≥ 10) and e(x1 < 0) are not ruled out.
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3. DPLL(T)

Early call to Deduction can serve two purposes:

1 Contradictory partial assignments are ruled out early.

2 Allows theory propagation.

Continuing our example, once e(x1 ≥ 10) has been assigned
true, we can infer that e(x1 < 0) must be false and avoid
the conflict altogether.

This brings us to the next version of the algorithm, called
DPLL(T ).
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3. ... and now DPLL(T)
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1: function DPLL(T )
2: AddClauses(cnf (e(ϕ)));
3: if BCP() = “conflict” then return “Unsatisfiable”;

4: while (true) do
5: if ¬Decide() then return “Satisfiable”; . Full

assignment

6: repeat
7: while (BCP() = “conflict”) do
8: backtrack-level := Analyze-Conflict();
9: if backtrack-level < 0 then return

“Unsatisfiable”;
10: else BackTrack(backtrack-level);

11: 〈t, res〉:=Deduction(T̂ h(α));
12: AddClauses(e(t));
13: until t ≡ true
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3. Restrictions on t

If T̂ h(α) is satisfiable, we require t to fulfill one of the following
two conditions in order to guarantee termination:

1 The clause e(t) is an asserting clause under α. This implies
that the addition of e(t) to B and a call to BCP leads to an
assignment to the encoder of some literal.

2 When Deduction cannot find an asserting clause t as
defined above, t and e(t) are equivalent to true.

The second case occurs, for example, when all the Boolean
variables are already assigned, and thus the formula is found to be
satisfiable.
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3. Theory Propagation

Various ways to perform theory propagation:

After every decision / after every assignment

Partial / Exhaustive theory propagation – propagate all that is
implied by the current partial assignment.

Refer only to existing predicates / add auxiliary ones.

Exhaustive theory propagation after each assignment: what does
this mean ?

That’s right, no possible conflicts on the theory side.
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3. Theory Propagation

How to check whether a predicate p is implied by T̂ h(α) ?

Plunging – is T̂ h(α) ∧ ¬p satisfiable ?

Theory-specific propagation. For example, in equality logic
build the equality graph corresponding to Th(α). Infer
equalities/disequalities from the graph.

Note that theory propagation matters for efficiency, not
correctness.

How much propagation is cost-effective is a subject for
research, and depends on T .
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3. Theory Propagation – How?

Normally theory propagation is done by transferring clauses to
the the DPLL solver.

It turns out to be inefficient – few (less than 0.5%) are
actually used.

Instead – add implied literals directly to the implication stack.

This causes a problem in Analyze-conflict() – can you see
what problem ?
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3. Theory Propagation – How?

The problem: Analyze-conflict() requires an antecedent
clause for each implication, in order to compute the conflict
clause and backtrack level.

Theory propagation without clauses breaks this mechanism –
there are implications without antecedents.

Solution – DPT should be able to explain an implication
post-mortem, in the form of a clause.
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3. Strong Lemmas

When T̂ h(α) is unsatisfiable, the lemma (clause returned by
Deduction) rules out α.

Ideally, it should be generalized as much as possible.

Solution: analyze the reason for unsatisfiability.
Build lemma accordingly.
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3. Strong Lemmas – An Example
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