
Generating minimum transitivity constraints in P-time for
deciding Equality Logic

Ofer Strichman and Mirron Rozanov

Information Systems Engineering, IE, Technion, Israel.
ofers@ie.technion.ac.il mirron@tx.technion.ac.il

Abstract. In a CAV’05 paper [MS05] we introduced a new decision procedure for Equality Logic: each
equality predicate is encoded with a Boolean variable, and then a set of transitivity constraints are
added to compensate for the loss of transitivity of equality. The constraints are derived by analyzing
Contradictory Cycles : cycles in the equality graph with exactly one disequality. Such a cycle is called
constrained under a formula ϕ if ϕ is not satisfied with an assignment of true to all equality edges and
false to the disequality edge. While we proved in [MS05] that it is sufficient to constrain all simple
contradictory cycles, we left open the question of how to find the necessary constraints in polynomial
time. Instead, we showed two possible compromises: an exponential algorithm, or, alternatively, a
polynomial approximation that constrains all contradictory cycles rather than only the simple ones. In
this article we show a polynomial algorithm that constrains only the simple contradictory cycles.

1 Introduction

Equality Logic with Uninterpreted Functions is a major decidable logic used in verification of infinite-
state systems. Well-formed expressions in this logic are Boolean combinations of Equality predicates, where
the equalities are defined between term-variables (variables with some infinite domain) and Uninterpreted
Functions. The Uninterpreted Functions can be reduced to equalities via e.g. Ackermann’ reduction [Ack54],
hence the underling theory that is left to solve is that of Equality Logic. We refer the reader to [MS05] for
a description of some of the usage cases of this logic and a survey of previous work on decision procedures
for it.

The following framework is used by [BV00,MS05] and the current work to reduce the problem of deciding
whether an Equality Logic formula ϕE is satisfiable, to the problem of deciding a propositional formula:

1. Let E denote the set of equality predicates appearing in ϕE. Derive a Boolean formula B by replacing
each equality predicate (xi = xj) ∈ E with a new Boolean variable ei,j . Encode disequality predicates
with negations, e.g., encode i 6= j with ¬ei,j .

2. Recover the lost transitivity of equality by conjoining B with explicit transitivity constraints jointly
denoted by T (T for Transitivity). T is a formula over B’s variables and, possibly, auxiliary variables.

The Boolean formula B∧T should be satisfiable if and only if ϕE is satisfiable. Further, it should be possible
to construct a satisfying assignment to ϕE from an assignment to the ei,j variables.

In an earlier work [MS05] this framework was instantiated as follows (the terms that follow will be formally
defined in Section 2). The transitivity constraints are derived by analyzing Contradictory Cycles: cycles in
the Equality Graph with exactly one disequality. Such a cycle is called constrained under a formula ϕ if ϕ
is not satisfied with an assignment of true to all equality edges and false to the disequality edge. While
it was proven in [MS05] that it is sufficient to constrain all simple contradictory cycles, the question of how
to find the necessary constraints in polynomial time was left open. Instead, two possible compromises were
suggested: an exponential algorithm[Mei05], or, alternatively, a polynomial approximation that constrains
all contradictory cycles rather than only the simple ones. In this article we show a polynomial algorithm
that constrains only the simple contradictory cycles.

While this article only replaces one (crucial) component in a previously-published decision procedure
[MS05], it is written with the goal of being self-contained, assuming most readers are not familiar with the

previous work1. In the next section we list several basic definitions that are necessary for understanding the
setting; in Section 3 the main theorem on which this work (as well as [MS05]) is based on is re-presented; in
Section 4 we describe the new decision procedure, and we conclude with a list of experiments in Section 5.
A detailed comparison to [MS05,Mei05] appears in Section 4.2.

2 Basic Definitions

The Equality formula ϕE is assumed to be given in Negation Normal Form (NNF), which means that
negations are only applied to atoms, or equality predicates in our case. Every formula can be transformed to
this form in linear time in the size of the formula. Given an NNF formula, denote by E= the set of (unnegated)
equality predicates, and by E6= the set of disequalities (negated) equality predicates. The Reduced Transitivity
Constraints (RTC) method of [MS05] relies on graph-theoretic concepts.

Definition 1 (Equality Graph). Given an Equality Logic formula ϕE, the Equality Graph corresponding
to ϕE, denoted by GE(ϕE), is an undirected graph (V, E=, E6=) where each node v ∈ V corresponds to a variable
in ϕE, and each edge in E= and E6= corresponds to an equality or disequality from the respective equality
predicates sets E= and E6=. By convention E= edges are dashed and E 6= edges are solid.

Every edge in the Equality Graph corresponds to a variable ei,j ∈ B. It follows that when we refer to an
assignment of an edge, it should be understood as an assignment to the variable that corresponds to this
edge. Also, we will simply write GE to denote an Equality Graph when not referring to a specific formula.

Note that Equality Graphs abstract the formulas from which they are built: they ignore the Boolean
connectives. Hence, an Equality Graph GE(ϕE) represent all formulas that have the same predicate sets as
ϕE.

Example 1. Figure 1 shows an Equality Graph GE(ϕE) for some Equality Formula ϕE for which E= : {(x1 =
x5), (x5 = x6), (x6 = x2), (x3 = x7), (x7 = x8), (x8 = x4)} and E6= : {(x1 6= x2), (x2 6= x3), (x3 6= x4), (x3 6=
x8)}. An assignment true to an edge (regardless whether it is an E= or E6= edge), means that the equality
is satisfied; Hence, to satisfy an E6= edge an assignment false is required.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

x3x2 x4

x5

x1

x7 x8x6

Fig. 1. An Equality Graph GE(ϕE)

ut
Transitivity of equality can be enforced for every three variables in ϕE:

Definition 2 (Transitivity Constraint). For variables xi, xj , xk, the constraint

ei,j ∧ ej,k → ei,k

is called a transitivity constraint.

Such constraints can be added to T for every three variables in ϕ (in fact, this was one of the methods
suggested by Bryant and Velev in [BV00]), although typically it is possible to find efficiently a small subset
of them that is still sufficient for the reduction, as shown in [BV00,MS05] and in this article.
1 Some of the definitions and examples from [MS05] are in fact repeated here without change.

2

Definition 3 (Equality Path). An Equality Path in an Equality Graph GE is a path made of E= (dashed)
edges. Denote by x =∗ y the fact that x has an Equality Path to y in GE, where x, y ∈ V .

Definition 4 (Disequality Path). A Disequality Path in an Equality Graph GE is a path made of E=

(dashed) edges and a single E6= (solid) edge. Denote by x 6=∗ y the fact that x has a Disequality Path to y in
GE, where x, y ∈ V .

Equality and Disequality paths are called simple if no vertex in the path is repeated. In Figure 1 it holds,
for example, that x2 =∗ x5 due to the simple path x2, x6, x5; x2 6=∗ x5 due to the simple path x2, x1, x5; and
x5 6=∗ x7 due to the simple path x5, x6, x2, x3, x7.

Intuitively, an Equality Path xi =∗ xj in GE implies that xi and yi are possibly required to be equal in
order to satisfy the formula from which GE was built. A Disequality Path xi 6=∗ xj implies the opposite: xi

and xj are possibly required to be different in order to satisfy this formula. More formally, if xi =∗ xj in
some equality graph GE

1 , then there exists a satisfiable equality formula ϕE such that GE(ϕE) ≡ GE
1 and in

every satisfying assignment to ϕE, xi = xj . The formal description for xi 6=∗ xj is similar.

Definition 5 (Contradictory Cycle). A Contradictory Cycle in an Equality Graph is a cycle with exactly
one disequality (solid) edge.

Several characteristics of contradictory cycles are:

1. For every pair of nodes x, y in a Contradictory Cycle, it holds that x =∗ y and x 6=∗ y.
2. For every Contradictory Cycle C, either C is simple or a subset of its edges forms a Simple Contradictory

Cycle. It is sufficient, therefore, to refer only to simple contradictory cycles.
3. It is impossible to satisfy simultaneously all the predicates that correspond to edges of a Contradictory

Cycle. Further, this is the only type of subgraph with this property.

The polarity information (whether the edge represents an equality or disequality) in the equality graph is
useful due to the following property of NNF formulas.

Theorem 1 (Monotonicity of NNF). Let φ be an NNF formula and α be an assignment such that α |= φ.
Let the positive set S of α be the positive literals in φ assigned true and the negative literals in φ assigned
false. Every assignment α′ with a positive set S′ such that S ⊆ S′ satisfies φ as well.

The same theorem was used, for example, in [PRSS02].
Two graph-theoretical concepts that are used by our algorithm are:

Definition 6 (Chord). A chord in a cycle is an edge between two non-adjacent vertices.

Definition 7 (Chordal graphs). A graph is called chordal if no cycle of size four or more in the graph is
chord-free.

Every graph can be made chordal in polynomial time by adding edges. The following procedure returns a
set of chords sufficient for making an graph G(V,E) chordal:

1. While V 6= ∅:
(a) Choose a vertex v ∈ V ;
(b) Add to E an edge between every two neighbors of v (if it was not already in E).
(c) Remove v and its incident edges.

2. Return the set of edges that were added in line 1b.

The order by which vertices are chosen in line 1a affects the number of added chords. A simple greedy
criterion is to choose the vertex that adds the least number of edges (finding the smallest set of edges that
make a graph chordal is NP-hard).

Chordal graphs were used by [BV00] in the context of their observation that transitivity should be
enforced only on chord-free cycles (which, in a chordal graph, are only the triangles). In [MS05], as well
as in this paper, it is used in a different context, but with a similar purpose: it enables the algorithm to
constrain only triangles. More specifically, although a graph (V, E) can contain an exponential number of
contradictory cycles in |V |, it can only contain a polynomial number of triangles. Yet, enforcing transitivity
on triangles (whether they are contradictory or not) is sufficient for enforcing it on all contradictory cycles,
as shown in [MS05] and in Section 4.

3

3 Main Theorem

The key idea that is formulated by Theorem 2 below and later exploited by our algorithm rtcS , can first
be demonstrated by a simple example.

Example 2. For the Equality Graph in Figure 2(left), the single transitivity constraint T = (e0,2∧e1,2 → e0,1)
is sufficient.

��
��
��
��

�
�
�
�

x0 x1

x2

α α′

e0,1 true true
e1,2 true true
e0,2 false true

Fig. 2. An equality graph for Example 2, demonstrating how an assignment that contradicts transitivity, can be
changed to one that respects transitivity.

To justify this claim, it is sufficient to show that for every assignment α that satisfies B ∧ T , there exists an
assignment α′ that satisfies B and transitivity of equality. Since this, in turn, implies that ϕE is satisfiable
as well, then it is implied that ϕE is equisatisfiable to B ∧ T .

It is possible to construct such an assignment α′ because of the monotonicity of NNF (recall that the
polarity of the edges in the Equality Graph are according to their polarity in the NNF representation of ϕE).
There are only two satisfying assignments to T that do not satisfy transitivity. One of these assignments is
shown in the α column in the table to the right of the drawing. The second column shows a corresponding
assignment α′, which clearly satisfies transitivity. It is left to prove that every formula B that corresponds
to the above graph, is still satisfied by α′ if it was satisfied by α. For example, for B = (¬e0,1 ∨ e1,2 ∨ e0,2),
both α |= B ∧ T and α′ |= B and respects transitivity. Intuitively, this is guaranteed to be true because α′

is derived from α by flipping an assignment of a positive (un-negated) predicate (e0,2) from false to true.
Similarly, we can flip an assignment to a negated predicate (e0,1 in this case) from true to false.

A formalization of this argument requires a reference to the monotonicity of NNF (Theorem 1): Let S
and S′ denote the positive sets of α and α′ respectively. Then in this case S = {e1,2} and S′ = {e1,2, e0,2}.
Thus S ⊂ S′ and hence, according to Theorem 1, α |= B → α′ |= B. ut
Several definitions are needed in order to generalize this example into a theorem.

Definition 8 (A constrained Contradictory Cycle). Let C = (es, e1, . . . , en) be a Contradictory Cycle
where es is the solid edge. Let ψ be a formula over the Boolean variables in B that encodes the edges of C.
C is said to be constrained in ψ if the assignment (es, e1, . . . , en) ← (F, T, . . . , T) contradicts ψ.

Definition 9 (A Reduced Transitivity Constraints formula T). A Reduced Transitivity Constraints
(RTC) formula T for an equality graph GE is a conjunction of transitivity constraints that constrains all the
simple contradictory cycles in GE2.

Consider, for example, an Equality Graph in which all edges are solid (disequalities): in such a graph there
are no contradictory cycles and hence no constraints are required: T = true.

Theorem 2 (Main). Let ϕE be an equality formula, and let T be an RTC formula for GE(ϕE). Then ϕE is
satisfiable if and only if B ∧ T is satisfiable.

2 The definition of this term in [MS05] includes an additional requirement, that it is not more restrictive than the
constraint generated by Bryant and Velev’s Sparse method technique. This restriction is not necessary in our
context.

4

The proof of this theorem appears in [MS05] and [Mei05]. Since T is a conjunction of transitivity constraints,
the proof of the ‘only if’ direction (⇒) is trivial. To prove the other direction it is shown in [Mei05] that
there exists an algorithm for reconstructing an assignment that satisfies all transitivity constraints from a
given assignment α that only satisfies T .

Given Theorem 2, it is left to show an algorithm that generates a formula that constrains all simple
contradictory cycles. In [MS05] we presented the rtc algorithm for this purpose, parts of which are re-used
here in the description of the new algorithm rtcS . The latter only constrains simple contradictory cycles,
as it should according to Theorem 2, hence the superscript S. It is also simpler to describe and implement
than rtc.

4 The rtcS algorithm

The rtcS algorithm processes Biconnected Components (BCC) [CLR00] in the given Equality Graph.

Definition 10 (Maximal Biconnected Component). A Biconnected Component of an undirected graph
is a maximal set of edges such that any two edges in the set lie on a common simple cycle.

It is sufficient to focus on BCCs because only cycles need to be constrained (more specifically, contradictory
cycles). Each considered BCC contains a solid edge es and all the contradictory cycles that it is part of. In
line 4, rtcS makes the BCC chordal, by adding edges. After the graph is chordal rtcS calls Generate-
constraintsS , which strengthens T with all the transitivity constraints that are necessary for constraining
all the contradictory cycles in this BCC with respect to es.

Algorithm 1 rtcS returns a formula T , which conjoins all the transitivity constraints that are sufficient
and necessary in order to constrain all simple contradictory cycles in a given equality graph.
rtcS (Equality Graph GE(V, E=, E 6=))

1: T = true
2: for all es ∈ E 6= do
3: Find B(es), the maximal BCC in GE that is made of es and E= edges;
4: Make B(es) chordal; . This step adds new dashed edges.
5: Generate-constraintsS (B(es)); . see Algorithm 2.
6: end for
7: return T ;

A possible optimization to rtcS is to reuse chords: denote by Ep the union of chords that were added
in previous iterations of the algorithm (when other BCCs were considered), and GE

6= edges. The greedy
criterion by which vertices are chosen (see the algorithm for making graphs chordal after Definition 7)
should be changed as follows: rather than counting the number of added edges, count only those edges that
are added and are also not in Ep (since Ep edges are already represented in the resulting formula). This
optimization reduces the number of added chords and, consequently, the number of variables and constraints.

4.1 Deriving transitivity constraints in P time

Let B be a chordal biconnected component in which there is a single solid edge es adjacent to vertices
xs,x′s. The algorithm in Fig. 2 finds the necessary and sufficient constraints for constraining all the simple
contradictory cycles with respect to es. We will use a convention by which removing a vertex implies removing
its incident edges. Also, we will use set notation for graph elements when the meaning is clear from the
context, for example:

– (xi, xj) ∈ B means that the graph B has an edge (xi, xj),

5

Algorithm 2 Generate-constraintsS adds transitivity constraints to a (global) formula T , that are
sufficient and necessary for constraining all the simple contradictory cycles in a given bi-connected component
with a single solid edge es = (xs, x

′
s).

1: procedure Generate-constraintsS(Chordal BCC B(V, E))
2: for each vertex v ∈ {V \ {xs, x

′
s}} do

3: Let B′ = B \ v.
4: for every (xi, xj) that

4.1 is on a simple cycle with es in B′ (or es ≡ (xi, xj)), and
4.2 {(v, xi), (v, xj)} ∈ B

do
5: T = T ∧ (ev,xi ∧ ev,xj → exi,xj)
6: end for
7: end for
8: end procedure

– B′ ⊆ B means that B′ is a subgraph of B,
– B \ v is the graph B after the removal of the vertex v and its incident edges from B.

Two comments about Generate-constraintsS :

– An optimization for line 5 is to add the constraint only if it was not added before. Our implementation
in fact maintains the constraints as a set, and generates T only in the end.

– The condition in line 4.1 can be checked in polynomial time, by, for example, building a maximal BCC
B′′ around es in B′. Every edge in B′′ is on a simple cycle with es in B′.

Example 3. Consider the Equality Graph in Figure 3. Assume that the vertices are examined in line 2 in an
order corresponding to the variable index. For this graph, x1, x6 are those vertices called xs, x

′
s in Generate-

constraintsS . The first vertex examined in line 2 is therefore x2. The edge (x1, x5) is the only one fulfilling
the two conditions: (x2, x1), (x2, x5) are edges in B, and it is on a simple cycle with es in B′. Indeed, (x1, x5)
is an edge in B′′ = (x1, x6, x5), the maximal BCC that contains es after the removal of x2 and its incident
edges. Therefore the constraint e1,2 ∧ e2,5 → e1,5 is the only one added in this iteration. The table below
shows the constraints added in each iteration.

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

x1

x5x6 x4

x3x2
Examining... Added constraints
x2 e1,2 ∧ e2,5 → e1,5

x3 e2,3 ∧ e3,4 → e2,4

x4 e2,4 ∧ e4,5 → e2,5

x5 e1,5 ∧ e5,6 → e1,6

Fig. 3. An Equality Graph for Example 3.

Theorem 3. For a chordal BCC B with a single solid edge es, the constraints added by Generate-
constraintsS(B) are sufficient and necessary for constraining all simple contradictory cycles in B.

Proof. (Sufficiency) We first prove the following:

Lemma 1. If for every triangle (xi, v, xj) in B such that (xi, v), (v, xj) 6= es and (xi, v), (v, xj) is part of
a simple contradictory cycle, the transitivity constraint ei,v ∧ ev,j → ei,j is in T , then T constrain all the
simple contradictory cycles in B.

6

Proof. Let C be a simple contradictory cycle in B. By induction on the size of C:
Base: Let C be a triangle (xi, v, xj), where (xi, xj) is the solid edge es. Since (xi, v), (v, xj) are part of a

contradictory cycle, the constraint ei,v ∧ ev,j → ei,j is in T . Thus, C is constrained in C.
Step: Assume the Proposition holds for C of size n (n ≥ 3), and consider C with size n + 1. Since

C is chordal, it can be decomposed into a triangle, say xi, v, xj , and another contradictory cycle C ′ =
C \ {(xi, v), (v, xj)} ∪ (xi, xj) (this observation is proven as Proposition 2 in [Mei05]). By the induction
hypothesis, C ′ is constrained by T (since |C ′| = n). The constraint ei,v ∧ ev,j → ei,j is in T because
(xi, v), (v, xj) is part of C, which, recall, is a simple contradictory cycle. Now, assume that C is not constrained
by T , i.e. an assignment α that assigns true to all dashed edges and false to es still satisfies T . In this
assignment ei,v, ev,j are assigned true, but then ei,j is assigned true as well due to the constraint mentioned
above. Hence, in C ′ all dashed edges are assigned true whereas es is assigned false, which contradicts the
induction hypothesis. ut
It is left to show that the constraints added by rtcS satisfy the premise of Lemma 1, i.e., that it adds a
constraint ei,v ∧ ev,j → ei,j for every triangle (xi, v, xj) in B such that (xi, v), (v, xj) 6= es and (xi, v), (v, xj)
are part of a simple contradictory cycle.

Lemma 2. Let (xi, v, xj) be a dashed triangle in B such that there exists a simple contradictory cycle through
(xi, v), (v, xj). Then there exists a simple contradictory cycle in B through (xi, xj) that does not go through
v.

Proof. Let C be a simple contradictory cycle that goes through (xi, v), (v, xj), and let C ′ = C\{(xi, v), (v, xj)}∪
(xi, xj). Observe that in a simple cycle C, the degree of each vertex (counting only C edges) is 2. It is easy
to see that the degree of each vertex in C ′ is the same as in C, other than v for which the degree is reduced
from 2 to 0 (which means that is not part of C ′). Hence C ′ is simple and does not go through v. ut

The contra-positive conclusion from Lemma 2 is that if (xi, xj) is not part of a simple contradictory
cycle with es in B′, then (xi, v), (v, xj) is also not in a simple contradictory cycle with es. But since this
is the only case in which Generate-constraintsS does not add a constraint, we conclude that it adds
the constraints as required by the premise of Lemma 1, i.e. it adds a constraint ei,v ∧ ev,j → ei,j for every
triangle (xi, v, xj) in B such that (xi, v), (v, xj) 6= es and (xi, v), (v, xj) are part of a simple contradictory
cycle. Hence, by Lemma 1, T constrains all simple contradictory cycles in B.

(Necessity) Falsely assume that there is a redundant constraint, e.g. there exists a constraint exi,v ∧
ev,xj → exi,xj although (xi, v), (v, xj) is not part of a simple contradictory cycle or that (xi, xj) 6∈ B. If this
constraint is added (in line 5), it means that (xi, xj) is part of a simple contradictory cycle C ′ with es not
through v. But this means that C = C ′ \ (xi, xj)∪{(xi, v), (v, xj)} must be simple as well (it adds a vertex v
with degree 2, and does not change the degree of the other vertices), which contradicts the assumption. ut

4.2 The differences between rtc and rtcS

As was mentioned earlier, the original Generate-Constraints procedure that appeared in [MS05] added
enough transitivity constraints to constrain all contradictory cycles, and not just the simple ones as required
by Theorem 2. The graph in Figure 4 demonstrates the difference between the results of the two algorithms.
Consider the constraints that are added when removing x7 in line 2 of rtcS : the edge (x1, x8) is es itself and
hence the constraint e1,7 ∧ e7,8 → e1,8 is added. No other edge fulfills the condition in line 4.1. Generate-
Constraints, on the other hand, adds, for example, also the constraint e6,7∧e5,7 → e5,6, because of the non-
simple cycle (x1, x2, x3, x5, x7, x6, x7, x8, x1). All together Algorithm Generate-constraintsS generates
16 constraints for this graph, whereas Generate-Constraints generates 26 constraints.

Algorithm Generate-constraints of [MS05] traverses the BCC, each time expanding the contradictory
cycle while adding transitivity constraints. It starts from each triangle that one of its edges is es. From there
it gradually increases the cycle it examines (at each step it replaces an edge with two edges that lean on
that edge) while adding constraints. To avoid traversing an exponential number of paths, it uses a cache of
constraints, and stops traversing the graph in a direction that results in a constraint that already appears in

7

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

x1

x8

x3x2 x4

x5x7 x6

Fig. 4. An Equality Graph that demonstrates the difference between rtc and rtcS .

the cache. This, in turn, requires that all cycles are traversed, rather than only the simple ones. In [Mei05]
we also showed an algorithm that does not use the cache, and hence generates the requested formula (i.e.
not overly constrained), but the algorithm there is worst-case exponential.

5 Experiments and conclusions

We re-ran the experiments with random equality graphs, which were first presented in [MS05]. Table 1
presents the comparison. Each line in the table corresponds to the same 10 randomly generated topologies,
with 1% of ‘double edges’ (edges that are both solid and dashed), the % of dashed edges as specified in the
first column, and the rest are solid. The number of vertices is 200, and the number of edges is 800.

Overall, there is a decrease of 17% in the number of transitivity constraints, and 32% decrease in the
run time of the algorithm (not including SAT time). For comparison, on the same graphs the sparse method
[BV00], which generates three constraints for each triangle in the graph regardless of their polarity, generates
390165 constraints on average (regardless of the ratio between solid and dashed edges). For most of these
graphs the formula could not be generated by the exponential method of [Mei05].

% dashed Run time # Constraints Constraints
rtc rtcS rtc rtcS ratio

10 3.37 0.4608 208.7 153.5 0.73

30 195.81 120.15 170308.7 117832.9 0.69

50 339.29 300.23 299937.8 240075.7 0.8

70 419.94 236.83 355631.3 328359.1 0.92

Average 239.6 164.4 206521.6 171605.3 0.83

Table 1. Experimental results of rtcS vs. rtc on randomly generated graphs. Each line in the table corresponds to
an average on (the same) 10 graphs, but with a varying percentage of dashed vs. solid edges.

As expected, rtcS is better in practice than rtc, both in terms of the size of the generated formula, and
the overall running time. The difference in the run time of SAT between the formulas generated by rtc and
rtcS was quite negligible in these cases.

Is rtcS competitive with lazy-style solvers? Although we did not check it systematically, we expect that
on instances with many uninterpreted functions (as most of the benchmarks in the SMT suite are), the answer
is no. As was noted in [MS05], lazy solvers are likely to perform better in such cases, since the reduction to
equality logic using Bryant’s reduction creates graphs in which most of the edges are both dashed and solid, a
case in which rtcS has no advantage in comparison to the sparse method of Bryant and Velev [BV00] (which
by itself, as far as we know, has never been compared experimentally to some of the modern implementations
based on congruence closure, such as [NO05]). We also noticed that large graphs (with a 150 nodes or more)
with a high degree of connectivity, as the ones created when reducing uninterpreted functions, frequently

8

lead to an excessive run time in making them chordal, despite the polynomial upper-bound on the running
time of this operation.

Are there cases in which rtcS has an advantage over lazy-style solvers? To test this question we compared
rtcS to Yices (version 1.09), where the propositional formulas generated by rtcS were solved with Yices
as well. The comparison was done on crafted examples without uninterpreted functions. It turns out that
generating random CNF-s is rather meaningless in this context, because it is very unlikely that in such
formulas every assignment that satisfies the skeleton will correspond to a contradictory cycle. Indeed, in all
the experiments we made with random CNFs, the formulas were satisfiable and very easy to solve by both
methods. We therefore crafted a set of formulas whose respective equality graph follow the pattern that
appears in Figure 5. The number of ‘diamonds’ is denoted by n, hence the right most node is x3n+1.

x1

x2

x3

x5

x6

x7x4
x3n+1

Fig. 5. An equality formula corresponding to the crafted examples.

The checked formula is
x1 6= x3n+1∧
((x1 = x2 ∧ x2 = x4) ∨ (x1 = x3 ∧ x3 = x4))∧

...
((x3n−2 = x3n−1 ∧ x3n−1 = x3n+1) ∨ (x3n−2 = x3n ∧ x3n = x3n+1)) ,

(1)

which is unsatisfiable for all n > 0. There are 4n + 1 edges and hence Boolean variables in the formula’s
skeleton. Satisfying either the top or bottom path of each diamond (or both), together with the disequality
x1 6= x3n+1, satisfies the Boolean skeleton of the formula. Yet each such satisfying assignment corresponds
to a contradictory cycle, which makes the formula unsatisfiable.

This type of formula is expected to be hard for lazy-style solvers, because there is an exponential number
of solutions that satisfy the skeleton, none of which is a real solution (it seems that theory propagation
and learning cannot be effective in this case either). The results, in seconds, appear in the table below. TO
denotes a timeout of 1 hour. It is clear that in such formulas indeed rtcS has an advantage.

n Yices rtcS

20 95.7 < 1
25 3210.2 < 1
30 TO < 1
40 TO < 1

To summarize, as indicated in the introduction, rtcS dominates the two previously published alternatives:
rtcS is polynomial in contrast to the exponential algorithm described in [Mei05], and it generates formulas
that are guaranteed to be smaller and less constrained than the formulas generated by the polynomial
approximation offered by rtc (or, if it happens to be that there are no non-simple cycles, it generates an
equivalent formula). It is also simpler to implement and (subjectively) more elegant than rtc.

References

[Ack54] W. Ackermann. Solvable cases of the Decision Problem. Studies in Logic and the Foundations of Mathe-
matics. North-Holland, Amsterdam, 1954.

9

[BV00] R.E. Bryant and M. Velev. Boolean satisfiability with transitivity constraints. In Proc. 12th Intl. Conference
on Computer Aided Verification (CAV’00), volume 1855 of Lect. Notes in Comp. Sci., 2000.

[CLR00] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, chapter 26, page 563. MIT press,
2000.

[Mei05] Orly Meir. A decision proceudre for equality logic. Master’s thesis, Technion, 2005.
[MS05] Orly Meir and Ofer Strichman. Yet another decision procedure for equality logic. In K. Etessami and

S. Rajamani, editors, Proc. 17th Intl. Conference on Computer Aided Verification (CAV’05), volume 3576
of Lect. Notes in Comp. Sci., pages 307–320, Edinburgh, July 2005. Springer-Verlag.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and its Application to
Difference Logic. In Proc. CAV’05, volume 3576 of LNCS, pages 321–334. Springer, 2005.

[PRSS02] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property: How small can it be?
Information and computation, 178(1):279–293, October 2002.

10

