CHAPTER 7

Paramodulation-Based Theorem Proving

Robert Nieuwenhuis

Albert Rubio

SECOND READERS: Jieh Hsiang, Christopher Lynch, Michael Rusinowitch, and

Andrei Voronkov.

Contents
1 Aboutthischapter. i i ittt 373
1.1 Paramodulation e e 373
1.2 Extending the unit equality case: ordered paramodulation 374
1.3 Redundancy and saturation o e, 376
1.4 Computing with finite saturatedsets, 377
1.5 Paramodulation with constrained clauses 377
1.6 Paramodulation with built-in equational theories 379
1.7 Basic paramodulation with built-in equational theories 380
2 Preliminaries L e e e e e e 380
2.1 Terms and (rewrite) relations, 381
2.2 Termorderings . . . v v o v v v v i e e e e e e e e e 382
2.3 Equality clauses and Herbrand interpretations 384
2.4 Constraints and constrained clauses 0.0 385
3 Paramodulation calculi e e e e 385
3.1 The model generationmethod, 386
3.2 Non-equality predicates i e e 390
3.3 Clauses with variables o e 391
3.4 Completeness without constraint inheritance 393
35 Generalclauses o o i i e e e e 394
3.6 Selection of negativeequations L Lo oo oL, 396
3.7 Merging paramodulation and perfect models, 397
4 Saturation procedures e e e e e e e e e e e e e 399
4.1 Redundancy in practice L Lo e 399
4.2 Redundancy and saturation in the groundcase 401
4.3 Non-ground saturation procedures 405
4.4 More general notions of redundancy forclauses 407
4.5 Computing with saturated sets, 409
4.6 Completion as an instance of saturation 411
4.7 Extended signatures 412
5 Paramodulation with constrained clauses 414
5.1 Equality constraint inheritance: basic strategies 414

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
(© 2001 Elsevier Science Publishers B.V. All rights reserved

5.2 Ordering constraint inheritance 0., 417

5.3 Basic paramodulation Lo e 417
5.4 Saturation for constrained clauses00, 418
5.5 General constrained clauses L Lo oo 420
Paramodulation with built-in equational theories 421
6.1 E-compatible reduction orderings 421
6.2 Paramodulation modulo associativity and commutativity 423
6.3 Constraint inheritance and built-in theories 424
Symbolic constraint solving Lo L o 425
7.1 Ordering constraint solving 425
Extensions i i e e e e e e e e 427
8.1 Paramodulation-based answer computation 427
8.2 Paramodulation-based decidability and complexity results 428
Perspectives e e e 429
9.1 Basicnessandredundancy Lo oo 429
9.2 Orderings v v v it e e e e e e e e e e 430
9.3 Constraint solving e e e 430
9.4 Indexing datastructures. 0o 431
9.5 More powerful redundancy notions oo 431
9.6 More global future research directions0 432
Bibliography e e 432

Index e e e e e e e e e e e e e e e 440

PARAMODULATION-BASED THEOREM PROVING 373

1. About this chapter

The aim of this chapter is to review the fundamental techniques in paramodulation-
based theorem proving, presenting them in a uniform framework. We start with eas-
ier subcases and progressively include the different extensions. Since the objective
is to obtain a concise overview of the current state of the art, some of the histori-
cal developments that are not essential for the current results are omitted (further
historical remarks on paramodulation are given in [Degtyarev and Voronkov 2001a]
(Chapter 10 of this Handbook).

In this first section, the main concepts are introduced in an informal way, with
emphasis on their intuitive background. This is done to facilitate the reading of
subsequent sections, where all these notions are formally defined and explained in
detail, and some of the main results are proved.

1.1. Paramodulation

Paramodulation originated as a development of resolution [Robinson 1965], one
of the main computational methods in first-order logic, see [Bachmair and
Ganzinger 2001] (Chapter 2 of this Handbook). For improving resolution-based
methods, the study of the equality predicate has been particularly important, since
reasoning with equality is well-known to be of great importance in mathematics,
logic, and computer science. Robinson [1965] showed that resolution together with
factoring is refutation complete, that is, the empty clause will eventually be inferred
by systematically enumerating all consequences of an unsatisfiable set of clauses by
(binary) resolution:

CvVA DvVv-B
(CV D)o

if 0 = mgu(A, B)

where mgu(A, B) denotes a most general unifier of A and B, and factoring:

CvAvVB

OV A if o = mgu(4, B)

For dealing with the equality predicate ~ by resolution, one can specify it by
means of the following congruence azioms &:

ST~z (reflezivity)
T~y Y~z (symmetry)
INYAY~2z T~z (transitivity)

TP A AT =Yy D f(T1,..,Z0) = f(Y1,..-,Yn) (monotonicity-I)
TINAN AT, =Y
AP(zy,...,25) — P(y1,-..,yn) (monotonicity-II)

374 ROBERT NIEUWENHUIS AND ALBERT RUBIO

In fact the monotonicity axioms are axiom schemes: one monotonicity-I axiom
is required for each non-constant n-ary function symbol f, and, similarly, one
monotonicity-II axiom for each predicate symbol P. A set S of clauses is satisfiable
in first-order logic with equality if, and only if, SU£ is satisfiable in first-order logic
without equality!.

However, it is easy to see that resolution and factoring with £ tend to cause
the generation of too many (mostly unnecessary) new clauses. Therefore, Robinson
and Wos explored another possibility. They tried to avoid the need for specifying
equality by treating it as part of the logical language, i.e., directly considering first-
order logic with equality. This requires the design of dedicated inference rules, like
paramodulation [Robinson and Wos 1969]:

CVs~t D
(CvVv D[],)o

if ¢ = mgu(s, D|p)

where D|j, is the subterm of D at position p, and D[t], denotes the result of replacing
in D this subterm by t. Paramodulation, together with resolution and factoring,
was proved refutation complete, under the presence of the reflexivity axiom and
certain tautologies called the functional reflexivity axioms

flzy,...,zn) = f(z1,.--,Zn)

for every n-ary function symbol f of the alphabet. Later on, Brand [Brand 1975]
proved that the functional reflexivity axioms were unnecessary, as well as paramod-
ulation into variables, that is, paramodulations where D|, is a variable. However,
even under these restrictions, paramodulation is difficult to control: unless addi-
tional refinements are considered, it quickly produces a large amount of unnecessary
clauses, expanding the search space excessively.

The strengths and weaknesses of paramodulation have led to fruitful theoretical
and practical research on paramodulation-based theorem proving. Concerning the
practical research, a large number of experiments with paramodulation have been
performed at the Argonne group by Wos, Overbeek, Henschen and others (see, e.g.,
[Wos 1988, Wos 1996] for references), and especially by McCune with his provers
Otter [McCune 1994] and EQP [McCune 1997q] and his recent automated proof of
the Robbins conjecture [McCune 19975, McCune 1997¢]. Concerning the theoretical
research, the main techniques are reviewed in this chapter, and some aspects of their
implementation in practical provers is discussed.

1.2. Extending the unit equality case: ordered paramodulation

An important tool in paramodulation is the use of term orderings for restricting
the number of inferences. Paramodulation is in fact based on Leibniz’ law for re-
placement of equals by equals. Now the basic idea of ordered paramodulation is to

INote that there is no logical equivalence. First-order logic (FOL) with equality has more
expressive power: for instance, in FOL with equality the clause z ~ a V z =~ b expresses that the
cardinality of models is at most two, which cannot be expressed in FOL without equality.

PARAMODULATION-BASED THEOREM PROVING 375

only perform replacements of big terms by smaller ones, with respect to the given
ordering >.

This is precisely the idea of (ordered) rewriting. Let us consider now unit equa-
tions: we address word problems of the form E | u ~ v, where E is a set of
equations and u ~ v is another equation. Assume that > is a reduction ordering on
terms (see Section 2 for the precise definitions). A term ¢t is rewritten in one step
with an equation ! ~ r (or, equivalently, r ~ I) of E by replacing a subterm lo of
t by ro, for some substitution o such that lo > ro. For example, let E consist of
the equations plus(0,z) ~ = and plus(s(z),y) ~ s(plus(z,y)). Denoting each step
by — g (and assuming the steps agree with >), we have

plus(s(s(0)), s(0)) =& s(plus(s(0), s(0))) =k s(s(plus(0,s(0)))) =& s(s(s(0)))

This (ordered) rewrite relation terminates: starting from some finite term ¢, after
a finite number of steps a normal form (i.e., a term that cannot be rewritten any
further) is obtained.

Now let —}; denote zero or more of these steps (i.e., —} is the reflexive-transitive
closure of the relation —g). A set of equations E is called confluent w.r.t. the given
> if, whenever s =% u and s =% v, there is some ¢ such that u —% t and
v —% t. It is not difficult to see that then every term has a unique normal form.
Furthermore, rewriting is then a decision procedure for deduction in the theory of
E, since E |= s = t if, and only if, s and ¢ have the same normal form?.

The first instances of ordered paramodulation appeared in Knuth-Bendiz com-
pletion [Knuth and Bendix 1970]. Roughly, a completion procedure attempts to
transform a given set of equations into an equivalent confluent one. A crucial step
of the transformation process is the computation of critical pairs between equations.
A critical pair is an equation obtained by superposition, the restricted version of
paramodulation in which inferences only involve left hand sides of possible rewrite
steps, i.e., only the big terms (w.r.t. >) are considered. During the completion pro-
cess equations are simplified by rewriting, and tautologies, i.e., equations of the
form s ~ s, are removed.

Note that, since the word problem is not decidable in general, a finite confluent
E cannot always be obtained. In Knuth and Bendix’ original procedure this could
be due to failure® or to non-termination of completion. For completely avoiding
failure, ordered or unfailing completion was introduced [Lankford 1975, Hsiang and
Rusinowitch 1987, Bachmair, Dershowitz and Plaisted 1989].

This leads to complete theorem provers for equational theories E, since for every
valid equation a rewrite proof will be found after a finite number of steps of the
(possibly infinite) completion procedure. Moreover, if the process terminates, it pro-

2More precisely, one rewrites the ground Skolemizations of s and ¢, and > is required to be
total on such ground terms.

3Failure could occur because Knuth and Bendix considered rewriting with a terminating set
of uni-directional rules, instead of ordered rewriting (applying equations in whatever direction
agrees with the given reduction ordering, as explained here). Hence in their view equations had
to be oriented into terminating rules, which fails if an equation like the commutativity axiom
f(z,¥) =~ f(y,) appears.

376 ROBERT NIEUWENHUIS AND ALBERT RUBIO

duces a confluent system for ordered rewriting. For improving the efficiency and for
reducing the number of cases of non-termination of completion, numerous additional
simplification methods and critical pair criteria for detecting redundant inferences
have been developed [Bachmair, Dershowitz and Hsiang 1986, Peterson 1990, Mar-
tin and Nipkow 1990, Bachmair 1991, Bachmair and Dershowitz 1994, Comon,
Narendran, Nieuwenhuis and Rusinowitch 1998]. Indeed, nowadays completion has
become the method of choice for most state-of-the-art equality reasoning systems.
Since the main results for completion-based theorem proving with unit equations are
particular cases of the ones given for general clauses with equality, in this chapter no
further specific attention will be devoted to completion; instead, in Subsection 4.6,
it will be shortly treated as an instance of saturation for general clauses.

Extending the notion of critical pair, completion procedures were developed for
going beyond unit equations. For instance, for obtaining confluent sets for rewrite
relations like conditional and clausael rewriting, completion procedures were de-
signed for transforming sets of conditional equations (definite Horn clauses with
equality, i.e., of the form s; ~ t; A... As, ~ t, =& s ~ t) [Kaplan 1984, Jouan-
naud and Waldmann 1986, Kounalis and Rusinowitch 1991, Ganzinger 1991], or
restricted equality clauses [Nieuwenhuis and Orejas 1990].

The generalization of this kind of completion procedure to full first-order clauses
with equality required the development of more powerful proof techniques for es-
tablishing completeness. Using the transfinite semantic tree method Hsiang and
Rusinowitch [1991] proved the refutation completeness of ordered paramodulation,
while Bachmair [1989] applied an extension of the so-called proof ordering technique
for obtaining similar results.

By means of their model generation proof method, similar to other forcing tech-
niques developed by Zhang [1988] and Pais and Peterson [1991], Bachmair and
Ganzinger [1990, 19945] proved the completeness of an inference system for full first-
order clauses with equality, based on strict superposition: paramodulation involving
only maximal (w.r.t. the ordering >) terms of maximal equations of clauses. Such
superposition-based inference systems, as well as the model generation method, are
explained in detail in Section 3 of this chapter.

1.8. Redundancy and saturation

Knuth-Bendix completion transforms sets of equations into complete or saturated
ones: sets that are closed under the addition of non-joinable critical pairs, where a
critical pair is joinable if it can be rewritten into a tautology s ~ s.

This idea of saturation can be generalized: a set of formulae S is saturated for
a given inference system Z if S is closed under Z, up to redundant inferences.
Roughly, a saturation procedure adds conclusions of non-redundant inferences and
removes redundant formulae. In the limit such a procedure produces a saturated
set. Therefore, in the setting of first-order clauses, proving the refutation complete-
ness of saturation amounts to showing that the empty clause O is in S for every
unsatisfiable saturated set of clauses S.

PARAMODULATION-BASED THEOREM PROVING 377

Concrete simplification methods in the context of paramodulation were discussed
already in [Wos, Robinson, Carson and Shalla 1967, Slagle 1974, Loveland 1978,
Peterson 1983]. Bachmair and Ganzinger [1994b] define abstract notions of redun-
dancy for inferences and for clauses. For example, a ground clause C is redundant
with respect to a set of ground clauses S if C is a logical consequence of smaller (with
respect to the given clause ordering) clauses of S. These redundancy notions cover
well-known practical simplification and elimination techniques, like demodulation
(that is, simplification by rewriting with unit equations) or subsumption (removing
a clause of the form Co V D in the presence of a more general clause C), as well as
many other more powerful methods. For establishing the refutation completeness
of saturation, a model is built for every saturated set not containing the empty
clause. Several of the calculi and redundancy techniques explained in this chap-
ter are available in the Saturate system [Nivela and Nieuwenhuis 1993, Ganzinger,
Nieuwenhuis and Nivela 1999]. In Section 4 of this chapter, saturation procedures
are introduced.

1.4. Computing with finite saturated sets

Due to the refined inference rules and redundancy notions, it is sometimes possible
to compute a finite saturated set (not containing the empty clause) for a given in-
put. In this case its satisfiability has been proved. This kind of satisfiability proving
has of course many applications and is also closely related to inductive theorem
proving, see [Comon and Nieuwenhuis 2000] and [Comon 2001] (Chapter 14 of this
Handbook). The Spass system [Weidenbach 1997] has successfully applied satura-
tion to prove satisfiability for all problems in the corresponding category of the
1997 CADE theorem proving competition [Sutcliffe and Suttner 1998].

Theorem proving in theories expressed by saturated sets of axioms is also in-
teresting because more efficient proof strategies become (refutation) complete. For
instance, the set-of-support strategy, which is incomplete in general for ordered in-
ference systems and also for equality clauses, becomes complete for saturated sets
S: no inferences between clauses in S are needed. Another well-known example is
the completeness of rewriting with saturated sets of unit equations: saturated sets
are confluent. For sets of conditional equations E or, equivalently, of Horn clauses,
similar completeness results exist for conditional rewriting if E fulfills some syn-
tactic requirements (e.g., in certain clauses the maximal terms must contain all
variables). In general, the more such requirements are fulfilled by the saturated
sets, the more restrictive proof strategies become complete. This sometimes leads
to decision procedures, like the ones by rewriting for saturated sets of (conditional)
equations. Computation with saturated sets is covered in Section 4.5 of this chapter.
Some decision procedures are described in Section 8.2.

1.5. Paramodulation with constrained clauses

The advantages of constrained formulae are nowadays widely recognized in
the context of logic programming. The first ideas for specific applications to

378 ROBERT NIEUWENHUIS AND ALBERT RUBIO

paramodulation-based theorem proving were given in [Peterson 1990, Kirchner,
Kirchner and Rusinowitch 1990]. The semantics of a clause C' with a constraint T,
written C | T, is simply the set of all ground instances Co of C such that ¢ is a
solution of T'. For example, if = denotes syntactic equality of terms, the constrained
clause P(z) | z= f(y) A y>a denotes* all ground atoms P(f(t)) such that ¢ is
greater than a in the given term ordering >. Hence if T is unsatisfiable then C | T
is a tautology.

In [Kirchner et al. 1990] ordered paramodulation inference rules were expressed
for the first time by explicitly formulating the ordering and equality restrictions of
the inferences by constraints at the formula level. This gives:

Cvs~t|T D|T
CVD[,|TAT A s=D|, A OC

where T and T are the constraints inherited from the premises, the equality con-
straint s = D|, stores the unification restriction, and OC is an ordering constraint
of the form s>t A... encoding the ordering restrictions imposed by this inference.
However, the completeness results of [Kirchner et al. 1990] were limited since they
required to enumerate the solutions of the constraints and propagate (i.e., apply)
these solutions to the clause part.

Constraints are closely related to the so-called basic strategies, where no infer-
ences need to be computed on subterms generated in unifiers of ancestor inference
steps (like its counterpart in E-unification, called basic narrowing [Hullot 1980a]).
It is clear that if such an inference system with inherited constraints is applied with-
out propagation, then it is basic: the inferences only take place on the clause part
C of a formula C | T, and no unifiers are ever applied to C, since the unification
restrictions are simply stored in the constraint part T'.

Nieuwenhuis and Rubio [19924, 1995] showed that, in the context of superposi-
tion, indeed propagation of the equality constraints is not needed, thus proving the
completeness of basic superposition. By using closure substitutions, which play the
role of equality constraints, the same results were obtained independently by Bach-
mair and others [1992, 1995], giving additional refinements based on term selection
rules and redez orderings. These developments took place independently of much
earlier work in Russia by Degtyarev [1979], who used conditional clauses (which
can in fact be seen as clauses with syntactic equality constraints) for describing
a form of basic paramodulation without ordering restrictions (see also [Degtyarev
and Voronkov 1986]).

In [Nieuwenhuis and Rubio 19925] it is shown that by inheriting as well the or-
dering constraints one can restrict the search space even further without losing
completeness. In [Lynch and Snyder 1993] equality, disequality and irreducibility
constraints are applied for obtaining more powerful redundancy methods in basic
equational completion. Finally, in [Nieuwenhuis and Rubio 1995] the use of con-

4Note that > and = are used as syntax in the constraint language. Their semantics will be a
given term ordering > and a given congruence (usually syntactic equality of terms) that depend
on the context.

PARAMODULATION-BASED THEOREM PROVING 379

straints in theorem proving procedures is put in a more general framework based
on the notion of constraint inheritance strategies.

The main idea in all these strategies is that the ordering and equality restrictions
of the inferences can be kept in constraints and inherited between clauses. If some
inference is not compatible with the required restrictions, applied to the current
inference rule and to the previous ones, then the inference can be blocked. There-
fore, for taking advantage of the constraints, algorithms for constraint satisfiability
checking are required. In Section 7 of this chapter a short survey of the state of
the art on such algorithms is given. Paramodulation with constrained clauses, the
basic strategy and the corresponding completeness results are explained in detail
in Sections 5.1 and 5.2.

1.6. Paramodulation with built-in equational theories

In principle, the aforementioned paramodulation methods apply to any set of
clauses with equality, but in some cases special treatments for specific equational
subsets of the axioms are preferable. On the one hand, some axioms generate many
slightly different permuted versions of clauses, and for efficiency reasons it is many
times better to treat all these clauses together as a single one representing the
whole class. On the other hand, special treatments can avoid non-termination of
completion procedures, like with f(a,b) ~ c in the presence of associativity and
commutativity axioms for f. Also, some equations like the commutativity axiom
are more naturally viewed as “structural” axioms (defining a congruence relation
on terms) rather than as “simplifiers” (defining a reduction relation). This allows
one to extend completion procedures in order to deal with congruence classes of
terms instead of single terms, i.e., working with a built-in equational theory E, and
performing rewriting and completion with special E-matching and E-unification
algorithms.

Early results on paramodulation and rewriting modulo E were given by Plotkin
[1972}, Slagle [1974] and Lankford and Ballantine [1977] and eztended E-rewriting
was defined by Peterson and Stickel [1981]. Several E-completion procedures for
the equational case were developed e.g. in [Lankford and Ballantyne 1977, Huet
1980, Peterson and Stickel 1981, Jouannaud 1983, Jouannaud and Kirchner 1986,
Bachmair and Dershowitz 1989]. Special attention has always been devoted to the
case where F includes axioms of associativity and commutativity (AC), which occur
very frequently in practical applications, and are well-suited for being built in due
to their permutative nature.

The generalization of these E-completion techniques to full first-order clauses
with equality has been studied in e.g. [Paul 1992, Wertz 1992, Rusinowitch and
Vigneron 1995, Bachmair and Ganzinger 19944}, usually with particular treatments
for the AC case. Paramodulation modulo E then becomes roughly the following
rule, which has one conclusion for each ¢ in Ug(s, D|,), a minimal complete set of
E-unifiers of D|, and s:

380 ROBERT NIEUWENHUIS AND ALBERT RUBIO

Cvs~t D
(CVvDlt],)e

for all unifiers o in Ug(s, D|p)

Note that in general there is no unique most general E-unifier for a given E-
unification problem, and that new variables may appear: for example, if f is an
AC-symbol, then f(z,a) and f(y,b) have the two AC-unifiers o1 = {z — b,y — a}
and 02 = {z — f(b,2),y — f(a,2)}. In Section 6 of this chapter we introduce some
of the main techniques on paramodulation modulo equational theories.

1.7. Basic paramodulation with built-in equational theories

For an equational theory E, the number of E-unifiers of two terms may be large. For
instance, the cardinality of a minimal complete set of AC-unifiers is doubly expo-
nential in general [Domenjoud 1992] (in a sense, this is also an upper bound [Kapur
and Narendran 1992]). Hence a single E-paramodulation inference can generate a
large number of new clauses.

Therefore, equality constraints become extremely useful in this context. In con-
strained E-paramodulation, instead of E-unifying the terms, the unification prob-
lem is stored in the constraint. Hence in the constrained superposition inference
rule given in Section 1.5, the semantics of the symbol ‘=’ in the equality constraint
s = D|, becomes E-equality. Dealing with a constrained clause C | s =t can be
much more efficient than having n clauses Cy,...,C,, one for each E-unifier of s
and t, since many inferences are computed at once, and each inference generates
one single conclusion. Furthermore, computing E-unifiers is not needed. A clause
C with an F-equality constraint T' can be proved redundant by means of efficient
(sound, but possibly incomplete) methods for detecting unsatisfiable T'. If C is the
empty clause, a contradiction has been derived if, and only if, the constraint part T’
is satisfiable, and hence in this case refutation completeness requires a semi-decision
procedure for detecting these contradictions. Such a procedure exists for every finite
E.

The completeness of such a fully basic strategy for the AC-case (combined with
ordering constraints) was first proved in [Nieuwenhuis and Rubio 1994, Nieuwenhuis
and Rubio 1997], although the first results on (almost basic) constrained deduction
methods modulo AC were reported in [Vigneron 1994]. The basicness restriction is
considered to “have been a key strategy” by McCune [1997] in his celebrated AC-
paramodulation-based proof of the Robbins problem. In Section 6.3 of this chapter
basic paramodulation modulo AC is explained.

2. Preliminaries

In order to keep this chapter self-contained, here we introduce the main basic tools
used: terms, rewriting, term orderings, first-order equality clauses and equality

PARAMODULATION-BASED THEOREM PROVING 381

Herbrand interpretations. Most (if not all) of our definitions are consistent with
[Dershowitz and Plaisted 2001] (Chapter 9 of this Handbook).

2.1. Terms and (rewrite) relations

Let F be a signature, a (finite) set of function symbols with an arity function
arity: F — IN and let X be a set of variable symbols. Function symbols f with
arity(f) = n are called n-ary symbols (when n = 1, one says unary and when
n = 2, binary). If arity(f) = 0, then f is a constant symbol. The set of first-order
terms over F and X, denoted by T (F, X), is the smallest set containing X such that
f(t1,...,tp) isin T(F, X) whenever f € F, arity(f) =n,and ty,...,t, € T(F,X).
Similarly, 7(F) is the set of variable free or ground terms. Note that 7(F) = 0
if there are no constant symbols in . As usual, along this chapter it is therefore
assumed that there is at least one constant symbol in F.

A position is a sequence of positive integers. If p is a position and ¢ is a term, then
by t|, we denote the subterm of t at position p: we have t|, = t (where A denotes the
empty sequence) and f(t1,...,t)}ip = tilp if 1 <4 < n (and is undefined if ¢ > n).
We also write t[s], to denote the term obtained by replacing in ¢ the subterm at
position p by the term s. For example, if ¢ is f(a, g(b, h(c)), d), then t|2.2.1 = ¢, and
t[d)2.2 = f(a, g(b,d),d). We say that a a variable (or function symbol) = occurs (at
position p) in a term t if t|, is (rooted by) z. By vars(t) we denote the set of all
variables occurring in ¢. If ¢ is a term of the form f(t1,...,t,), then we define top(t)
to be the function symbol f. The syntactic equality of two terms s and t will be
denoted by s = ¢.

A substitution o is a mapping from variables to terms. It can be extended to
a function from terms to terms in the usual way: using a postfix notation, to
denotes the result of simultaneously replacing in ¢ every z € Dom(c) by zo. Here
substitutions are sometimes written as sets of pairs x — t, where z is a variable and
t is a term. For example, if ¢ is {z = f(b,y),y — a}, then g(z,y)o is g(f(b,y), a)
(this example illustrates the simultaneous replacement: applying o “from left to
right” yields g(f(b, a),a), which is not the intended meaning).

A substitution o is ground if its range is 7 (F). Unless stated otherwise, we will
assume that ground substitutions o applied to a term ¢ are also grounding, that is,
vars(t) C Dom(o), and hence to is ground. A term t matches a term s if so = ¢
for some ¢. Then t is called an instance of s.

A term t is unifiable with a term s if so = to for some substitution o. Then o is
called a unifier of s and ¢t. Furthermore, a substitution o is called a most general
unifier of s and ¢, denoted mgu(s,t), if so = to, and for every other unifier 6 of s
and t, it holds that s@ = soo’ = t = too' for some o', that is, roughly, if every
other unifier 4 is a particular instance of c. We sometimes speak about the mgu of
s and t because it is unique up to variable renaming, see [Baader and Snyder 2001]
(Chapter 8 of this Handbook) for details and for unification algorithms computing
mgu’s.

A multiset over a set S is a function M:S — IN. The union and intersection of

382 ROBERT NIEUWENHUIS AND ALBERT RUBIO

multisets are defined as usual by M; U Ms(z) = M, (z) + Ma(z), and M; N My (
min(M,(z), M2(z)). We also use a set-like notation: M = {a,a, b} denotes M(a) =
2, M(b) =1,and M(z) =0for z Z a and z # b. A multiset M is empty if M (z) =0
forallz € S.

If — is a binary relation, then « is its inverse, <+ is its symmetric closure, =71
is its transitive closure and —* is its reflexive-transitive closure. We write s —' t if
s —* t and there is no t' such that ¢t — t'. Then ¢ is called irreducible and a normal
form of s (w.r.t. =). The relation — is well-founded or terminating if there exists no
infinite sequence s; — 82 — ... and it is confluent or Church-Rosser if the relation
«* o —* is contained in —»* o +*. It is locally confluent if + o -+ C —* o +*. By
Newman’s lemma, terminating locally-confluent relations are confluent. A relation
— on terms is monotonic if s — t implies u[s], — u[t], for all terms s, ¢ and u
and positions p. A congruence is a reflexive, symmetric, transitive and monotonic
relation on terms.

An equation is a multiset {s,t}, denoted s ~ t or, equivalently, t ~ s. A rewrite
rule is an ordered pair (s,t), written s = ¢, and a set of rewrite rules R is a
rewrite system. The rewrite relation with R on T (F, X), denoted —g, is the smallest
monotonic relation such that lo -g ro for alll > r € R and all 0. If s =g ¢t then
we say that s rewrites into t with R. We say that R is terminating, confluent, etc.
if =g is. A rewrite system R is called convergent if it is confluent and terminating.
It is not difficult to see that then every term ¢ has a unique normal form w.r.t. =g,
denoted by nfg(t), and s =t is a logical consequence of R (where R is seen as a set
of equations) if and only if nfg(s) = nfg(t). Sometimes the congruence relations
(on T(F)) ¢+§ (or «+}%) are denoted by R* (E*) or =5 (=p).

z) =
a)

2.2. Term orderings

A (strict partial) ordering > is a transitive and irreflexive binary relation. An or-
dering > on terms is stable (or closed) under substitutions if s > ¢ implies so > to
for all s, t and o it fulfills the subterm property if u[s], > s for all s, u and p # .
It is total on T(F) if for all s and ¢ in T(F), either s=tors >tort>s;if =is
a congruence different from syntactic equality, we speak about totality up to =.

A rewrite ordering is a monotonic ordering stable under substitutions; a reduction
ordering is a well-founded rewrite ordering, and a simplification ordering is a rewrite
ordering with the subterm property.

The following properties are not difficult to check: a reduction ordering total
on T (F) is necessarily a simplification ordering on 7 (F); by Kruskal’s theorem,
simplification orderings are well-founded (for finite, fixed-arity signatures); and a
rewrite system R is terminating if and only if all its rules are contained in a reduction
ordering >, i.e., I > r for every = r € R (in fact, then —}, is itself a reduction
ordering).

Let > be an ordering on terms and let = be a congruence relation. Then > is
called compatible with = if s’ = s >t = t' implies s’ > ¢/ for all s,s',;tand t'. If E is
a set of equations, then > is called E-compatible if it is compatible with =5 Note

PARAMODULATION-BASED THEOREM PROVING 383

that if > is E-compatible, s =gt implies s % ¢ and ¢ s.

Let > be an ordering on terms and let = be a congruence relation such that > is
compatible with =. Then these relations induce relations on tuples and multisets
of terms as follows.

The lezicographic (left to right) extension of > with respect to = is the relation
>!¢= on n-tuples of terms defined by:

(S15+-+,8n) -lez (t1,...,tn) if 81 =t1,...,8k—1 = tg—1 and sx > tx

for some k in 1...n. It is well-known that, if > is well founded, so is >!¢2,
The multiset extension of = is defined as the smallest relation == on multisets
of terms such that § == @ and

SU{s}==S'U{t}ifs=tAS==5

The multiset extension of > with respect to = is defined as the smallest ordering
> (or »myu) on multisets of terms such that

MU{s}» NU{t1,...,tp}if M==Nands>t;foralliel...n

Sometimes the notation >~ is used without explicitly indicating which is the con-
gruence =. In these cases = is assumed to be the syntactic equality relation = on
terms. If > is well founded on S, so is > on finite multisets over S [Dershowitz
and Manna 1979).

A way to define suitable orderings for practical purposes (like termination prov-
ing or automated deduction) is to construct them directly from a well-founded
precedence, an ordering >+ on F. This is done in the so-called path orderings, like
the lezicographic path ordering (LPQO) or the recursive path ordering (with status)
(RPO) [Kamin and Levy 1980, Dershowitz 1982].

Let »r be a precedence and let F be the disjoint union of two sets lexz and
mul, the symbols with lexicographic and multiset status, respectively. By =, we
denote the equality of ground terms up to the permutation of direct arguments of
symbols with multiset status: f(s1,---,8m) =mu 9(t1,--.,tn) if f = g and hence
m = n, and Sx(i) =mul ti for 1 < i < n and where 7 is a permutation of 1...n
which is the identity if f € lez.

In this setting, RPO is defined as follows: s >,p, z if z is a variable that is a
proper subterm of s or else 8 = f(s1...8,) >rpo t = g(t1...tm) if at least one of
the following conditions holds:

® Si >rpot OF S =mq t, for some i € {1...n}

o f>xg,and s >.p tj, for all jin {1...m}

¢ f =g (and hence n=m) and f € mul and {s1,...,8n} > rpo {1,...,tn}

¢ f = g (and hence n=m) and f € lez, (s1,...,8,) >',’;o (t1,...ytn), and s >rp,

tj, for all j in {1...n}
where >’,§,‘f, and »-,p, are, respectively, the lexicographic and multiset extensions
of >,po With respect to =pnp-

384 ROBERT NIEUWENHUIS AND ALBERT RUBIO

The lezicographic path ordering (LPO) is defined as the particular case of an
RPO where F = lez, i.e., where all symbols have a lexicographic status.

It is known that RPO is a reduction ordering on 7 (F, X), which is moreover
total on 7(F) up t0 =mw (and hence in case of LPO, total up to =) if >z is total
on F [Kamin and Levy 1980, Dershowitz 1982].

LPO’s are useful for extending reduction orderings > that are total up to a
congruence = (like RPO is total up to =p,4), to reduction orderings total up to =.
This extension is obtained by a lexicographic combination »>; whose first component
is >, and whose second component is a total LPO >, that is, s >, t if either
s»>tors=tand s >p,t.

It is not difficult to see that RPO is C-compatible (C for commutativity) if
commutative symbols have multiset status, but it is not AC-compatible.

2.3. Equality clauses and Herbrand interpretations

A clause is a pair of finite multisets of equations I' (the antecedent) and A (the
succedent), denoted by I' & A. We sometimes use a comma in clauses to denote the
union of multisets or the inclusion of equations in multisets; for example, we write
s ~t,I''T" = A instead of {s ~t} UTUI" — A. Clauses ey,...,e, 2 €],...,€l,
are sometimes (equivalently) written as a disjunction of equations and negated
equations —e; V...V —e, Vej V...V e,. Hence, the e; are called the negative
equations, and the eg the positive equations, respectively, of the clause.

A clause I' = A is called a Horn clause if A contains at most one equation. The
empty clause O is a clause I' —+ A where both I" and A are empty. A positive (resp.
negative) clause is a clause I' &+ A where I (resp. A) is empty, and a unit clause is
a clause with exactly one literal.

We will use all aforementioned notions and notations defined for terms ¢, like t|,,
t[s]p, vars(t), to, etc., as well for equations and clauses in the expected way. For
example, a term u occurs in a clauseI' -+ Aift~s € TUA and t|, ~ u for some
position p.

Let R be a set of ground equations (or rewrite rules). Then the congruence <3
defines an equality Herbrand interpretation I: the domain of I is T(F), each n-ary
function symbol f of F is interpreted as the function f; where fr(t1,...,ts) is
the term f(¢1,...,%,), and where the only predicate ~ is interpreted by s ~ t if
s ++} t. The interpretation I defined by R in this way will be denoted by R*. We
write s =t € I if s ¢} t. I satisfies (is a model of) a ground clause I' —+ A, denoted
I'ET 5 AifI 2T or INA # 0. The empty clause O is hence satisfied by no
interpretation. I satisfies a non-ground clause C if I satisfies all ground instances
of C. I satisfies a set of clauses S, denoted by I |= S, if it satisfies every clause in
S. A clause C is a logical consequence of (or C follows from) a set of clauses S,
denoted by S |= C, if C is satisfied by every model of S.

PARAMODULATION-BASED THEOREM PROVING 385

2.4. Constraints and constrained clauses

An (ordering and equality) constraint is a quantifier-free first-order formula built
over the binary predicate symbols > and = relating terms in 7(F, X). Regarding
semantics, the constraints are interpreted in 7(F), and = is interpreted as some
congruence =, on 7 (F) (like syntactic equality or AC-equality) and > is interpreted
as a given reduction ordering > on ground terms that is total up to =.. Hence a
solution of a constraint T is a ground substitution ¢ with domain vars(T) and such
that T'o evaluates to true for the given =, and >. If a solution for T exists, then T
is called satisfiable. If every ground substitution with domain vars(T) is a solution
of T then T is a tautology.

A constrained clause is a pair C | T where C is a clause and T is a constraint.
A ground instance of C | T is a ground clause Co where ¢ is a solution of T.
The semantics of C | T is the set of all its ground instances. Hence, by definition,
an interpretation I satisfies C | T if I | Co for every ground instance Co of
C | T . Therefore, clauses with unsatisfiable constraints are tautologies. A clause
C | T is the constrained empty clause, denoted as well by O, if C is empty and
T is satisfiable. Constrained clauses C'| T where T is a tautology are sometimes
denoted by C, omitting the constraint part T.

3. Paramodulation calculi

A logical inference is a step by which from a multiset of zero or more constrained
clauses (the premises) a new constrained clause (the conclusion) is obtained. An
inference rule R

Ci|Ti ... Cu| T
D|T

if condition

is (a finite representation of) the set of inferences where from the multiset of clauses
of the form {C; | Ty ... Cn | T} one can infer D | T if condition holds. One such
an inference is called an inference by R. An inference system I is a set of inference
rules. An inference by T is an inference by one of the rules of Z. We will frequently
consider inference rules where premises or conclusions have constraints that are
tautologies and hence these constraints are omitted.

An inference rule R is correct if, for all inferences by R, the conclusion is a logical
consequence of the premises, and an inference system is correct if all its rules are
correct. A set of constrained clauses S is closed under Z if for every inference by Z
with premises in S, the corresponding conclusion is in S. Z is refutation complete
if O € S for every unsatisfiable set of constrained clauses S closed under Z. All
inference systems in the remainder of this chapter are easily proved correct, and we
will focus on completeness.

386 ROBERT NIEUWENHUIS AND ALBERT RUBIO

3.1. The model generation method

We start with a simple example on ground Horn clauses in order to introduce the
model generation method, the standard technique for establishing the completeness
of ordered paramodulation calculi that will be used throughout this chapter. Note
that if C'| T is a constrained clause where C is ground and T is satisfiable, then
it is equivalent to C' | T where T denotes a tautological constraint. Hence in the
remainder of this section constraints will be omitted.

In the following, let > be a given total reduction ordering on 7(F), and let s = ¢
denote s >tV s = t. The inference system G for ground Horn clauses with equality
is the following;:

superposition right:
slp=1l,1>r,s>t and

I'sl~r Fss~t . L
if 1> u for all u occurring in I, and

I'\T = s[r], ~¢

s > v for all v occurring in T'

superposition left:
slp=i,l>r, s>t and

Mo l~ Fs~t—> A
r i if 1> u for all u occurring in I, and

I [,srlp~t— A

s = v for all v occurring in ', A

equality resolution:
Fs~s— A

TS A if s> v for all v occurring in I', A

Let us remark that the equality resolution rule is named after the fact that it
encodes a resolution inference with the reflexivity axiom of equality z ~ ,

It is sometimes said that in the superposition rules the inferences take place with
the term ! on the term s, and that the inference involves s and . Note that in G,
superposition right inferences involve only terms s and [that are strictly mazimal in
their respective premises, that is, they are bigger w.r.t. > than all other occurrences
of terms in these premises. Superposition left takes place also with strictly maximal
terms, but on (possibly non-strictly) mazimal terms (that is, they are larger than
or equal to all terms in their premise).

In order to prove the refutation completeness of G we first define the following
total ordering >, on ground clauses. If C is a clause
S1=8,..,Sn =85 S t1 =1t,...,tm =1,

m

then we define ms(C) as the multiset:

{{51’51’5515,1};) {sm Sn,S;uSL}, {tl’tll}v ERER) {tm:t:n}}

PARAMODULATION-BASED THEOREM PROVING 387

Finally, let >, be the ordering on clauses defined by comparing these expressions
by the two-fold multiset extension of >, that is, C . D if ms(C)(>mut)mums(D).
The result is a total ordering on ground clauses®.

Now we come to the key to the model generation method. Qur aim is to prove
the completeness of G. We do this by showing that, if S is a set of ground Horn
clauses closed under G and O ¢ S, then S is satisfiable. The satisfiability proof of S
is of a constructive nature: first, an equality Herbrand interpretation will be built,
and second, it will be shown that this interpretation is a model of S.

We now informally explain the first part. The interpretation we build will be the
congruence R* induced by a set of ground rewrite rules R, where each rule in R
has been generated by some clause of S (hence the name “model generation”). The
generation process of R is defined by induction on >.. Each clause C in S generates
a rule or not, depending on the set R¢ of rules generated by clauses D of S with
C >¢ D (and on the congruence R, induced by R¢). These ideas are formalised as
follows:

3.1. DEFINITION. (Model generation) Let C be a clause in S. Then Gen(C) =
{l = r}, and C is said to generate the rule [= r, if, and only if, C is of the form
I' = | ~ r and the three following conditions hold:

1. R; ¥ C,

2. 1> r and ! > u for all u occurring in T’

3. l is irreducible by R¢
where Rc = (Jg,,p Gen(D). In all other cases Gen(C) = 0. Finally, R denotes
the set of all rules generated by clauses of S, that is, R = Jpcg Gen(D).

Let us analyse the three conditions. The first one states that a clause only con-
tributes to the model if it does not hold in the partial model built so far and hence
we are forced to extend this partial model. The second one states that a clause can
only generate a rule [= r if [is the strictly maximal term of the clause. The third
condition, stating that [is irreducible by the rules generated so far, is, together
with the second one, the key for showing that R is convergent, from which the
completeness result quite easily follows:

3.2. LEMMA. For every set of ground clauses S, the set of rules R generated for
S is convergent (i.e., confluent and terminating). Furthermore, if Ry, |= C then
R* = C for all ground C.

Proor. Evidently, R is terminating since | > r for all its rules [= r. To prove
confluence, it suffices to show local confluence, which in the ground case is well-
known (and easily shown) to hold if there are no two different rules I = r and
I = r' where I is a subterm of 1. This property is fulfilled: clearly when a clause

5Roughly, . compares the multisets of all equations occurring in the clauses, but where in
addition terms occurring negatively have slightly more weight than the ones occurring positively;
in fact, in order to make >. total on ground clauses, the information of which equations are
positive and which ones are negative has to be present anyway.

388 ROBERT NIEUWENHUIS AND ALBERT RUBIO

C in S generates | = r, no such I’ = ' is in Rg; but if ' = r' is generated by a
clause D with D >, C then, by definition of >., we must have I’ > [and hence I
cannot be a subterm of [either.

To show R¢ |= C implies R* |= C, let C be I' =+ A, and assume R} = C. If
R¢ = A then R* |= A since R D Rc. Otherwise, R & I'. Then R* [T follows
from the fact a term t occurring negatively in a clause is bigger than the same ¢
occurring positively: all rules in R\ R¢ are generated by clauses bigger than C,
and hence have left hand sides that are too big to reduce any term occurring in I'.
Since R is convergent this implies R* |~ I O

3.3. THEOREM. The inference system G is refutation complete for ground Horn
clauses.

PROOF. Let S be a set of ground Horn clauses that is closed under G and such that
O ¢ S. We prove that then S is satisfiable by showing that R* is a model for S. We
proceed by induction on >, that is, we derive a contradiction from the existence
of a minimal (w.r.t. ;) clause C in S such that R* £ C. There are a number of
cases to be considered, depending on the occurrences in C of its maximal term s,
i.e., the term s such that s = u for all terms u in C (s is unique since > is total on
T(F)):

1. s occurs only in the succedent and C is I' =& s ~ s. This is not possible since
R* £ C.

2. s occurs only in the succedent and C is ' — s ~ ¢t with s Z t. Since R* }£ C,
we have R* DT'and s ~ t ¢ R*, i.e., C has not generated the rule s = t. This
must be because s is reducible by some rule Il = r € Rc. Assume ! = r has
been generated by a clause C' of the form I — | ~ r. Then there exists an
inference by superposition right:

"al~r T'>s~t
'\T > sfrlp~t

whose conclusion D has only terms u with s > u, and hence C >, D. Moreover,
Disin S and R* £ D, since R* D TUI" and s[r], ~ t ¢ R* (since otherwise
s[llp =~ t € R*). This contradicts the minimality of C.
3. s occurs in the antecedent and C is ', s ~ s — A. Then there exists an inference
by equality resolution:
Is~s— A
T'—-A

for whose conclusion D it holds that C >, D. Moreover, D is in S and R* ¢ D,
which is a contradiction as in the previous case.

4. s occurs in the antecedent and C is ', s ~ ¢t — A with s > t. Since R* [~ C, we
have s ~ t € R* and since R is convergent, s and ¢ must have the same normal
forms w.r.t. R, so s must be reducible by some rule I = r € R. Assume l = r

PARAMODULATION-BASED THEOREM PROVING 389

has been generated by a clause C’ of the form I' — I ~ r. Then there exists
an inference by superposition left:

I'al~r TLsllp~toA
M Tsfr], ~t = A

for whose conclusion D it holds that C >, D. Moreover, D is in S and R* £ D,
which again contradicts the minimality of C. a
The following example shows how the rewrite system R changes during a closure
of a set of ground clauses and that, although for the intermediate sets the obtained
R* is not a model, the R* obtained for the closed set is a model.

3.4. ExaMPLE. Consider the lexicographic path ordering generated by the prece-
dence f =7 a =7 b >r ¢ =7 d. The following table shows in the left column the
ground Horn clauses (sorted with respect to the ordering) at each closure step, in
which the first one is the initial set, and in the right column the set R corresponding
to each intermediate set. The maximal term of every clause is underlined and the
subterms of the clauses involved in the inference are framed.

S R
— :d
f_(@:d - a~b c => d
-+ f(c]) =d
- c~d
N @ d c = d
f(d_)zd -+ a=~b fd = d
=+ flc)~d
-+ c~d
d~d — a~b c = d
- Ld)zd a = b
fd)~d - axb fd =
-+ flg=~d

390 ROBERT NIEUWENHUIS AND ALBERT RUBIO

Let us conclude this section with a remark on additional ordering restrictions.
In superposition left as well as in equality resolution, it is possible to strengthen
the conditions in such a way that only one negative literal becomes eligible for
inferences. For example, in superposition left on an equation s =~ t, one can require
that ¢ > ¢’ for all equations s ~ t' in I, that is, we use the maximal equation
rather than just the maximal term; if two equations have the same maximal terms,
we compare the other terms. Similarly, in equality resolution we can require s >
t' for all equations s ~ t' in I'. In the inference system for general clauses (see
Subsection 3.5) we have included these restrictions, since such comparisons between
equations are needed there anyway. We did not consider them for G for simplicity
reasons, and also because by means of selection of negative equations we will be
able to obtain stronger results in a simpler way (see Subsection 3.6).

3.2. Non-equality predicates

In this framework, equality can be considered to be the only predicate, since for
every other predicate symbol p, (positive or negative) atoms p(t;...t,) can be
expressed as (positive or negative) equations p(t;...t,) ~ true, where true is a
new special symbol, and where p is considered as a function symbol rather than as
a predicate symbol. Note however that, in order to avoid meaningless expressions in
which predicate symbols occur at proper subterms one should adopt a two-sorted
type discipline on terms in the encoding.

It is easy to see that this transformation preserves satisfiability. Very roughly: one
can “translate” the interpretations such that a ground atom is true in a Herbrand
interpretation I if and only if in the equality Herbrand interpretation I' over the
modified signature the term p(¢; ...¢,) is congruent to true. Be we remark that I
and I' are not isomorphic since two ground atoms that are false in I need not be
in the same congruence class of I'.

After this satisfiability preserving transformation, ordered resolution (ground)
inferences of the form:

"= A A=A
I'T—= A

become a special case of superposition left:

if A>TI"and A>T,A.

IV = A ~ true A~ true = A
T',T, true ~ true — A

combined with equality resolution (or simplification, as we will see) for eventually
eliminating the trivial equation true ~ true.

For efficiency reasons it is convenient to make true small in the ordering. Some-
times it is also useful to take into account that p is a predicate symbol when handling
the ordering restrictions. For example, in orderings like RPO, if the predicate sym-
bols p are bigger in the precedence than function symbols then p »x ¢ implies
p(t1,---,tn)0 >ipo q(S1,-- ., Sm)o for all ground o.

PARAMODULATION-BASED THEOREM PROVING 391

3.3. Clauses with variables

Up to now, in this section we have only dealt with ground clauses. If we consider
that a non-ground clause represents the set of all its ground instances®, a refutation
complete method for the non-ground case would be to systematically enumerate all
ground instances of the clauses, and to perform inferences by G between those
instances. But fortunately it is possible to perform inferences between non-ground
clauses, covering in one step a possibly large number of ground inferences. We now
adapt G according to this view.
For example, at the ground level, in the superposition right inference

slp=l,1>r, s>t and

I' 51~ Fos~t
r s if !> u for all u occurring in IV, and

'\ T = sr], ~t

s > v for all v occurring in T’

we required s|, and [to be the same term. At the non-ground level, this becomes a
constraint s|, = ! on the possible instances of the conclusion, that is, the conclusion
is a constrained clause D | T' . Hence if the conclusion is D | s|, =l A..., the
instances Do for which s|,0 # lo are not created. The same is done for the ordering
restrictions. For instance, instead of requiring I > r as a condition of the inference,
it becomes part of the constraint of the conclusion, excluding those instances Do
of the conclusion that correspond to ground inferences between instances of the
premises for which lo = ro does not hold:

I'al~r s>t
I'\T = srlp,~t |slp=l A I>r A s>t A...

Note that here we have written the inference rule without constraints in its premises,
since at this point we are only interested in the constraints that are generated in
this concrete inference. In Section 5 paramodulation with constraints inherited from
the premises with be considered in detail.

This inference rule can be further restricted with the additional condition stating
that the inference is not necessary if s, is a variable. This shows that, by working on
the non-ground level, certain inferences between ground instances of the premises
turn out to be redundant: at the non-ground level we do not perform, for an instance
with o, the inferences inside o (also called inferences below variables), that is, on
positions so|, where s|, is a variable for some prefix p’ of p.

Note that, as usual, it may be necessary to rename variables in the premises in
order to avoid name clashes: the premises C' and D are assumed to fulfill vars(C)N
vars(D) = 0.

Now we define the inference system # for non-ground Horn clauses, writing s >T'
as a shorthand for the constraint s>u; A s>v; A...A s>up A s>v,if

6By Herbrand’s theorem, considering only the ground instances preserves satisfiability; in fact,
this is a consequence of (the proof of) Theorem 3.10.

392 ROBERT NIEUWENHUIS AND ALBERT RUBIO

I is a multiset of equations {u; ~ v1,...,un ~ v,} (and similarly, we write s > T
for s>2u1 A s2v1 A...A $>up A S>up):
superposition right:
I'sl~r T s>t
T aslrlp~t |slp=l A I>r A I>ST' A s>t A s>T

superposition left:
I" s l~r Is~t—2 A
[\ Ts[rlp=t = A |slp=l A I>r A IST A s>t A s>T,A

equality resolution:
Is~t—> A
F+A |s=t A s>T,A

where in both superposition rules s|, is required not to be a variable.

3.5. EXxaMPLE. Consider the lexicographic path ordering generated by the prece-
dence h >r a =5 f »=x g =7 b. In the following inference

g(z) ~x = f(a,z) ~ f(z,1) — h(f(a,9(y)) ~ h(y)
g(z) ¥z = h(f(z,2)) ~ h(y) | f(a,2)=1(a,9(%)) A h(f(a,9(y))>h(y) A
fla,z)>f(z,2) A fla,2)>g(z) A f(a,2)>z

the constraint of the conclusion is satisfiable: using the properties of the ordering
and solving the unification problem, the constraint can be simplified into

z=g(y) A a>z
which has, for instance, the solution {y — b,z — g(b)}.
On the other hand, the following inference is not needed
- f(z,2) = f(a,2) - f(g(y), 2) =~ h(2)
= f(a,2) = h(z) | f(z,2)=F(9(y),2) A fg(y),2)>h(z) A
f(z,2)> f(a,2)

since the constraint of the conclusion has no solution; it can be simplified to

z=g{y) A z=2 A y>h(z) A z>a

which implies y > h(g(y)). Note that the equality constraint and the ordering
constraint considered separately are both satisfiable but their conjunction is not. O

Let us also remark that, at the non-ground level, several terms in a premise C
may be involved in paramodulation inferences; for a term t it may be the case
that for some ground instances Co the term to is the maximal one, and for other
instances it is not.

PARAMODULATION-BASED THEOREM PROVING 393
3.4. Completeness without constraint inheritance

There are several possible treatments for the constrained clauses generated by the
inference system H. The classical view is to deal only with unconstrained clauses.
Conclusions of the form C | s = tAOC , for some ordering constraint OC, are then
immediately converted into Co where 0 = mgu(s,t). This strategy will be called
here H without constraint inheritance, in contrast with other possibilities which
will be introduced later on.

Of course, the clause C'o has to be generated only if the constraint s =t AOC is
satisfiable in 7(F), where = is interpreted as the syntactic equality relation =, and
> as the given reduction ordering >. If > is the lexicographic path ordering (LPO)
the satisfiability of such constraints is decidable [Comon 1990, Nieuwenhuis 1993]
(see Section 7 of this chapter). But traditionally in the literature weaker approxi-
mations by non-global tests are used; for example, inference systems are sometimes
expressed with local conditions of the form r ¥ | when in our framework we have
I > r as a part of the global constraint OC. Note that such weaker approxima-
tions do not lead to unsoundness, but only to the generation of unnecessary (for
completeness) clauses.

In the following, we call a set of (unconstrained) Horn clauses S closed under H
without constraint inheritance if Do € S for all inferences by H with premises in S
and conclusion D | s = tAOC such that s = tAOC is satisfiable and o = mgu(s, t).

3.6. THEOREM. The inference system H is refutation complete without constraint
inheritance for Horn clauses.

ProoOF. Let S be a set of Horn clauses closed under H without constraint inher-
itance such that O ¢ S. The proof is very similar to the one for G: we exhibit a
model R* for S. We proceed again by induction on »., but now the role of the
ground clauses in the proof for G is played by all ground instances of clauses in S,
and the generation of rules in R from these ground instances is the same as for G.
Now we derive a contradiction from the existence of a minimal (w.r.t. >.) ground
instance Co of a clause C in S such that R* }£ Co. The cases considered are the
same ones as well, again depending on the occurrences in Co of its maximal term
so.

The only difference lies in the lifting argument, which is the same in all cases and
is hence analyzed here for only one of them: C isI';s ~ ¢t =+ A and so > to. Since
R* |~ Co, we have so ~ to € R* and since R is convergent, so must be reducible
by some rule lo => ro € R, generated by a clause C’ of the form IV — [~ r. (Note
that, since we assume that there are no name clashes between the variables of C
and C’, we can consider that the instances of C and of C’' under consideration are
both by the same ground ¢.) Now we have so|, = lo, and there are two possibilities:

An inference. s|, is a non-variable position of s.

394 ROBERT NIEUWENHUIS AND ALBERT RUBIO

Then there exists an inference by superposition left:

I'al~r Is~t= A
I'\T,s[rlp 2t = A |slp=l Al>r A>T A s>t A s>T,A

whose conclusion D | T has an instance Do (i.e., o is a solution of T') such that
Co >, Do, where R* [Do, contradicting the minimality of Co.

Lifting. 5|,y is a variable z for some prefix p’ of p.

Then p = p'-p" for some p”, and zo|p is lo. Now let o’ be the ground substitution
with the same domain as ¢ but where zo' = zo[ro],» and yo' = yo for all other
variables y. Then R* }£ Co’ and Co >, Co’, contradicting the minimality of Co.
O

3.5. General clauses

In this section general clauses are considered, i.e., clauses that may have several
equations in their succedents. For this purpose, the inference system H is adapted.
In order to restrict the amount of inferences to be performed, it is desirable to
preserve the property of that for each ground clause (or instance) C, only one
literal of C is involved in superposition inferences with C. Since now the maximal
term of C' may occur in more than one equation in the succedent, it is decided
that among these equations the one whose other side is maximal will be used. This
leads to the notion of maximal and strictly maximal equations in C. In order to
express maximality and strict maximality of equations as constraints, we use the
following notation. The constraint gr(s ~ t, A) expresses that the equation s ~ ¢,
i.e., the multiset {s,t}, is strictly greater, w.r.t. the multiset extension of >, than
all equations u ~ v in A. For each u ~ v this condition s ~ ¢t » u ~ v can be
expressed for instance by the constraint:

s>u A (s>v Vt2v) V s>v A (s2u V t2u) V
t>u A (s>2v V t2v) V t>v A (s2u V t>u)

Similarly, the constraint greq(s ~ ¢, A) expresses that s ~t » u~vforallu~v
in A. The full inference system Z for general clauses is

superposition Tight:
I sl~r A as~tA
I'T = slr], ~t,A",A | slp=Il A
I>r A>T A gr(l=r,A") A
s>t A s>T A gr(s~t,A)

PARAMODULATION-BASED THEOREM PROVING 395

superposition left:
' l~rA s~t—= A
I'T)s[rlp~t=>A"A | slp,=l A
I>r A I>T A gr(l=r,A") A
s>t A greq(s~t,TUA)

equality resolution:
Is~t—o A
F'>A | s=t A greg(s~t,TUA)

equality factoring:
F'os~ts~tA
Dit~t 9 s~t',A |s=s'" A s>t As>T A greg(s~t,AU{s' ~t'})

where as in the Horn case in both superposition rules s|, is not a variable.

Here the superposition rules and the equality resolution rule play the same role
as their counterparts in the inference system #. The equality factoring rule is
new. Intuitively, it expresses that, if s and s’ are syntactically equal, and ¢ and ¢'
are semantically equal, then the two equations in the succedent express the same
information, and one of them can be omitted.

3.7. ExaMPLE. Consider the lexicographic path ordering generated by the prece-
dence f > g =7 h and the following inference by superposition right

-+ g(2) = h(2) = f(9(2),y) = 9(x), f(9(z),y) =~y
- f(h(2),y) = g(z), f(9(2),y) =y | 9(z) =g(2) A g(z) > h(z) A
flg(z),y) > g(z) A
gr(f(9(z),y) = 9(z), {f(g(z),y) = y})

where gr(f(g(z),y) ~ g9(z),{f(9(z),y) ~ y}) can be simplified into g(z) > y. Now,
simplifying the rest of the constraint, the conclusion of the inference can be written
as

= f(h(2),y) = g(z), f(9(z),y) 2y | T=2 A g(z) >y

Below an overview of the new aspects for the completeness proof of T with respect
to H is given. For simplicity, only the ground case is considered; lifting to clauses
with variables is analogous to what was done for . First, a new condition is added
in the generation of the rewrite system R for a set of clauses S (see Section 3.1)
and the second condition is adapted in order to select the strictly maximal positive
equation that produces the rule:

396 ROBERT NIEUWENHUIS AND ALBERT RUBIO

3.8. DEFINITION. Let S be a set of ground clauses and let C be a clause in S. Then
Gen(C) = {l = r}, and C is said to generate the rule | = r, if, and only if, C is of
the foom ' =+ [~r, A and

1. R, EC

2.l>rl>T,andl~r»u~vforallu~vin A

3. [is irreducible by R¢

4. Rp fer~t foreveryl~t' € A
where Roc = g, .p Gen(D). In all other cases Gen(C) = 0. Finally, R denotes
the set of all rules generated by clauses of S, that is, R = Jpc5 Gen(D).

The proof of Lemma 3.2 can be easily adapted to show that here again R is
convergent and that if Ry, |= C then R* |= C. In a very similar way, it can be
shown that the new conditions force clauses generating rules to have only one
positive literal satisfied by the interpretation:

3.9. LEMMA. If a clause C of the form I = | ~ r, A generates the rule | = r then
R* =T and R* £ A.

3.10. THEOREM. The inference system T is refutation complete for general clauses.

PROOF. Since lifting is done as for H, here we only extend the proof for the ground
case G. There is one additional case due to the new conditions for generating rules
in R. The other cases of the proof for G are straightforwardly adapted by using
lemma 3.9 to show that the conclusion of the required inference is not satisfied by
the model.

The new case is: C is of the form I’ —» s ~ t,A, with s > t,' and s ~ t is
maximal in A, and it has not generated a rule because there is an equation s ~ ¢t/
in A such that R} =t ~ t' (note that this case includes also the case in which
s ~ t is maximal in A, but not strictly maximal).

Then, with A = s ~ ¢/, A’, there exists an inference by equality factoring

Fas~ts~t A
Fit~t' 2s~tA

whose conclusion D is such that C >, D and R* }£ D, contradicting the minimality
of C.]

3.6. Selection of negative equations

The inference system Z includes strong ordering restrictions: roughly, a superposi-
tion inference is needed only if the terms involved are maximal sides of maximal
equations in their respective premises, and even strictly maximal in case they occur
in positive equations. But more constraints can be imposed. If a clause C' has a
non-empty antecedent, it is possible to arbitrarily select exactly one of its negative

PARAMODULATION-BASED THEOREM PROVING 397

equations. Then completeness is preserved even if C is not used as left premise
of any superposition inference and the only inferences involving C are equality
resolution or superposition left on its selected equation.

The inference system S (for selection) for general clauses is defined to consist of
the four rules of inference system I where for all premises of the inference rules no
negative equation has been selected, plus the following two additional rules, where
the selected equations have been underlined:

superposition left on a selected equation:
Mo l~r A Iis~t—a A
M[sfrlp~t—=A"A | slp=l A
I>r AN I>ST A gr(l~r,A") A s>t

equality resolution on a selected equation:
Is~xt—= A
- A | s=t

where, as usual in superposition rules, s|, is not a variable.

Note that an adequate selection strategy gives us a strictly more restrictive in-
ference system: among the set of maximal negative equations, just select one of
them, and select no equation if this set is empty. It is clear that in the inference
system I all maximal equations of the antecedent are eligible for superposition left
or equality resolution, whereas in S only the selected one is eligible.

The intuition behind selection is, roughly, that a clause with negative equations
does not need to contribute to the deduction process until its whole antecedent
has been proved from other clauses, and in particular one can require the selected
equation to be proved first.

In practice one can select for example always a maximal equation (under some ar-
bitrary ordering) of the antecedent. Selecting always a negative equation, whenever
there is one, leads in the Horn case to the so-called positive unit literal strategies,
that is, the left premise of superposition inferences is always a positive unit clause
[Dershowitz 1991, Nieuwenhuis and Nivela 1991]. For general clauses eager selection
leads to positive strategies, where the left premise is always a positive clause, i.e.,
it has only positive literals. Adapting the proof of completeness of Theorem 3.10 to
this framework with selection is an easy exercise: it suffices to consider that clauses
with selected equations generate no rules.

3.7. Merging paramodulation and perfect models

There is an alternative to the equality factoring inference rule, which is merging
paramodulation rule plus ordered factoring [Bachmair and Ganzinger 1994b]. The
inference system M consists of the paramodulation rules and the equality resolution
rule of Z, plus the following two rules:

398 ROBERT NIEUWENHUIS AND ALBERT RUBIO

merging paramodulation:
Isl~r A Fss~ts ~tA
['\T = s ~tlr]p,s' ~t',A"A |t,=l A s=s A
I>r ANIST A gr(l~r,A") A
s>t A s> A greg(s ~t,AU{s' ~t'})

ordered factoring:
Fos~ts ~thA
FTas~t,A | s=8 At=t' A s>t A s> A greg(s~t,A)

where in the merging paramodulation rule t|, is not a variable.

The completeness proof for the resulting inference system M can be obtained
by exactly the same construction for the rewrite system R and the same cases as
for Z, except that where before equality factoring was needed, now either merging
paramodulation or ordered factoring apply.

An important property of the inference system M is related to the following.
For G and H, it is not difficult to see that the model R* constructed from S is
(isomorphic to) the unique minimal Herbrand model of S: it is a Herbrand model,
as we have shown, and it is minimal, since all rules of R are logical consequences
of S. This turns out to be very useful in applications to inductive theorem proving,
see [Comon 2001] (Chapter 14 of this Handbook).

It is well-known that if S contains some non-Horn axiom, then in general a unique
minimal Herbrand model of S no longer exists. For example, if S = {p V ¢} then
both the models {p} and {q} are minimal. The total reduction ordering > on ground
literals provides a way to single out one of the minimal models, the so-called perfect
model (of S and »). The perfect model is the minimal one with respect to the
(multi)set extension »_., of =~1. If S = {pV g} where p > ¢ then {g} >\, {p}
and hence {p} is the perfect model (see [Bachmair and Ganzinger 1991] for details).

Now it turns out that the model R* obtained for sets of clauses closed under M
is indeed the perfect one, which is not the case for the inference system Z as shown
in the following example’:

3.11. EXAMPLE. Assume we have a > b > ¢ > d and the following two clauses

= b~d
- a~ba~c

Then the closure w.r.t. 7 only introduces the new clause

b~c > a~c

"By Leo Bachmair, private communication.

PARAMODULATION-BASED THEOREM PROVING 399

and a number of tautologies (that are not involved in the model construction).
Therefore R = {b = d,a = b}, and the model R* =I'is {b ~d,a ~b,a ~d}.

On the other hand, the closure by M produces the clause
- a~da~c

apart from other clauses that are not relevant for the generation of R. In this case
R={b=>d,a = c}, and the model R* = M is {b ~d,a ~ c}.

Now we have that I >,_n1u, M, since after removing b ~ d in both sets a ~ d >=~!
a =~ ¢, ie., I is not minimal. a

In logic programming, perfect models give semantics for programs with negation
(as failure), and the ordering > is usually induced from the way non-Horn clauses
are written: one positive atom is written in the head of the clause, and the other
ones are written negatively in the tail. For instance, p V ¢ can be written p : — —¢
or q : — —p. Heads are made big in the ordering. If the resulting ordering is well-
founded then the program has a perfect model. Roughly, a logic program with
negation is called (locally) stratified if there is some well-founded ordering on ground
atoms such that for all ground instances of clauses the head is bigger than every
negative atom in the tail, and bigger than or equal to every positive atom in the tail
[Przymusinski 1988]. Local stratification is too strong a condition for the existence of
a perfect model, and it has been relaxed into weak stratification, where only ground
instances contributing to the model need to fulfill the requirements [Przymusiriska
and Przymusiniski 1990]. These ideas are generalized and extended to arbitrary
programs with equality in [Bachmair and Ganzinger 1991].

4. Saturation procedures

The completeness results presented until now only apply to closure procedures,
that is, deduction procedures which compute the closure of an initial set of clauses
under a given inference system, without considering simplification or deletion tech-
niques. However, such techniques are well-known to be crucial for efficiency in
paramodulation-based theorem proving. In this section we study their compatibil-
ity with refutation completeness.

4.1. Redundancy in practice

Let us first give some examples of practical simplification and deletion methods.
Most provers apply these methods in two possible contexts. The first one, usually
called forward redundancy elimination, is applied to new clauses immediately after
they are obtained by an inference. For example, the conclusion of an inference can
be simplified by rewriting it using other clauses before storing it. On the other hand,
backward techniques are the ones applied to existing clauses, using newer ones that
have been generated later on.

400 ROBERT NIEUWENHUIS AND ALBERT RUBIO

4.1. EXAMPLE. Consider the lexicographic path ordering generated by the prece-
dence f >r a »r b and the following two equations whose maximal side is written
underlined:

1. f(a,z) =~ =z
2. f(z,a) =~ f(z,b)

There is a superposition inference with conclusion
fla,b) ~a
to which forward simplification can be applied by rewriting it with equation 1 into
b~a

Adding the result to the set, we obtain:

1. f(a,z) =~ =z
2. f(z,0) =~ f(z,b)
3. a ~ b

Now, by backward simplification using the new equation 3, equation 2 can be simpli-
fied into the tautology f(z,b) ~ f(z,b). The elimination of this tautology is another
backward redundancy step. Furthermore, equation 1 can be simplified using 3 into

f(b,z)~z

Hence the final set will only contain the equations

14

b

3. a
4, T

=
s
&
1

O

In this section it is explained how redundancy elimination methods like the ones
used in this example can be treated uniformly in the context of saturation proce-
dures. Let us first give some informal intuition. The notion of saturation w.r.t. a
given inference system I generalises the one of closure w.r.t. Z: roughly, a set of
clauses S is saturated if S is closed under T up to redundant inferences. Refutation
completeness then means that the empty clause O is in S for every unsatisfiable
saturated set of clauses S.

A procedure like the one of the previous example can be seen as a procedure
computing a saturated set. Such a saturation procedure will be modelled by a
derivation, a possibly infinite sequence of sets of clauses where each set can be
obtained from the previous one in two possible ways: either by adding a clause or
by removing a clause.

Two abstract notions of redundancy will play an essential role in saturation: one
for clauses and one for inferences. Here we first explain them informally.

PARAMODULATION-BASED THEOREM PROVING 401

Roughly, a clause C is redundant w.r.t: a set S if C follows from clauses in
S that are smaller than C. Redundant clauses correspond to the ones that are
removed in a derivation. This abstract notion provides a useful means for proving
the completeness of the inference system in combination with concrete practical
(e.g., backward) redundancy elimination techniques.

Similarly, an inference will be redundant if its conclusion follows from clauses
that are smaller than its maximal premise. In a derivation, conclusions of redundant
inferences need not to be added. This abstract notion of redundant inference covers
several powerful concrete forward redundancy techniques.

In the remainder of this section these ideas are formally developed and explained.

4.2. Redundancy and saturation in the ground case

In this section, as a simple example, saturation is described in detail for the case of
ground clauses. Hence in this section all clauses (denoted by C, D, ...) and sets of
clauses (denoted by S) are assumed to be ground. A two-stage approach is followed.
First a “static” point of view is considered: it is proved that unsatisfiable saturated
sets contain the empty clause. This involves the notion of redundant inference. After
this, the “dynamic” problem of how to compute such saturated sets is considered,
which is where the concepts of derivation and of redundant clauses are needed.

4.2.1. the static view

In the previous section we built a model R* for any set S closed under Z and
such that O ¢ S. Now our aim is to weaken the closedness requirement as much as
possible into some notion of saturatedness. This could of course be done by defining
a set S to be saturated whenever R* |= S, but this would not be very useful in
practice, since this (global) semantic property can almost never be checked. In
order to find a useful practical notion of saturatedness, one can analyse the kind of
inferences that are really needed in the proof showing that R* |= S for closed sets:
the ones in which the rightmost premise is the minimal clause that is false in R*.
This leads us to the following.

We denote by S<¢ the set of all D in S such that C >, D. An inference with
maximal premise C' and conclusion D is is redundant with respect to a set S if
S§<¢ = D. A set of clauses S is saturated with respect to an inference system Znf
if every inference of Znf with premises in S is redundant with respect to S.

4.2. THEOREM. Let S be a set of ground clauses that is saturated with respect to
I. Then R* = S if, and only if, O ¢ S, and hence S is unsatisfiable if, and only if,
OesS.

Proor. The only difference with Theorem 3.10 is that now a contradiction has to
be obtained from the fact that the inferences between clauses in S are redundant
instead of considering that the conclusion is in S. Let us show it for an inference by

402 RoBERT NIEUWENHUIS AND ALBERT RUBIO

superposition right. In this case the minimal counterexample C has not generated
a rule because its maximal term is reducible by a rule generated by a clause C'.
Then the following inference by superposition right is considered where C' is the
left premise, C is the right one and D is the conclusion.

IMsl~r,A' T—as~tA
I',\T = s[r], ~t,A",A

As in Theorem 3.10, by using Lemma 3.9 from R* = C we can infer that R* [~ D.
But on the other hand, since the inference is redundant we have S<¢ = D, and by
minimality of C we have R* = D which is a contradiction. a

4.2.2. the dynamic view: computing saturated sets

The previous theorem states that, instead of computing sets closed under the in-
ference system, it suffices to saturate them. Therefore, now practical methods for
computing saturated sets are defined. These methods are formalized by the notion
of derivation, a sequence of sets of clauses where each time the next set is obtained
by either adding some logical consequence or removing some redundant clause.

A ground clause C is redundant with respect to a set of ground clauses S if
S§<¢ = C. A derivation is a (possibly infinite) sequence of sets of clauses Sp, S, ...
where each S;y; is either S; U {C}, for some C such that S; = C, or S; \ {C}, for
some C that is redundant with respect to S;. Clauses belonging, from some i on, to
all S;, with k > 1, are called persistent. The set S, is the set of persistent clauses,
defined S = U; Ng>; Sk-

A nice property of the general notion of redundancy presented above is given
by the following lemma. It states that all non-persistent clauses occurring in the
derivation are redundant w.r.t. the set of persistent ones.

4.3. LEMMA. Let Sp,Sh,... be a derivation and let C be a clause in (U;S;) \ Soo-
Then C is redundant w.r.t. Se.

PROOF. We proceed by induction on C w.r.t. >.. Since C ¢ So there is some Sj,
s.t. C is redundant w.r.t. S;, which implies that S3° |= C, and hence by induction
hypothesis S3¢ = C.]

It is easy to see that simplification by demodulation fits into the notion of deriva-
tion. For example, simplifying P(f(a)) into P(a) with the equation f(a) ~ a is mod-
eled by first adding P(a), and then removing P(f(a)) which has become redundant
in the presence of P(a) and f(a) ~ a.

4.4. EXAMPLE. Consider the lexicographic path ordering generated by the prece-
dence P > Q > f >r a. The table:

PARAMODULATION-BASED THEOREM PROVING

403

Refutation S Comments Derivation Sp, Si, - .-
1. -+ Q(a)
2. Q(a - f(a)~a Initial set S
3. Pa) - of clauses 0
4. - P(f(a))
1. = Qfa)
2' ggzg : fla)=a Inf. 5 from So = (- f(a) ~a)
4: S5 P(f(a) 1 and 2 S1 =S U{— f(a) ~a}
5. - fla) ~a

S1 | (= P(a))
1. = Q(a) Sy =S1U{— P(a)}
Z ggg : f(@)=a Simplif. 4
5. o fla)~a to 6 with 5 — P(f(a)) is redundant
6. — P(a) w.r.t. Sy
S3 =8 \{ - P(f(a)}

1. -+ Qa)
2. Qa) — f(a)~a
3. Pla) - Inf. 7 from S;EO
5. - f(a)~a 6 and 3 Sq = Sz u {0}
6. — P(a)
7. 0

represents a derivation performed by a theorem prover that is based on the strict
superposition calculus and applies simplification by demodulation. The first column
contains the set of ground clauses at every step of the refutation and the second
one contains some explanations about the current step. In the third column the
sets of the derivation are given and the changes justified. In the first column, the
underlined subterms are the ones involved in the next inference.

a

If our aim is to obtain refutation complete theorem proving procedures by com-

404 RoOBERT NIEUWENHUIS AND ALBERT RUBIO

puting derivations, and in the limit, to obtain a saturated set, then a notion of
Jairness is required. It roughly says that no inference 7 should be postponed for-
ever: either some premise of 7 disappears at some point of the derivation, or else 7
has to become redundant at some point. One way of forcing 7 to become redundant
is by adding its conclusion: for every ground inference 7 by our inference systems,
always its conclusion is smaller than its maximal premise® and hence 7 is trivially
redundant w.r.t. a set S containing its conclusion D (since D follows from a clause
of S that is smaller than the maximal premise, namely D itself).

4.5. DEFINITION. A derivation S, Si,. . . is fair with respect to an inference system
Inf if for every inference 7 of Inf with premises in S, there is some j > 0 s.t. 7
is redundant with respect to Sj.

Now we can prove that fair derivations compute (in the limit) saturated sets and
generate the empty clause if and only if the initial set is unsatisfiable.

4.6. THEOREM. If Sy, S1,... is a fair derivation with respect to Inf, then S is
saturated with respect to Inf, and hence if Inf is I, then Sy is unsatisfiable if, and
only if, O € S; for some j. Furthermore, if Sp, S1,...,Sn is a fair derivation then
Sp, is saturated and logically equivalent to Sp.

Proor. First we prove that S, is saturated with respect to Znf. By fairness, all
inferences with premises in S, are redundant in some S; and hence, by lemma 4.3,
redundant in S, which implies that S, is saturated.

Second, if Znf is Z, since S, is saturated with respect to Z, by theorem 4.2 S
is unsatisfiable if, and only if, O € S. Since, definition of derivation, Sy is logically
equivalent to all S; with 7 > 0 and, by lemma 4.3, to S, as well, Sp is unsatisfiable
if, and only if, O € S, and hence O € S; for some j.

Finally if Sp, S),...,S, then S, = S, and hence S, is saturated. m|

Now, what can be done in practice to ensure fairness? On the one hand, it is
needed that after adding the conclusion of an inference, the inference becomes
redundant. As said, for the inference systems presented in this chapter, this is indeed
the case. In order to capture forward simplification we also want the inference to
become redundant if we add the simplification of the conclusion. Indeed, with this
notion of redundancy of inferences any clause smaller than the maximal premise
can be used to simplify the conclusion into a smaller clause.

On the other hand, this has to be done for all inferences with persistent premises.
But since it is not possible to know, at a certain point S;, whether a given premise
is going to be persistent or not, some means should be provided ensuring that
no inference with persistent premises is postponed infinitely many times. In most

8For inference systems not satisfying this property, an inference should be redundant as well
w.r.t. a set S if its conclusion is in S (and not only if its conclusion follows from clauses in S
smaller than its maximal premise). Another possibility is to relax the notion of fairness (that will
be introduced in a moment), requiring that either the conclusion of 7 belongs to some S; or else
m is redundant in S;.

PARAMODULATION-BASED THEOREM PROVING 405

implementations this is achieved by periodically considering all inferences with the
clause whose size (in number of symbols) is smallest. If a certain clause persists
then it will eventually be considered, since there are only finitely many clauses with
smaller size.

4.8. Non-ground saturation procedures

For the non-ground case, the definitions for redundancy of inferences and clauses of
the previous section are straightforwardly extended (roughly, C or 7 is redundant
if all its ground instances are) and the notions of derivation and saturatedness do
not change. Here we consider saturation without constraint inheritance, that is, the
S; occurring in derivations are sets of clauses without constraints, and if fairness
requires a non-ground inference m with conclusion D | s = t AOC to become
redundant in some Sj, then this is done by adding Do to S;, where o = mgu(s, t).

In the following, gnd(C) denotes the set of all ground instances of a clause C,
and if S is a set of clauses then gnd(S) denotes Uges gnd(C).

Let 7 be an inference with premises Ci,...,C, and conclusion D | T . Then a
ground instance 7o of the inference 7 is an inference with premises C)o,...,Cro
and conclusion Do for some ground o such that o = T'. An inference 7 is redundant
with respect to a set S if all its ground instances are redundant with respect to
gnd(S). Note that an inference whose conclusion has an unsatisfiable constraint is
redundant since it has no ground instances.

4.7. ExaMPLE. Consider the lexicographic path ordering generated by the prece-
dence P =5 f =5 h >r g >7 a and the following set S of equations whose
maximal sides are written underlined:

1. g(z) =~ =
2. h(a,2) = =z
3. f(z,h(z,y)) =~ g(v)
4. fla,2) =~ 2

The inference between 2 and 3 can be shown redundant w.r.t. S using rewriting as
follows. It has the conclusion

f(z,2) = g(y) | h(a,2) = h(z,y) Ah(a,2) >z A f(z,h(z,y)) > 9(v)

Once it is checked that the constraint is satisfiable, the most general unifier {z —
a,z — y} of the unification problem in the constraint is applied to the conclusion,
obtaining:

fla,y) = g(y)

It has to be shown that all its ground instances, which are of the form f(a,t) ~
9(t), follow from instances of S smaller than the corresponding instance of the

406 ROBERT NIEUWENHUIS AND ALBERT RUBIO

maximal premise, which is f(a, h(a,t)) ~ g(t). This can be done by rewriting: both
sides of f(a,y) ~ g(y) rewrite into y using equations 4 and 1.

As another example of forward simplification, assume the set consists only of
equations 1, 2 and 3. The inference between 2 and 3 we have seen generates f(a,y) ~
9(y), which by forward simplification with 1 produces equation 4. 0O

It is easy to show, by a similar lifting argument as the one used in Theorem 3.6,
that the non-ground version of Theorem 4.2 holds.

4.8. THEOREM. Let S be a set of clauses that is saturated with respect to I. Then,
S is unsatisfiable if, and only if, D€ S.

Now we can again focus on the problem of how to compute (non-ground, this
time) saturated sets. For this purpose, in this context a clause C is redundant with
respect to a set S if all its ground instances are redundant with respect to gnd(S).

The notions of non-ground derivation, persistence and fairness are defined exactly
as in the ground case. The non-ground versions of Lemma 4.3 and Theorem 4.6 can
be proved in a similar way.

4.9. THEOREM. If Sy, S1,... 18 a fair derivation with respect to Inf, then S is
saturated with respect to Inf, and hence, if Inf is I, then Sy is unsatisfiable if, and
only if, O € S; for some j. Furthermore, if Sy, S1,...,Sn is a fair derivation then
Sy, is saturated and logically equivalent to Sp.

4.10. EXAMPLE. Let us now consider a more complicated example showing the

power of the notion of redundancy for inferences, where moreover the generated

ordering constraints are not ignored like in Example 4.7, but play a crucial role.
Consider the transitivity axiom for a predicate p:

p(z,y) Ap(y, 2) = p(z, 2)
Consequences by superposition left (or resolution) of this clause are:
p(z,y) Ap(y,2) Ap(z,u) — plz,u)
p(z,y) Ap(y, 2) Ap(z,u) Ap(u,w) — p(z,w)

We first show that these consequences are not redundant clauses in the presence
of the transitivity axiom. An instance of p(z,y) A p(y, 2) A p(2,u) = p(z,u) of the
form

p(a,b) A p(b,c) A p(c,d) = p(a,d)

only follows from instances of the transitivity axiom

p(b,c) Ap(c,d) — p(b,d) (4.1)
p(a,b) Ap(b,d) — p(a,d) (4.2)
p(a,b) Ap(b,e) — pla,c) (4.3)
p(a,c) Ap(c,d) — p(a,d) (4.4)

PARAMODULATION-BASED THEOREM PROVING 407

in two possible ways: from (4.1,4.2) or from (4.3,4.4). However,ifb>ra >rc>rd
then in both cases the instances used are not smaller than the instance that has to
be proved redundant. Therefore, the clause p(z,y) Ap(y, z) Ap(z,u) — p(z,u) is not
redundant. But we can prove that the two possible resolution inferences producing
it from the transitivity axiom are indeed redundant.

One of the two inferences is

p(z,y) Ap(y,u) = p(z,u) p(y,2) Ap(z,u) = p(y,u)
p(z,y) Ap(y,2) Ap(z,u) = p(z,u) | p(y,u)>p(z,uv) A p(y,u)>p(z,y) A
p(y,u)>p(y,2) A p(y,u)>p(z,u)

in which the unifier has already been applied. The constraint of the conclusion can
be simplified into y >z A u>z A y> z. Now the ground instances of the conclusion
that indeed satisfy this constraint follow from smaller instances of the set 4.1-4.4,
i.e., the inference is redundant.

Another difficult question is: how to find in practice, and automatically, the ap-
propriate clauses and their instances that allow us to prove such redundancies? In
the Saturate system [Nivela and Nieuwenhuis 1993, Ganzinger, Nieuwenhuis and
Nivela 1999, several such concrete techniques are implemented. For this concrete
example, Saturate proves the redundancies automatically by clausal rewriting com-
bined with LPO constraint solving. a

4.4. More general notions of redundancy for clauses

As said, the notion of redundancy of clauses given in the previous section together
with the notion of derivation can capture simplification methods like demodulation
by rewriting. However, it cannot capture useful methods like subsumption in its
full generality. For instance, a clause P(a) (for some constant a) cannot be proved
redundant w.r.t. a set containing P(z), since only strictly smaller instances can be
used in the redundancy proof.

To overcome this problem, the notion of redundancy of clauses can be made
more powerful by applying not only smaller instances but also equal instances in
the redundancy proof.

We denote by S=€ the set of all D in S such that C >, D. Then a clause C
is non-strictly redundant w.r.t. a set of clauses S if gnd(S)2*? |= D for all D in
gnd(C). Note that it is equivalent to the requirement that for all D in gnd(C)
either gnd(S)*? = D or D € gnd(S). This means that one only needs to care
about all those ground instances of C that do not belong to S. It is easy to see that
this notion of redundancy covers subsumption.

4.11. EXAMPLE. The clause P(a) is redundant w.r.t. {P(z)}, since P(a) €
gnd(P(z)). But if the signature under consideration is fixed, then it is possible
to go beyond.

Assume F is {a, f, @, P}, let C be the clause Q(z)VP(z), and let S be the set of
clauses { P(f(y)), Q(a)VP(a)}.

408 ROBERT NIEUWENHUIS AND ALBERT RUBIO

Then C can be proved non-strictly redundant w.r.t. the set of clauses S as follows.
The ground instance Q(a) V P(a) of C is in S and is hence redundant w.r.t. S.
The remaining ground instances of C are of the form Q(f(¢)) vV P(f(t)) for some
ground term ¢, which are redundant since P(f(t)) E Q(f(t))VP(f(t)) and Q(f(¢))V
P(f(t)) =c P(f(8)).

Note that some instances of C' have been proved strictly redundant, i.e., using
smaller instances w.r.t. >, and others have been proved non-strictly redundant,
that is using equal instances in gnd(S). m}

In this new setting with non-strict redundancy, the notion of derivation has to
be slightly modified. If S;;; is S; \ {C}, now we require C to be (non-strictly)
redundant w.r.t. S; \ {C}, instead of w.r.t. S; as before (otherwise all clauses C in
S; could be removed!).

Unfortunately, this stronger notion of redundancy for clauses has some side effects
on the notion of fairness, mainly because there might be persistent ground instances
that do not correspond to any persistent clause.

4.12. EXAMPLE. Assume F = {a, P} and the following derivation:
So = {~P(z), P(z)},

S1 = {~P(z), P(z), P(a)},

Sy = {~P(z), P(a)},

Ss = {~P(z), P(z), P(a)},

Sa = {=P(z), P(2)},

The only instance of P(z) is P(a). Therefore P(z) is redundant in the presence of
P(a), and vice versa, and hence the sequence Sp, S1, ... is indeed a derivation. The
only persistent clause is =P(z), and no inference between persistent clauses exists.
Hence the empty clause will not be generated in this derivation. This problem is
clearly due to the fact that fairness, as it was stated in the previous subsection
for the weaker notion of redundancy of clauses, only requires inferences between
persistent clauses to be considered. [}

In the previous example there is a clause P(a), which is a persistent ground
instance, i.e. a ground clause C such that from some k on, C belongs to all gnd(S;)
with ¢ > k, which is not an instance of any persistent clause. Therefore a simple
way to overcome this problem is to modify the notion of fairness by requiring in
addition that, roughly, the set of persistent ground instances is covered by the set
of persistent clauses. This idea is formalised as follows.

4.13. DEFINITION. The set Goo = U; Nk>; gnd(S;) is the set of persistent ground
instances. A derivation Sy, S1, ... is ground fair with respect to an inference system
Inf if gnd(Ss) 2 Goo and all inferences of Znf with premises in S, are redundant
w.r.t. S; for some j.

Ground fairness can be achieved in practical theorem provers by associating to
each clause a counter indicating its “level” of non-strict redundancy steps, and

PARAMODULATION-BASED THEOREM PROVING 409

forbidding such non-strict redundancy steps beyond a certain level. In most imple-
mentations the problem of the previous example is avoided automatically, since, as
said, fairness is achieved by periodically considering all inferences with the smallest
clause with respect to size. If a certain ground instance persists, then at any point it
is an instance of some clause with smaller or equal size, and hence it will eventually
be considered, because there are only finitely many such clauses with smaller size.

The non-ground version of Lemma 4.3 can be proved for non-strict redundancy
in the same way as before, using the fact that gnd(Se) D Goo. Theorem 4.9 holds
as well.

4.5. Computing with saturated sets

In practice, it is sometimes possible to obtain a finite saturated set S, (not contain-
ing the empty clause) for a given input Sp. In this case its satisfiability has been
proved. Let us give an example.

4.14. EXAMPLE. Consider the lexicographic path ordering generated by the prece-
dence P >r Q >x f > g >r a. Table 1 represents a finite derivation that
terminates with a saturated 'set. The concrete redundancy method applied is sim-
plification by demodulation. The first column contains the set of clauses at each
step of the derivation. In the second column the sets of the derivation are given
and the changes justified. In the first column, the underlined terms are the ones
involved in the next inference.

The final set S is saturated since all inferences with premises in Sy are redundant:

1. the inferences between 3 and 4 and between 2 and 6 are redundant since their
conclusions are in Sy (and hence they follow from clauses smaller than the
maximal premise).

2. the inference between 5 and 6 is also redundant, although its conclusion is not
in Sy. Let us show it. The inference has premises g(g(y)) ~ g(y) (note that we
have renamed the variables of 5 to avoid name clashes) and Q(g(z)) — P(g(z)),
with the unifier ¢ = {z — g(y)}. The conclusion is Q(g(g(v))) = P(g(¥)),
which can be rewritten by 5 into Q(g(y)) — P(g(y)), which is smaller than
60 and belongs (up to renaming of variables) to Sy, and hence the inference is
redundant. O

The remainder of this section is on the applications of such finite saturation
derivations. On the one hand, the existence of a finite saturated set S not containing
the empty clause implies that its consistency has been proved. Consistency proving
has many applications and is also closely related to inductive theorem proving, as
shown in [Comon 2001] (Chapter 14 of this Handbook).

But on the other hand, theorem proving in theories expressed by saturated sets
S of axioms is also interesting because more efficient proof strategies become (refu-
tationally) complete. For example, it is clear from the previous section that when
saturating SUS’, for some S’, inferences all whose premises belong to S are redun-
dant in SU S’, for the following reason. Since S is saturated, these inferences are

ROBERT NIEUWENHUIS AND ALBERT RUBIO

Derivation S, Sy, . .. Comments
1. Qg(g(z))) — P(g(z))
2 P(g(a)) - Initial set
3. = f(z,y) =~ g9(z) of clauses Sy
4 - f(z,0) ~ g(g9(z))
L Q(g(g(z)) — Pg(z))
2. P(g(a)) — Infer 5 from
3. = f(z,y) = g9(z) 3 and 4
4. - f(z,a) ~ g(g(z)) 51 = SoU {5}
5. - g(g(z)) ~ g(z)
Simplify 1
2. P(g(a)) - into 6 with 5
3. - f(z y) (z) S |= 6
4. = f(z,a) =~ g(9(z)) Sy = 51 U {6}
5. - g(9(z)) ~ g(x) 1 is redundant
6. Q(g(z)) — P(g(x)) wrt. Sz \ {1}
=5\ {1}
2. Plgla)) -
3. = f(z,y) = g9(z) Infer 7 from
4. -+ f(z,a) = g(g9(z)) 2 and 6
5. -+ g(g(z)) ~ g(z) S3k=7
6. Qg(z)) - P(g(z)) Sy =S3U {7}
7. Q(g(a)) -

Table 1: A finite derivation terminating with a saturated set

PARAMODULATION-BASED THEOREM PROVING 411

redundant in S, and hence as well in any set containing S, because the redundancy
notions are easily shown to be monotonic in this sense.

This leads to the completeness of the set-of-support strategy, where S’ is the set of
support. This strategy is complete for standard binary resolution, but is incomplete
in general for ordered inference systems and also for paramodulation ([Snyder and
Lynch 1991] describe a lazy paramodulation calculus that is complete with set of
support).

4.6. Completion as an instance of saturation

In some cases, depending on the syntactic properties of the given finite saturated
set S, decision procedures for the given theory are obtained. This is the case for in-
stance for saturated sets of unit equations E, where the saturation process behaves
like unfailing Knuth-Bendix completion. Clearly, simplification by rewriting and
removing tautologies s ~ s (and other more refined techniques) fit into the redun-
dancy notions. Furthermore, indeed rewriting with the final saturated set provides
a decision procedure for the word problem.

Let > be a total reduction ordering, and let E be a set of unit equations. Further-
more, let =g be the ordered rewrite relation (remember that —g is the smallest
monotonic relation on terms such that sc —g to whenever s ~ t is in E and
so > to).

4.15. THEOREM. If E is a set of unit equations that is saturated w.r.t. # and >,
then every ground term s has a unique normal form nf(s) w.r.t. = g. Furthermore,
for every pair of ground terms s and t, E = s ~ t if, and only if, nf(s) = nf(t).

PROOF. It is shown that every ground term s (possibly with new Skolem constants
for its variables) can be rewritten into the unique minimal (w.r.t. >) representative
of its E-congruence class. By induction w.r.t. >, it suffices to prove the reducibility
w.r.t. =g of non-minimal s. Let u be this minimal representative of the congruence
class of s. Since s > u, the only inference rule that can be applied in a refutation of
s~ u — are strict superposition left steps on s with some positive equation I ~r
of E. But then s is reducible by rewriting with I ~ r, since 3|, = lo for some p. O

In fact, similar results apply as well to the other forms of saturatedness that will
be introduced later on in this chapter (modulo equational theories, with constraint
inheritance).

Decision procedures are also obtained for the ground case. For the ground Horn
inference system G applied with eager selection, clearly each inference of I ~ r on a
clause D produces a smaller clause D'. Furthermore, D is a logical consequence of
the smaller clauses [~ r and D', i.e., D has become redundant and can be removed.
Hence after each inference, the clause set decreases w.r.t. the well-founded multiset
extension of the clause ordering and hence the process terminates, thus deciding
satisfiability.

412 ROBERT NIEUWENHUIS AND ALBERT RUBIO

4.16. THEOREM. Superposition with selection decides the satisfiability of sets of
ground Horn clauses.

Furthermore, a decision procedure for the satisfiability of sets of arbitrary ground
clauses is obtained by first transforming into Horn clauses (where SUCVA;V...VA,
is split into the disjunction of sets S; of the form S U C V A;; then S is satisfiable
if some of the S; is).

4.17. EXAMPLE. Note, however, that ground saturation procedures without redun-
dancy do not always terminate, in spite of the fact that only smaller ground clauses
are created in a well-founded ordering. Consider an LPO with a > f > b and
the initial two ground equations

1L fla@ =~ a
2. fb) =~ a

Then infinitely many equations 4, for ¢ > 2 are generated by superposition at the
underlined subterm between equation 1 and equation ¢ — 1

3. f(f0) = a
4. f(F(f) = a
5 fUF(f(f) = a

O

Other syntactic restrictions on non-equational saturated sets S that are quite
easily shown to produce decision procedures include reductive Horn clauses (also
called conditional equations) or universally reductive general clauses [Bachmair and
Ganzinger 1994b]. In such cases, the non-redundant inferences in a refutation of
S UG for certain classes of ground clauses G only produce new smaller ground
clauses and saturation terminates by a similar argument as in the ground case.
This kind of ideas provide several directions in which the previous two theorems
can be generalized (see also Section 8.2 of this chapter).

4.7. Extended signatures

When applying the results we have seen so far for computing with sets SUS’ where
S is saturated, one aspect has to be considered carefully: what happens if new (e.g.
Skolem) symbols appear in S'?

4.18. EXAMPLE. Suppose S is the following set of unit equations:

{— f(z) ~a, — g(a) ~ a}

PARAMODULATION-BASED THEOREM PROVING 413

under a lexicographic path ordering with the precedence g ~r a >~ f.

This set is saturated with respect to the given signature: the only possible in-
ference with the two equations of S not needed, since its conclusion, g(f(z)) ~
a | a > f(z), has an unsatisfiable constraint a > f(z) because a is the smallest
constant symbol. From the rewriting and Knuth-Bendix completion point of view,
S being saturated with respect to a given signature means that —s is confluent
for rewriting terms built over this signature, i.e., it is ground confluent, which is a
weaker property than general confluence.

Now let us try to prove, for instance, that S = Vy g(f(y)) ~ a. After negating
and Skolemizing the goal G = g(f(b)) ~ a — is obtained, which has to be refuted,
where b is a new Skolem constant. Then, under the new extension of the precedence
g =7 a >x [=7 b, the set-of-support strategy fails: no inferences can be computed
between equations in S and G, but S U {G} is inconsistent. Equivalently, from the
rewriting point of view, S = G but G is in normal form with respect to — .

This incompleteness is due to the fact that S is not saturated with respect to the
new signature (note that a is no longer the smallest constant symbol). If S is instead
saturated with respect to ertended signatures then the inference with conclusion
g(f(z)) ~ a| a > f(z) should be performed, since the constraint a > f(z) is
satisfiable in some extension of the signature. Then this incompleteness problem
does not appear. 0

From the previous example we learn that for some applications it is necessary to
solve the ordering constraints under extended signatures (see Section 7 for details
on ordering constraint solving). Similar incompleteness problems appear if we apply
redundancy methods that rely on the given signature like, for instance, the one used
in example 4.11.2.

Let us now consider the combination of two finite sets of clauses S; and S (built
over F; and F; resp.) that are saturated with respect to >; and >2 respectively.
Then an extension of the set-of-support-strategy applies: no inferences have to
be considered in which all premises are in S; or all premises in S,. Therefore, if
FiNF, =0 then S; U S, is saturated.

Again here it is needed that S; and S, are saturated under the semantics in which
the satisfiability of the constraints has been considered with respect to extended
signatures, or at least with respect to a signature containing JF; U F,. Otherwise,
situations similar to the example above can again appear.

Furthermore, it is necessary to find an ordering > with all the required properties
containing both »; and >,. If > and >, are two orderings of the same family of
path orderings and this family is stable under extensions of the precedence (e.g.
RPO is such a family) then one can define a precedence > 5, extending >
and >x, (whenever >» and >, are not contradictory, that is, f,g € F; N F; and
f >x, g implies f >, g). This produces a total extension. See [Rubio 1995] for
related results on combining arbitrary orderings.

414 ROBERT NIEUWENHUIS AND ALBERT RUBIO
5. Paramodulation with constrained clauses

In this section we develop strategies where the ordering and/or equality restrictions
of the inferences are kept in constraints and inherited between clauses. As explained
in Section 1, this produces a further pruning of the search space. For simplicity
reasons, first only Horn clauses are considered and at the end of the section the
extension to general constrained clauses is outlined.

5.1. Equality constraint inheritance: basic strategies

We now analyse the first constraint-based restriction of the search space: the so-
called basicness restriction, where superposition inferences on subterms created by
unifiers on ancestor clauses are not performed. This restriction is conveniently ex-
pressed by inheriting the equality constraints without applying (or even computing)
any unifiers. Hence from now on we consider sets of constrained clauses, rather than
unconstrained ones, as in the previous sections.

5.1. DEFINITION. In the following, we call a set of constrained Horn clauses S closed
under H with equality constraint inheritance f D | Yy A... AT, As =1 isin §
whenever Cy |11, ..., Cn|Tn are clauses in S and there is an inference by H
with premises C,...,Cpn and conclusion D | s =t AOC such that the constraint
TiA...ANT, As =t AOC is satisfiable.

This strategy is incomplete in general: the closure under ‘H with equality con-
straint inheritance of an unsatisfiable set of constrained Horn clauses needs not
contain the empty clause.

5.2. EXAMPLE. Let > be the lexicographic path ordering where a >+ b. Consider
the following unsatisfiable clause set S:

1. —a~b
2. —+P(z)|z=a
3. P(b) —

S is clearly closed under H with equality constraint inheritance, since no inferences
by # that are compatible with the constraint of the second clause can be made.
We have a > b and hence the first clause could only be used by superposing a
on some non-variable subterm, while superposition left (i.e., resolution) between 2
and 3 leads to a clause with an unsatisfiable constraint £ = a A b = z. However, S
does not contain the empty clause. This incompleteness is due to the fact that the
usual lifting arguments, like the ones in Theorem 3.6, do not work here, since they
are based on the existence of all ground instances of the clauses. Note that this is
not the case here: the only instance of the second clause is P(a), whereas the lifting
argument in Theorem 3.6 requires the existence of the instance P(b). O

PARAMODULATION-BASED THEOREM PROVING 415

Fortunately, the strategy is complete for what we will call well-constrained sets
of clauses, which turn out to be adequate for many practical situations. A key
idea in this context is the following (quite intuitive) notion of irreducible ground
substitution. Let R be a ground rewrite system contained in the given ordering >
(that is, ! > r for all rules I = r of R). A ground substitution o is reducible by
R if zo is reducible by R for some z € Dom(o); if there is no such z then o is
irreducible. Furthermore, if S is a set of constrained clauses, then irredg(S) is its
set of irreducible instances, that is, the set of ground instances Co of clauses C | T
in S such that o is a solution of T and zo is irreducible by R for all z € vars(C).

5.3. DEFINITION. A set of constrained clauses S is well-constrained if either there

are no clauses with equality predicates in S or else for all R contained in > we have
irredp(S)URE S.

5.4. ExaMPLE. (Example 5.2 continued) The clause set S of the previous example
is not well-constrained: if R is {a = b} then the instance P(a) of the second clause
is not a logical consequence of irredr(S) U R (in fact, the second clause has no
irreducible instances for this R). O

Let us give some more intuition behind the definition of well-constrained sets.
For clauses without equality predicates, the situation is clear: all such sets are well-
constrained (this is why logic programming without equality is compatible with
arbitrary constraint systems).

Now let us consider clause sets S including equality predicates. First, note that
if S is a well-constrained set, so is its closure w.r.t. any sound inference system,
since the property of well-constrainedness is preserved under the addition of logical
consequences. Second, it is not difficult to see that if all clauses in S have only
tautologic constraints then S is well-constrained: every instance Co is either in
irred g(S), or else o is reducible by R. Then o can be reduced into a “normal form”
o', where Co’ is in irredg(S), and we have irredr(S) U R = Co.

But there are other non-trivial examples of well-constrained sets.

5.5. EXAMPLE. Let > be the lexicographic path ordering whereg =r a >x f >r b.
Then, constrained clauses like g(z,z) ~ b | a > z may appear in well-constrained
sets, since the variable z is not “lower bounded”: as for unconstrained clauses, for
all o the term zo can be reduced into a “normal form” zo’', where g(zo',z0') ~ bis
in érred p(S), and hence we have irredp(S)UR | g(z0,z0). Here g(z,z) ~bla>z
denotes the infinite set of clauses of the form g(f™(b), f™(b)) ~ b for n > 0, that is,
g(b,b) = b, g(f(b), f(B) = b, g(f(f(3)),f(f(8)) = b... Note that such (in this
case even non-regular) tree languages cannot be captured by standard first-order
clauses. a

Furthermore, it will become clear from the completeness proof below that the
notion of well-constrained clause could be modified in order to capture more cases
by not considering all R contained in >, but only those R whose rules could be
generated in the model generation technique applied to the given clause set. Then,

416 ROBERT NIEUWENHUIS AND ALBERT RUBIO

one can know in advance that certain (e.g., constructor) terms will be irreducible
w.r.t. such R. Here we have not done this in order to keep the definition of well-
constrainedness simple.

The refutation completeness of H for well-constrained clause sets S can now be
established by applying a simple variant of the model generation technique. Before
we give the formal proof, let us explain the main ideas. Let S be a set of well-
constrained clauses that is closed under H with equality constraint inheritance,
and assume D ¢ S. As always, we show that then S is satisfiable by generating a
rewrite system R for S (in a similar way as before) and then proving that R* = S.

For this purpose, we first show that R* = irredg(S) like in Theorem 3.6, but
where the lifting case never needs to be applied (since we only consider the set of
irreducible instances of S). Once we have R* |= irredg(S), then also R* = S, since
of course R* = R and by well-constrainedness of S (where well-constrainedness is
required only with respect to the particular R that has been generated) we have
irredp(S) U R |= S (note that if there are no equality literals in S then irred g(S)
coincides with S).

5.6. THEOREM. The inference system H is refutation complete with equality con-
straint inheritance for well-constrained sets S of Horn clauses.

PROOF. Let S be closed under H with equality constraint inheritance. Again we
build a model R* for S whenever O ¢ S. As said, we prove that R* = irredg(S),
which implies R* |= S by well-constrainedness.

We build R as for Theorem 3.6, but now only the irreducible (w.r.t. R¢) instances
of S contribute to its construction: a ground instance C of the form I"' - { = r in
irred . (S) generates the rule I = r of R if the usual conditions (i), (ii) and (iii)
apply.

Now again we derive a contradiction from the existence of a minimal (w.r.t. >.)
ground instance Co € irredg(S) for some C | T € S, where o is a solution of T,
such that R* = Co. Again we consider several cases, depending on the occurrences
in Co of its maximal term so. Let us analyse only the case where CisT',s ~t - A
and so > to. Since R* }£ Co, we have R* = so ~ to, and hence the term so is
reducible by some rule lo = ro € R, generated by an instance C'o of some C' | T" ,
where C' is of the form IV — [~ r.

Now we have so|, = lo, and, since o is irreducible by R, the only possibility
is now that s|, is a non-variable position of s. Then there exists an inference by
superposition left:

I"ol~r Ts~t—= A
I',T,s[rlp~t = A |slp=l Al>r AIST A s>t A s>TA

whose conclusion has an instance Do where o is a solution of T A T’ A s|, =
L Al>r ANI>T A s>t A s>T,A such that Co >, Do and where
R* [£ Do. Furthermore, Do € irredg(S): indeed zo is irreducible by R for all
variables £ € vars(D). This is clearly the case if z € vars(C). For z € C’, there

PARAMODULATION-BASED THEOREM PROVING 417

are two cases: if £ = I then z ¢ vars(D) since lo > ro,I"o; if Z [then zo is
irreducible w.r.t. R by construction of R, and hence also w.r.t. R, since for all
rules I’ = ' € R\ Rc we have I’ > lo > zo and hence such rules cannot reduce
zo. Altogether, this contradicts the minimality of Co. O

5.2. Ordering constraint inheritance

The proof ideas used for equality constraint inheritance apply as well to ordering
constraint inheritance or to a combination of both.

A set of constrained Horn clauses S is closed under H with ordering constraint
inheritance if (D | T1A...AT,AOC)o isin S whenever C |T1, ..., Cp|T, are
clauses in S and there is an inference by H with premises Ci, ..., C, and conclusion
D|s=tAOC such that o = mgu(s,t) and the constraint T} A.. . AT, As = tAOC
is satisfiable.

5.7. THEOREM. The inference system H is refutation complete with ordering con-
straint inheritance for well-constrained sets S of Horn clauses.

A set of constrained Horn clauses S is closed under H with equality and order-
ing constraint inheritance if D | H A...ATp, As = t AOC is in S whenever
Ci|Ti, ..., Cn| T, are clauses in S and there is an inference by H with
premises Cj,...,Cp and conclusion D | s = t A OC such that the constraint
TiA...ANT, As=1tAOC is satisfiable.

5.8. THEOREM. The inference system H is refutation complete with equality and
ordering constraint inheritance for well-constrained sets S of Horn clauses.

5.8. Basic paramodulation

It is possible to further restrict the inference system H with constraint inheritance,
at the expense of weakening the ordering restrictions. Roughly, the improvement
comes from the possibility of moving the inserted right hand side (denoted by r
in our superposition rules) in conclusions to the constraint part, thus blocking this
term for further inferences. On the other hand, paramodulations take place only
with the maximal term, like in superposition, but on both sides of the equation
containing the maximal term. More precisely, the inference rule of (ordered, basic)
paramodulation right then becomes:

ordered paramodulation right:
I'9l~r T-os~t
T szl ~t |z=r A slp=l Al>r AI>ST' A (s>TVi>T)

where s|, is not a variable, and z is a new variable. The inference rule for paramod-
ulation left is defined analogously. It is clear that these inference rules are an im-
provement upon superposition only when applied (at least) with inheritance of the

418 ROBERT NIEUWENHUIS AND ALBERT RUBIO

part £ = r of the equality constraint, since otherwise the advantage of blocking r
is lost.

The completeness proof is an easy extension of the previous results by the model
generation method. It suffices to modify the rule generation by requiring, when a
rule [= r is generated, that both [and r are irreducible by R, instead of only [as
before, and to adapt the proof of Theorem 5.6 accordingly, which is straightforward.
We refer to [Bachmair, Ganzinger, Lynch and Snyder 1995] for a deeper discussion
of this form of basic paramodulation.

5.4. Saturation for constrained clauses

In this section the redundancy notions for constrained clauses and inferences are de-
fined. The idea is similar to how it was done for unconstrained clauses with variables,
except that here, as in the proofs of refutation completeness of H with constraint
inheritance, the ground instances are replaced by the set of irreducible (w.r.t. some
R) ground instances. These definitions are of a rather theoretical nature. Practical
sufficient conditions for them are given in [Nieuwenhuis and Rubio 1995).

In the following, C | T and D | T (or sometimes simply C, D) denote constrained
clauses, S denotes a set of constrained clauses, and R denotes sets of ground rewrite
rules included in »>.

First, to get some intuition, let us look at an example showing that the usual
simplification techniques are not compatible with constraint inheritance, even if the
initial set has no constraints at all. For simplicity, we consider here only equality
constraint inheritance, and a simplification step in which f(g(a)) is simplified into
f(b) by demodulation with the instance g(a) ~ b of g(z) ~ b| z = a . Note that this
is the natural extension of the standard method of simplification by rewriting with
unconstrained equations, which, as we have seen, does not lead to incompleteness
when no constraints are inherited.

5.9. EXaAMPLE. Consider an LPO with f > g > a > b and the inconsistent set
of four initial clauses:

1 —“ax~b

2. - f(9(z)) =~ g9(z)
3. - f(g(a)) = b

4. gb)=b —

Now we could generate a saturation process as follows:
5. = g(z)~b lz=a (by superposition of 3 on 2)

6. = f(b) ~ g(z) lz=a (by superposition of 5 on 2)
3. = f(B)~b (simplifying 3 by 5)

PARAMODULATION-BASED THEOREM PROVING 419

Finally, the set {1,2,3',4,5,6} is closed under the inference rules, but the empty
clause has not been generated. O

Note that the problem is caused by the fact that, although the initial set is
well-constrained, after applying the simplification step well-constrainedness is lost,
and, as a consequence, refutation completeness. Therefore the redundancy meth-
ods should consider only irreducible instances, in order to be consistent with the
techniques applied in the previous sections for constraint inheritance.

We denote by irredg(r) the set of ground instances wo of an inference 7 with
constraint inheritance such that Co € irredg(C | T) for each C' | T that is premise
or conclusion of .

Then, an inference = is redundant in S if for every R compatible with > and for
every o € irred g(m) with premises Cy, ..., Cy,, maximal premise C and conclusion
D, either RU irredg(S)*° |= C; for some i € {1...n} or RU irredp(S)*° = D.

Similarly, a constrained clause C | T is redundant in S if, for every R compatible
with >, RUirred g(S)3* |= Co for every Co € irredg(C | T). Note that non-strict
redundancy of clauses (see Section 4.4 for details) is considered, which is crucial for
showing that some powerful simplification methods based on constraints fit in this
framework.

It is not difficult to see that in redundancy proofs one can use equations with tau-
tologic constraints or constrained equations like f(z) ~ z | a > z for simplification
by rewriting. But by means of constraints one can go beyond:

5.10. EXAMPLE. Let > be the lexicographic path ordering where f >x a >x b,
and consider the set of equations

1. f(z) ~ a
2. f(®d =~ b

By analyzing its possible ground instances, equation 1 can be split into the one
where z is b and the remaining instances. In the former case, 1 can be simplified with
2, and in the latter case the constraint z # b can be added, obtaining, respectively,
equations 3 and 4:

2. f() =~ b

3. b ~ a

4. f(z) =~ al|z#bd
By simplifying 4 with 3 we obtain

2. f(b) =~ b

3. b ~ a

5. f(z) =~ blz#b
Finally, 2 and 5 can be removed by adding 6

3. b a
6. f(z) =~ b o

12

420 ROBERT NIEUWENHUIS AND ALBERT RuUBIO

Related techniques are applied for paramodulation without any ordering restric-
tions (plus a certain kind of inferences inside constraints) in [Bourely, Caferra and
Peltier 1994].

We can now state refutation completeness, which is proved by combining the
techniques of Theorems 5.6 and 4.8.

5.11. THEOREM. Let S be a well-constrained set of clauses that is saturated w.r.t.
T with constraint inheritance. Then S is satisfieble if, and only if, O ¢ S.

Instead of going into the details of derivations and fairness for constrained clauses,
let us only remark here that the methodology explained for clauses without con-
straints in Section 4 produces results analogous to the ones of Theorem 4.9 for
well-constrained sets of clauses.

5.5. General constrained clauses

When considering constraint inheritance for general clauses, the main proof method
is the same as before. However, some additional details have to be handled, which
make it altogether quite technical. For extending Theorem 5.6, the problems are
caused by one case in the proof that has to be considered more carefully: the case
where an instance Co of a constrained clause C | T of the form I' & z ~ r,z ~
r,A|T generates a rule zo = ro of R. Then, although Co is an instance with a
substitution ¢ that is irreducible with respect to R¢,, it is reducible with respect
to R, since zo is reducible by the rule zo = ro itself.

This situation has the following unpleasant consequences. If an inference with Co
on another irreducible instance C'o is needed, it cannot be ensured any more that
the corresponding instance Do of the conclusion D | T" obtained from C' | T' and
C | T is an irreducible instance, since D has £ ~ r’ in the succedent. Note that
in the Horn case this cannot happen: if zo is the left hand side of the rule, then «
cannot occur in the corresponding conclusion.

The problem is solved by refining the notion of irreducibility for these special
variables occurring in an instance Co. The problematic variables of Co are those
variables that occur in the succedent and only in equations like z ~ r with zo > ro.
For these variables zo is only required to be irreducible by rules smaller than the
greatest o ~ ro in C'o. With this notion of irreducibility, the proof of theorem 5.6
can be applied to general clauses, using the inference system Z and its corresponding
rule generation as in Theorem 3.10. We refer to [Nieuwenhuis and Rubio 1995] for
details.

5.12. THEOREM. The inference system I is refutation complete with equality
and/or ordering constraint inheritance for well-constrained sets S of clauses.

PARAMODULATION-BASED THEOREM PROVING 421

6. Paramodulation with built-in equational theories

In this section the paramodulation calculus is generalised to the case in which some
of the initial axioms are considered as a built-in theory. In particular, the case in
which the theory is expressed by a set E of equational axioms is considered.

There are different ways to extend paramodulation based inference systems for
this purpose. The simplest one is by adding a new inference rule applying paramod-
ulations on the equations of the theory (but not with them). An alternative to
this inference rule is to associate to each clause the set of its E-extended clauses
[Peterson and Stickel 1981}, which are clauses obtained by adding to the maximal
equation (if it is in the succedent) contexts coming from the equations in E. Then
paramodulation is performed with the E-extended clauses as well. Due to the fact
that many of these extended clauses can be shown to be redundant, this method
seems to be less prolific than the first one.

In some interesting cases, like for abelian semigroups, that is, associative and
commutative (AC) theories, the useful extended clauses can be easily characterized.
Then it becomes possible as well to design specific inference rules instead of handling
these extensions explicitly. This is the way most paramodulation calculi for the
AC-case are expressed [Paul 1992, Rusinowitch and Vigneron 1995, Vigneron 1994,
Nieuwenhuis and Rubio 1997] and in Section 6.2 (see also [Rubio 1996] for built-
in semigroups, i.e. associative theories). This approach is considered as well for
arbitrary regular theories in [Vigneron 1996).

Recent research concerns algebraic structures richer than abelian semigroups, like
abelian groups [Stuber 19984, Godoy and Nieuwenhuis 2000], cancellative abelian
monoids [Ganzinger and Waldmann 1996], commutative rings [Stuber 19983] or
divisible torsion-free abelian groups [Waldmann 1998].

6.1. E-compatible reduction orderings

Many results in the literature on ordered paramodulation and superposition mod-
ulo E require (i) E-unification to be finitary, (ii) E-unifiability to be decidable, and
(iii) the existence of an E-compatible total reduction ordering. In Section 6.3 we
will describe a uniform framework in which the first two requirements turn out to
be unnecessary by inheriting equality constraints. Only recently, in [Bofill, Godoy,
Nieuwenhuis and Rubio 1999] it was proved that the third requirement can be
dropped as well: E-compatible total reduction orderings, which were crucial in all
previously existing completeness proofs completeness of ordered paramodulation
calculi, are not needed for ordered paramodulation. The new results for paramod-
ulation with non-monotonic orderings of [Bofill et al. 1999] may allow one to work
with much simpler orderings. For example, in many cases one can normalize terms
w.r.t. the theory F before comparing them by some total ordering on ground terms,
thus obtaining a total, E-compatible, and well-founded ordering (that is not mono-
tonic in general). However, the results for non-monotonic orderings have not been
developed yet for working modulo equational theories, they are applicable only for

422 ROBERT NIEUWENHUIS AND ALBERT RUBIO

ordered paramodulation and not for superposition, and, moreover, they are not
compatible with the usual redundancy elimination techniques. Hence it seems rea-
sonable to expect that they will be used only in contexts where E-compatible total
reduction orderings do not (or are not known to) exist.

Hence it is necessary to explore the possibilities of finding E-compatible reduc-
tion orderings for different theories E and to study in which cases these orderings
can be E-total, i.e. total on the E-congruence classes. This is done in the remainder
of this section. The following abbreviations will be used for equational axioms: C
(commutativity), A (associativity), U (unit), I (idempotence) and D (distributiv-
ity).

First we will present some positive results for theories containing associativity
and/or commutativity axioms. The easiest case is C, since RPO (see section 2.2)
is a C-compatible reduction ordering if all commutative function symbols have
a multiset status, and it is C-total under a total precedence if a lexicographic
status is assigned to all other symbols. Similarly, in fact any permutative the-
ory can be considered, that is, any theory E presented by axioms of the form
f(z1,...,%0) = f(Tx1)s- - Tn(n)), Where the z,...,z, are distinct variables and
7 is some permutation of 1...n. If such f have multiset status, the ordering will
be E-compatible. With a little more effort, it can be made total up to =g by a
lexicographic combination with a second component®.

AC-axioms are present in many interesting theories, and hence AC-compatible
orderings have received much more attention than any others. It turned out to
be quite difficult to find AC-compatible reduction orderings, especially when AC-
totality is also required. In fact, the first attempts were not total in general
(see e.g. [Bachmair and Plaisted 1985, Ben-Cherifa and Lescanne 1987, Kapur,
Sivakumar and Zhang 1990]). The first AC-compatible AC-total reduction order-
ing was exhibited in [Narendran and Rusinowitch 1991], while the first such or-
dering based on RPO appeared in [Rubio and Nieuwenhuis 1995] and further
improvements on AC-orderings with RPO-scheme are developed in [Kapur and
Sivakumar 1997, Rubio 1999]. For the A (associativity only) case, not many results
have been developed. Of course, if A-totality is not required, any of the AC-orderings
can be used. Otherwise, in [Rubio 1996], a way to obtain A-compatible A-total re-
duction orderings from AC-orderings is described. However, apparently some of the
known RPO-like AC-total orderings could also be adapted to the A case directly.
Finally, joining all the results one can obtain E-compatible E-total reduction or-
derings for theories E containing A-, C-, AC- and free symbols [Rubio 1994].

When considering other theories, fewer positive results can be obtained. U-
compatible orderings cannot fulfill the subterm property, since if + is a function
symbol with unit 0 then z + 0 =y z and hence, by U-compatibility, z + 0 cannot

9In this second component, roughly, the multisets formed by the equivalence classes of per-
muting arguments are compared lexicographically. For example, if a > b and E consists of
f($1,22,$3,34,15) =~ f($1,13,12,$4,15) and f($1,32, 3, 14’35) = f(zl)z% 3,75, I4)1 then we
can compare lexicographically sequences of multisets of arguments ({1st}, {2nd, 3rd}.{4th, 5th}),
and f(a,a,a,b,a) > f(a,a,b,a,a), since the multiset {a,a} of the second and third argument of
the first term is larger than the one of the second term, which is {b,a}.

PARAMODULATION-BASED THEOREM PROVING 423

be greater than z. This means that E-compatible simplification orderings do not
exist if there are any such unit axioms in E. However, it is possible, as described in
[Jouannaud and Marché 1992] and [Wertz 1992], to obtain an ACU-compatible re-
duction ordering from an AC-compatible reduction ordering, provided that all units
are minimal in the given AC-ordering. But such a restriction has to be required by
any E-compatible ordering such that E contains any unit axioms, i.e. U C E:

6.1. ExAMPLE. Let + and * be U-function symbols with units 0 and 1 respectively.
Then if 0 >z 1, by monotonicity, + 0 > gz + 1, which implies, by E-compatibility
(since z+0 =y z), T >z T+ 1, contradicting, by monotonicity, the well-foundedness
of > The symmetric case 1 >0 leads to the same contradiction. 0O

This example shows us that only one unit is allowed if we are interested in E-
totality. There may exist U-compatible reduction orderings that are U-total but
which are not simplification orderings.

The case in which E contains some idempotence axiom is even worse, since then
no E-compatible well-founded ordering > 5 can be monotonic:

6.2. EXAMPLE. Let * be an I-function symbol and let s and ¢ be terms with s > t.
Then if > 5 is monotonic we have s * s >t * s and hence, by E-compatibility (since
s%8 =J 8), 8 > t*s, which together with monotonicity contradicts well-foundedness.
O

Finally another interesting example is the presence of distributivity axioms. It is
unknown whether there are, in general, D-compatible reduction orderings (and also
E-compatible for a set E containing distributivity axioms). However, a well-known
ACD-compatible ordering is the APO [Bachmair and Plaisted 1985], when there
are no distribution chains.

6.2. Paramodulation modulo associativity and commutativity

Let us now consider the case of superposition with built-in associativity and com-
mutativity for some function symbols.

In this section constraints are interpreted as follows: the ordering >~ interpreting
> is now an AC-compatible AC-total reduction ordering, while = is interpreted as
=,¢ (the AC-equality congruence).

The full inference system for general clauses modulo AC, called Z4¢ includes the
rules of Z (under the new semantics for > and =) plus the following three specific
rules:

AC-superposition right:
I'>sl~r A Fss~tA
I'\T = s{f(r,z)l, ~t,A",A | slp=Ff(l,z) A
I>r AN IST A gr(l=r,A") A
s>t A s>T A gr(s=~t,A)

424 ROBERT NIEUWENHUIS AND ALBERT RUBIO

AC-superposition left:
Vol A Ts~t—o A
I Ls[f(rnz)l,~t—=>AA | slp=f(z) A
I>r A ST A gr(l~rA") A
s>t A greg(s ~t,TUA)

AC-top-superposition:
IMal~r A FTos~tA
I',T' = f(r',z'") ~ f(r,z),A",A | f',z)=f(,z) A
I>r A ST A gr(l~r,A') A
s>t A s>T A gr(s~tA)

In these rules, where z and z' are new variables, the term [can be restricted to be
headed by the AC-symbol f. This can be expressed in the constraint language and
added to the constraint. Let us define u|, to be a mazimal non-f subterm of u if ¢
is a position such that top(ulq) # f and top(u|y) = f for all proper prefixes ¢’ of
g. Then, AC-top-superposition is only needed if / and I’ are headed by f and share
some maximal non-f subterm s but z and 2’ do not (some restrictions implied by
this condition can be formulated in the constraint language, and hence some cases
of failure of this condition can be detected as unsatisfiable constraints). Finally,
the superposition inferences are needed only if l|, is non-variable (as usual), and
AC-superposition is needed only if moreover I|, (which has an f as top symbol) is
not immediately below another f. Some examples are given below.

The refutation completeness of T4 can be proved by introducing a notion of
extended instance of a clause and then adapting the construction of the rewrite
system R to work modulo AC and considering these extended instances for the
generation of rules. We refer to [Nieuwenhuis and Rubio 1997] for the details.

6.3. THEOREM. The inference system T4c is refutation complete without constraint
inheritance with buslt-in AC-theories.

6.3. Constraint inheritance and built-in theories

By inheriting equality constraints one can avoid one of the main drawbacks of
working with built-in theories, namely the large cardinality of the set of unifiers for
certain unification problems. For instance, there may be doubly exponentially many
AC-unifiers for two terms [Domenjoud 1992] (in a sense, this is also an upper bound
[Kapur and Narendran 1992]), and therefore as many conclusions in an inference;
e.g., a minimal complete set for z + z + z and y; + y2 + y¥3 + y4 contains more than
a million unifiers.

PARAMODULATION-BASED THEOREM PROVING 425

For proving refutation completeness with constraint inheritance it becomes nec-
essary, as in the free case (see section 5.1), to consider irreducible instances. In
this case the irreducibility notion for the fresh variables introduced by the three
specific AC-inference rules needs to be refined. Again we refer to [Nieuwenhuis and
Rubio 1997] for the details.

6.4. THEOREM. The inference system Lac is refutation complete with constraint
inheritance for well-constrained sets S of clauses with built-in AC-theories.

As said, by inheriting equality constraints, the computation of unifiers and the
generation of many conclusions in every inference becomes unnecessary. But it is
possible to go beyond. One can deal, in an effective way, with theories E with an
infinitary E-unification problem, i.e., theories where for some unification problems
any complete set of unifiers is infinite. This is the case for theories containing only
associativity axioms for some function symbols, which is developed in [Rubio 1996].

Finally, one can consider any built-in theory E, even when the E-unification
problem is undecidable, if an adequate inference system and ordering are found
(although these ideas require a further development for concrete E). Incomplete
methods can then be used for detecting cases of unsatisfiable constraints, and only
when a constrained empty clause O | T is found, one has to start (in parallel) a
semidecision procedure proving the satisfiability of T. But note that for soundness
only the equality constraint part of T needs to be proved satisfiable, since the
inference rules are sound as well without ordering restrictions. This method is not
only interesting if no decision procedure for the E-unification problem is available:
incomplete methods can be more efficient and hence more effective in practice than
complete ones.

7. Symbolic constraint solving

Equality constraints are also known as unification problems, since they generalize
the notion of unification, which usually consists in solving one single equation.
Due to the large amount of applications of unification in automated deduction,
logic programming and, in general, in symbolic computation, equational constraints
have been used in many different applications. Hence for this topic here we refer to
[Baader and Snyder 2001] (Chapter 8 of this Handbook) for a detailed survey.

7.1. Ordering constraint solving

Apart from the applications to pruning the search space in automated theorem
proving, ordering constraint solving is useful in many other contexts like proving
termination of term rewrite systems or confluence of ordered term rewrite systems
[Comon et al. 1998].

Regarding the former application, constraints provide powerful termination or-
derings >, for term rewriting, defined: s >, t if so > to for all ground o. If >

426 ROBERT NIEUWENHUIS AND ALBERT RUBIO

is the recursive path ordering (RPO), such >, subsume other path orderings like
the ones of [Kapur, Narendran and Sivakumar 1985, Lescanne 1990] since all these
path orderings coincide on ground terms (see [Dershowitz 1987]). For example, if
s is g(f(z), f(y)) and t is g(g(z,y),9(z,y)), and f ># g in the precedence, then
S ¥rpo t, but s >, t. Ordering constraint solving is also applicable as an underlying
technique in more general contexts like the dependency pairs method of [Arts and
Giesl 1997).

As explained in Section 4.7 of this chapter, some applications of ordering con-
straints to ordered strategies in theorem proving gave rise to the distinction between
fixed signature semantics (solutions are built over a given signature F) and extended
signature semantics (new symbols are allowed to appear in solutions) [Nieuwenhuis
and Rubio 19923].

The satisfiability problem for ordering constraints was first shown decidable for
fixed signatures when > is a total LPO [Comon 1990] or a total RPO [Jouannaud
and Okada 1991]. For extended signatures, decidability was shown for LPO in
[Nieuwenhuis and Rubio 1995] and for RPO in [Nieuwenhuis 1993]. Regarding com-
plexity, NP algorithms for LPO (fixed and extended signatures) and RPO (ex-
tended ones) were given in [Nieuwenhuis 1993]. Recently, an NP algorithm has
been given as well for RPO under fixed signaturss in [Narendran, Rusinowitch and
Verma 1998]. For the AC-RPO ordering of [Rubio and Nieuwenhuis 1995}, decid-
ability was shown in [Comon, Nieuwenhuis and Rubio 1995]. NP-hardness of the
satisfiability problem is known, even for one single inequation, for all these cases
[Comon and Treinen 1994].

All these decision procedures use at some point the fact that a constraint C can be
effectively expressed as an equivalent disjunction of expressions s; > t1 A...Asp >
tn, called solved forms, where for each i always at least one of s; or ¢; is a variable.
Solved forms are obtained by repeatedly applying the definition of the ordering by
rules like:

F(81,.00,8p) >t =51 2tV... Vs >t

if ¢ is a non-variable term whose topmost symbol is bigger in the precedence than
f. Similar rules deal with the equality relations in the constraints, like f(...) =
9(...)= Lif f #g,and f(s1,...,8n) = F(t1,...,tn) => 81 = t1,A... A, 8p = tn.

Due to the transformations into disjunctive normal form, the number of solved
forms for a given C' may be exponential, even if all atoms in C are already inequal-
ities between variables or if C consists of one single inequality. In algorithms like
the ones of [Comon 1990] and [Nieuwenhuis and Rubio 1995], the computation of
solved forms is only a first step that is followed by other exponential phases. This is
not surprising, since this notion of solved form only involves a local analysis of the
inequations considered independently. In fact any constraint s > ¢ can be expressed
as the solved form s > z Az > t, for some new variable z, which is equivalent w.r.t.
satisfiability under extended signatures.

On the other hand, the NP algorithms of [Nieuwenhuis 1993] and [Narendran
et al. 1998] are based on a first non-deterministic guess of a simple system for
C, a particular constraint S of the form s, #5n Sp~1 #n-1 ... #1 So, Where

PARAMODULATION-BASED THEOREM PROVING 427

each #; is either = or >, and {sy,...,s1} is the set of all subterms of C. Then,
roughly, C is satisfiable if, and only if, some of its simple systems contains one of
its own solved forms and entails C. For each simple system, this can be checked
in polynomial time, but the number of simple systems to be considered is far too
large for practical usefulness.

A new family of algorithms, for full RPO and both semantics, has been intro-
duced recently in [Nieuwenhuis and Rivero 1999]. These algorithms are based on a
new notion of solved form, where properties of orderings like transitivity and mono-
tonicity are taken into account. They are simple and, since guessing is minimised,
more efficient.

For the Knuth-Bendix ordering (KBO) the constraint satisfiability problem was
proved decidable only recently [Korovin and Voronkov 2000a], and NP-complete
in [Korovin and Voronkov 2000b]. Since theorem provers behave better on many
problem classes with KBO than with path orderings like RPO, this result may
become useful in practice.

8. Extensions
8.1. Paramodulation-based answer computation

Answer computation in some logic is at the heart of many applications of au-
tomated reasoning. Well-known simple examples of such mechanisms are Prolog’s
SLD-resolution, where the accumulated unifiers are kept as answers, or E-unification
procedures for equational (or more general) theories E in which, given a goal s = ¢,
answers o are computed such that E = so = to.

In [Gallier and Snyder 1989] general rules for E-unification are given. Narrowing
was originally devised as an efficient E-unification procedure using a convergent
(confluent and terminating) set of rewrite rules R for E [Fay 1979, Hullot 1980b).
Many extensions (to, e.g., conditional TRS’s) and optimizations of narrowing have
been proposed (see e.g. [Rety, Kirchner and Lescanne 1985, Bosco, Giovanetti and
Moiso 1988, Holldobler 1989, Nutt, Réty and Smolka 1989, Bockmayr, Krischer and
Werner 1992, Bockmayr and Werner 1994]). Most completeness proofs of these nar-
rowing strategies are based on lifting arguments applied to rewrite proofs, which has
limitations when applied to unrestricted general clauses, more general simplification
and redundancy notions, or with constrained clauses.

The techniques developed in this chapter can be extended into an alternative
approach, based on the well-known fact that in refutation theorem proving, each
refutation proof provides one answer, like in SLD-resolution. This has been done in
[Nieuwenhuis 1995], where a proof technique is developed that uniformly covers E-
unification-like methods and Prolog-like resolution strategies. By narrowing modulo
equational theories like AC, compact representations of solutions, expressed by AC-
equality constraints, can be obtained. Computing AC-unifiers is only needed at the
end if one wants to “uncompress” such a constraint into its (doubly exponentially
many) concrete substitutions. In [Lynch 1997] it is shown that superposition is

428 ROBERT NIEUWENHUIS AND ALBERT RUBIO

complete for answer computation with arbitrary selection rules (where also positive
literals can be selected), thus properly extending SLD resolution to clauses with
equality literals.

8.2. Paramodulation-based decidability and complexity results

The well-known close relationship between computation formalisms and deduction
in some logic has been a starting point for a considerable amount of recent research
in logic-based decidability and complexity analysis.

Regarding resolution-based results, for example in [Basin and Ganzinger 1996]
saturatedness of sets S of clauses (without equality) with respect to different order-
ings implies membership in different complexity classes of the entailment problems
S | C for ground C. And of course for the Datalog language of flat Horn clauses
without equality there are a number of results from descriptive complexity theory;
for example, that Datalog programs precisely capture the set of queries on a finite
database decidable in finite time [Vardi 1982, Immerman 1986].

Regarding paramodulation-based decidability results, for the class of ground
equations where some symbols are associative and commutative (AC) a finite
confluent rewrite system can always be computed by superposition [Narendran
and Rusinowitch 1991, Marché 1991), by which the word problem is decidable.
In the same class, the unification problem is also decidable [Narendran and
Rusinowitch 1993]. In [Marché 1996] paramodulation-based decidability results for
word problems in ground presentations modulo several other theories extending AC
are given, like abelian groups or commutative rings.

Concerning non-ground theories, superposition with simplification can be used
as a decision procedure for the monadic class with equality [Bachmair, Ganzinger
and Waldmann 19935b] (which is equivalent to a class of set constraints [Bachmair,
Ganzinger and Waldmann 1993a]). Similar very recent results have been obtained
for the guarded fragment [Ganzinger, Meyer and Veanes 1999, Ganzinger and
de Nivelle 1999].

In [Waldmann 1999] it is shown that cancellative superposition decides the the-
ory of divisible torsion-free abelian groups. The equational shallow theories, the
ones axiomatized by equations where no variabie occurs at depth more than one,
are another fundamental class with decidable word and unification problems and
even a decidable first-order theory [Comon, Haberstrau and Jouannaud 1994]. In
[Nieuwenhuis 1998] it is shown that for sets of Horn clauses with equality saturated
under basic paramodulation, the word and unifiability problems are in NP, and the
number of minimal unifiers is simply exponential; this can be applied to shallow
Horn clauses with equality. For certain Horn sets S saturated under basic superposi-
tion, the word and unifiability problems are still decidable and unification is finitary.
Further results on the decidability of unification problems in Horn theories have
been obtained by sorted superposition [Jacquemard, Meyer and Weidenbach 1998].

PARAMODULATION-BASED THEOREM PROVING 429

9. Perspectives

In this section some prominent research problems and future directions for research
in this area are addressed.

Apart from adequate theoretical results as we have seen them in this chapter,
building a state-of-the-art paramodulation-based theorem prover requires at least
two more ingredients: good heuristics, and the necessary engineering skills to im-
plement it all in an efficient way. Progress between theory and these other aspects
is interacting in different ways.

On the one hand, new theoretical insights are replacing heuristics by more precise
and effective techniques. For example, the completeness proof of basic paramodula-
tion shows why no inferences below Skolem functions are needed, as conjectured by
McCune [1990]. Regarding implementation techniques, ad-hoc algorithms for pro-
cedures like demodulation or subsumption are being replaced by efficient, re-usable,
general-purpose indexing data structures for which the time and space requirements
are well-known, see [Ramakrishnan, Sekar and Voronkov 2001] (Chapter 26 of this
Handbook).

But, on the other hand, theory is also advancing in other directions, producing
new ideas for which the development of implementation techniques and heuris-
tics that make them applicable sometimes takes several years. For example, basic
paramodulation was presented in 1992, but it was not applied in a state-of-the-
art prover until four years later, when it was applied by McCune for finding his
proof of the Robbins conjecture [McCune 1997b] by basic paramodulation modulo
associativity and commutativity (AC).

Provers like Spass [Weidenbach 1997], based on (a still relatively small number
of) such new theoretical insights, are now emerging and seem to be outperforming
the “engineering-based” implementations of more standard calculi, in spite of still
lacking more refined implementation techniques (see below).

McCune’s successful application of AC-paramodulation also illustrates the
effectiveness—and the need—of building-in more and more knowledge about the
problem domain (here, equality and the AC properties of some symbols) inside the
general-purpose logics. Paramodulation with constraints seems to be an adequate
paradigm for doing this in a clean way. It uses specialized techniques in the differ-
ent constraint logics, supporting the reasoning process in the general-purpose logic.
The interface between the two is through the variables: the constraints delimit the
range of the quantifiers, and hence define the relevant instances of the expressions.

In the remainder of this section, some of the current theoretical and practical
challenges concerning the construction of paramodulation-based provers are sur-
veyed.

9.1. Basicness and redundancy

The basic restriction in paramodulation is easy to implement in most provers by
marking blocked subterms, i.e., the point where the constraint starts. However, we

430 ROBERT NIEUWENHUIS AND ALBERT RUBIO

have seen that full simplification by demodulation is incomplete in combination
with the basic strategy. An important challenge is to develop adequate redundancy
notions for the basic strategy. Although some ideas are given in [Lynch and Scharff
1998], better results are needed for practice.

In the context of E-paramodulation with constraints, another interesting problem
is how to apply a constrained equation s ~ ¢ | T in a demodulation step without
solving the E-unification problem in T'. If the equation is small, and hence likely
to be useful for demodulation, and the number of unifiers o of T is small as well,
it may pay off to keep some of the instantiated versions so ~ to, along with the
constrained equation, for use in demodulation. For large clauses this will probably
not be useful.

9.2. Orderings

In all provers based on ordered strategies, the choice of the right ordering for a
given problem turns out to be crucial. In many cases weaker (size- and weights-
based) orderings like the Knuth-Bendix ordering behave well. In others, path or-
derings like LPO or RPO are better, although they depend heavily on the choice
of the underlying precedence ordering on symbols. It is not clear at all how to
choose orderings and precedences in practice. The prover can of course recognise
familiar algebraic structures like groups or rings, and try orderings that normally
behave well for each case, but is there no more general solution? For the case of
E-paramodulation, these aspects are even less well-studied.

9.8. Constraint solving

As we have seen, for taking advantage of the constraints, algorithms for constraint
satisfiability checking are required. Deciding the problem in general requires expo-
nential time for path orderings like LPO or RPO. Is there any useful ordering for
which deciding the satisfiability of (e.g., only conjunctive) constraints can be done
in polynomial time? Or, if the answer is negative, for which orderings can we have
better practical algorithms?

In practice one could use more efficient (sound, but incomplete) tests detecting
most cases of unsatisfiable constraints: when a constraint T is unsatisfiable, the
clause C | T is redundant (in fact, it is a tautology) and can be removed. Are there
any such tests?

In the context of a built-in theory E, equality constraint solving amounts to
deciding E-unifiability problems. Although for many theories E a lot of work has
been done on computing complete sets of unifiers, the decision problem has received
less attention, see [Baader and Snyder 2001} (Chapter 8 of this Handbook). Are
there any sound tests detecting most cases of unsatisfiability?

PARAMODULATION-BASED THEOREM PROVING 431

9.4. Indezing data structures

For many standard operations like many-to-one matching or unification indexing
data structures exist that can be used in operations like inference computation,
demodulation or subsumption, see [Ramakrishnan et al. 2001} (Chapter 26 of this
Handbook). Such data structures are crucial in order to obtain a prover whose
throughput remains stable while the number of clauses increases.

But for many operations no indexing data structures have been developed yet.
For example, consider demodulation with equations that cannot be oriented a priori
w.r.t. the ordering >, like the commutativity axiom. If such an equation s ~ t is
found to be applicable to a term so, then after matching it has to be checked
whether so > to, i.e., whether the corresponding rewrite step is indeed reductive.
If it is not reductive, then the indexing data structure is asked to provide a new
applicable equation, and so on. Of course it would be much better to have an
indexing data structure that checks matching and ordering restrictions at the same
time.

Apart from the AC case, indexing data structures for built-in E have received
little attention. Especially for matching, at least for purely equational logic, they
are really necessary. What are the perspectives for developing such data structures
for other theories E?

9.5. More powerful redundancy notions

In the Saturate system [Nivela and Nieuwenhuis 1993, Ganzinger, Nieuwenhuis
and Nivela 1999], a number of experiments with non-standard redundancy notions
has been carried out. For example, constrained rewriting turns out to be powerful
enough for deciding the confluence of ordered rewrite systems [Comon et al. 1998].
Other techniques based on forms of conteztual and clausal rewriting can be used
to produce rather complex saturatedness proofs for sets of clauses. In Saturate, the
use of these methods is limited, since they are expensive (they involve search and
ordering constraint solving) and Saturate is just an experimental Prolog implemen-
tation. However, from the experiments it is clear that such techniques importantly
reduce the number of retained clauses.

Can such refined redundancy proof methods be implemented in a sufficiently
efficient way to make them useful in real-world provers? It seems that their cost
can be made independent of the size of the clause database of the prover (up to
the size of the indexing data structures, but this is the case as well for simple
redundancy methods like demodulation). Hence, they essentially slow down the
prover in a (perhaps large) linear factor, but may produce an exponential reduction
of the search space, thus being effective in hard problems.

432 ROBERT NIEUWENHUIS AND ALBERT RUBIO

9.6. More global future research directions

Up to this point, in this section we have focussed on concrete problems concerning
the application of the theory explained in this chapter in actual provers. Longer-
term challenges include the following two global areas.

One main area of interest concerns the integration of prover components:
how to integrate dedicated procedures within general-purpose paramodulation-
based provers (along the lines of Section 6), and how to integrate automated
paramodulation-based provers in more general environments like proof assistants.
Similarly, it has to be studied how to combine paramodulation-based provers with
other automated reasoning paradigms.

A second major area of interest involves the application of the theory of paramod-
ulation to other subfields of computer science like programming and complexity
theory (along the lines of the results described in Sections 8.1 and 8.2), as well as
more concrete applications like the analysis of security protocols [Weidenbach 1999].

Acknowledgments

We wish to thank the many people who helped us to improve (rewrite, polish,
extend) this chapter, in particular Anatoli Degtyarev, Guillem Godoy, Jieh Hsiang,
Chris Lynch, Michael Rusinowitch, and especially Andrei Voronkov.

Bibliography

Arts T. AND GIESL J. [1997], Automatically proving termination where simplification orderings
fail, in “TAPSOFT: 7th International Joint Conference on Theory and Practice of Software
Development’, LNCS 1214, Springer-Verlag, pp. 261-272.

BaapER F. AND SNYDER W. [2001], Unification theory, in A. Robinson and A. Voronkov, eds,
‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 8, pp. 445-532.

BAcHMAIR L. [1989], Proof normalization for resolution and paramodulation, in ‘Third int. conf.
on Rewriting Techniques and Applications (RTA)’, LNCS 355, Springer-Verlag, Chapel Hill,
NC, USA, pp. 15-28.

BACHMAIR L. [1991], Canonical equational proofs, Birkhauser, Boston, Mass.

BAcCHMAIR L. ANpD DErsHowITZ N. [1989], ‘Completion for rewriting modulo a congruence’,
Theoretical Computer Science 2 and 3(67), 173-201.

BAcHMAIR L. AND DERsHOWITZ N. [1994), ‘Equational inference, canonical proofs, and proof
orderings’, J. of the Association for Computing Machinery 41(2), 236-276.

BACHMAIR L., DERSHOWITZ N. AND HSIANG J. [1986], Orderings for equational proofs, in ‘First
IEEE Symposium on Logic in Computer Science (LICS)’, IEEE Computer Society Press,
Cambridge, Massachusetts, USA, pp. 346-357.

BACHMAIR L., DERSHOWITZ N. AND PLAISTED D. [1989], Completion Whitout Failure, in H. Ait-
Kaci and M. Nivat, eds, ‘Resolution of Equations in Algebraic Structures’, Vol. 2: Rewriting
Techniques, Academic Press, New York, chapter 1, pp. 1-30.

BACHMAIR L. AND GANZINGER H. [1990], On restrictions of ordered paramodulation with sim-
plification, in M. E. Stickel, ed., ‘10th International Conference on Automated Deduction
(CADE)’, LNALI 449, Springer-Verlag, Kaiserslautern, FRG, pp. 427-441.

PARAMODULATION-BASED THEOREM PROVING 433

BACHMAIR L. AND GANZINGER H. [1991], Perfect model semantics for logic programs with equal-
ity, in K. Furukawa, ed., ‘Logic Programming, Proceedings of the Eighth International Con-
ference’, The MIT Press, Paris, France, pp. 645-659.

BACHMAIR L. AND GANZINGER H. [1994a], Associative-commutative superposition, in N. Der-
showitz, ed., ‘Proc. 5th International Workshop on Conditional Term Rewriting Systems’,
LNCS 968, Springer-Verlag, Jerusalem, pp. 155-167.

BACHMAIR L. AND GANZINGER H. [1994}], ‘Rewrite-based equational theorem proving with se-
lection and simplification’, Journal of Logic and Computation 4(3), 217-247.

BACHMAIR L. AND GANZINGER H. [2001], Resolution theorem proving, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 2,
pp. 19-99.

BACHMAIR L., GANzINGER H., LyncH C. AND SNYDER W. [1992], Basic paramodulation and
superposition, in D. Kapur, ed., ‘11th International Conference on Automated Deduction
(CADE)’, LNAI 607, Springer-Verlag, Saratoga Springs, New York, USA, pp. 462-476.

BACHMAIR L., GANZINGER H., LyNcH C. AND SNYDER W. [1995], ‘Basic paramodulation’, Infor-
mation and Computation 121(2), 172-192.

BACHMAIR L., GANZINGER H. AND WALDMANN U. [19934], Set constraints are the monadic class,
in ‘Eighth Annual IEEE Symposium on Logic in Computer Science (LICS)’, IEEE Computer
Society Press, Montreal, canada, pp. 75-83.

BACHMAIR L., GANZINGER H. AND WALDMANN U. [1993b], Superposition with simplification as
a decision procedure for the monadic class with equality, in ‘3rd Kurt Gddel Colloquium:
Computational Logic and Proof Theory’, LNCS 713, SpringerVerlag, pp. 83-96.

BACHMAIR L. AND PraisTED D. A. [1985], ‘Termination orderings for associative-commutative
rewriting systems’, Journal of Symbolic Computation 1, 329-349.

BasiN D. AND GANzINGER H. [1996], Complexity Analysis Based on Ordered Resolution, in
‘Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS)’, IEEE Computer
Society Press, New Brunswick, New Jersey, USA, pp. 456-465.

BEN-CHERIFA A. AND LESCANNE P. [1987], ‘Termination of rewriting systems by polynomial
interpretations and its implementation’, Science of Computer Programming 9, 137-160.

BOCKMAYR A., KRISCHER S. AND WERNER A. [1992], An optimal narrowing strategy for general
canonical systems, in M. Rusinowitch and J.-L. Rémy, eds, ‘The Third International Work-
shop on Conditional Term Rewriting Systems’, LNCS 656, Springer-Verlag, Pont-3-Mousson,
France.

BOCKMAYR A. AND WERNER A. [1994], LSE narrowing for decreasing conditional term rewrite
systems, in N. Dershowitz, ed., ‘The fourth International Workshop on Conditional Term
Rewriting Systems’, LNCS 968, Jerusalem, pp. 167-190.

BoriLL M., Gopoy G., NIEUWENHUIS R. AND RuBIO A. [1999], Paramodulation with non-
monotonic orderings, in ‘14th IEEE Symposium on Logic in Computer Science (LICS)’,
Trento, Italy, pp. 225-233.

Bosco P., GIOVANETTI E. AND Moiso C. [1988], ‘Narrowing vs. sld-resolution’, Theoretical
Computer Science 2(59), 3-23.

BOURELY C., CAFERRA R. AND PELTIER N. [1994], A method for building models automatically:
Experiments with an extension of OTTER, in A. Bundy, ed., ‘Proceedings of the 12th Inter-
national Conference on Automated Deduction’, Vol. 814 of LNAI, Springer, Berlin, pp. 72-86.

BRrAND D. [1975], ‘Proving theorems with the modification method’, SIAM Journal on Comput-
ing 4(4), 412-430.

CoMon H. [1990], ‘Solving symbolic ordering constraints’, International Journal of Foundations
of Computer Science 1(4), 387-411.

CoMoN H. [2001)], Inductionless induction, in A. Robinson and A. Voronkov, eds, ‘Handbook of
Automated Reasoning’, Vol. I, Elsevier Science, chapter 14, pp. 913-962.

CoMoN H., HABERSTRAU M. AND JOUANNAUD J.-P. [1994], ‘Syntacticness, Cycle-Syntacticness
and Shallow Theories’, Information and Computation 111(1), 154-191.

434 ROBERT NIEUWENHUIS AND ALBERT RUBIO

CoMON H., NARENDRAN P., NIEUWENHUIS R. AND RUSINOWITCH M. [1998], Decision problems
in ordered rewriting, in ‘13th IEEE Symposium on Logic in Computer Science (LICS)’, Indi-
anapolis, USA, pp. 410-422.

Comon H. AND NIEUWENHUIS R. [2000], ‘Induction = I-axiomatization + first-order consistency’,
Information and Computation . To appear.

CoMonN H., NIEUWENHUIS R. AND RuBIO A. [1995], Orderings, AC-Theories and Symbolic Con-
straint Solving, in ‘10th IEEE Symposium on Logic in Computer Science (LICS)’, San Diego,
USA, pp. 375-385.

CoMoN H. aND TREINEN R. [1994], Ordering Constraints on Trees, in ‘Proc. of Colloquium
on Trees in Algebra and Programming (CAAP)’, LNCS 787, Springer-Verlag, Edinburgh,
Scotland, pp. 1-14.

DEGTYAREV A. [1979], The monotonic paramodulation strategy, in ‘5th All-Union Conference
on Mathematical Logic’, Novosibirsk. (In Russian).

DEGTYAREV A. AND VORONKOV A. [1986], ‘Equality methods in machine theorem proving’,
Cybernetics 22(3), 298-307.

DEGTYAREV A. AND VORONKOV A. [2001], Equality reasoning in sequent-based calculi, in
A. Robinson and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier
Science, chapter 10, pp. 609-704.

DErsHOWITZ N. [1982], ‘Orderings for term-rewriting systems’, Theoretical Computer Science
17(3), 279-301.

DEersHowITZ N. [1987], ‘Termination of rewriting’, Journal of Symbolic Computation 3, 69-116.

DEeRsHOWITZ N. [1991], Canonical sets of Horn clauses, in J. L. Albert, B. Monien and M. R. Ar-
talejo, eds, ‘Proceedings of the Eighteenth International Colloquium on Automata, Languages
and Programming (ICALP)’, LNCS 510, Springer-Verlag, Madrid, Spain, pp. 267-278.

DERSHOWITZ N. AND MANNA Z. [1979], ‘Proving termnation with multiset orderings’, Comm. of
ACM 22(8).

DERSHOWITZ N. AND PraisTep D. [2001], Rewriting, in A. Robinson and A. Voronkov, eds,
‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 9, pp. 533—-608.

DoMENJOUD E. [1992], ‘A technical note on AC-unification. the number of minimal unifiers of
the equation azy +...+azp = By1 +...+ Byq’, Journal of Automated Reasoning 8(1), 39-44.

FAy M. [1979], First-order unification in an equational theory, in ‘Proceedings of the Fourth
Workshop on Automated Deduction’, Austin, TX, pp. 161-167.

GALLIER J. H. AND SNYDER W. [1989], ‘Complete sets of transformations for general E-
unification’, Theoretical Computer Science 67(2-3), 203-260.

GANZINGER H. [1991], ‘A completion procedure for conditional equations’, Journal of Symbolic
Computation 11, 51-81.

GANZINGER H. AND DE NIVELLE H. [1999], A superposition decision procedure for the guarded
fragment with equality, in ‘14th IEEE Symposium on Logic in Computer Science (LICS)’,
Trento, Italy, pp. 295-305.

GANZINGER H., MEYER C. AND VEANES M. [1999], The two-variable guarded fragment with
transitive relations, in ‘14th IEEE Symposium on Logic in Computer Science (LICS)’, Trento,
Italy, pp. 24-34.

GANZINGER H., NIEUWENHUIS R. AND NIVELA P. [1999], ‘The Saturate System’. Software and
documentation available at: http://www.mpi-sb.mpg.de/SATURATE/Saturate.html.

GANZINGER H. AND WALDMANN U. [1996], Theorem proving in cancellative abelian monoids, in
M. A. McRobbie and J. K. Slaney, eds, ‘Thirteenth International Conference on Automated
Deduction (CADE)’, Vol. 1104 of LNAI, Springer, Berlin, pp. 388-402.

Gopoy G. AND NIEUWENHUIS R. [2000], Paramodulation with built-in abelian groups, in ‘15th
IEEE Symposium on Logic in Computer Science (LICS)’, Santa Barbara, USA.

HOLLDOBLER S. [1989], Foundations of equational logic programming, LNCS 353, Springer-
Verlag.

PARAMODULATION-BASED THEOREM PROVING 435

HsiANG J. AND RUSINOWITCH M. [1987], On word problems in equational theories, in T. Ottmann,
ed., ‘Proc. 14th Int. Colloquium Automata, Languages and Programming’, LNCS 267,
Springer-Verlag, Berlin, Germany, pp. 54-71.

HSIANG J. AND RUSINOWITCH M. [1991], ‘Proving refutational completeness of theorem proving
strategies: the transfinite semantic tree method’, Journal of the ACM 38(3), 559-587.

HueT G. [1980], ‘Confluent reductions: abstract properties and applications to term rewriting
systems’, Journal of the ACM 27(4), 797-821.

HuLLoT J. [1980a], Compilation de Formes Canoniques dans les Teories Equationnelles, PhD
thesis, Universite de Paris Sud, France.

HuLLOT J.-M. [19803], Canonical forms and unification, in R. Kowalski, ed., ‘Fifth International
Conference on Automated Deduction (CADE)’, LNCS 87, Springer-Verlag, Les Arcs, France,
pp. 318-334.

IMMERMAN N. [1986], ‘Relational queries computable in polynomial time’, Information and Con-
trol 68(1-3), 86-104.

JACQUEMARD F., MEYER C. AND WEIDENBACH C. [1998], Unification in extensions of shallow
equational theories, in T. Nipkow, ed., ‘9th International Conference on Rewriting Techniques
and Applications (RTA)’, LNCS 1379, Springer, Tsukuba, Japan, pp. 76-90.

JouaNNAUD J.-P. [1983], Confluent and coherent equational term rewriting systems: Applica-
tions to proofs in abstract data types, in ‘Proc. 8th Colloquium on Trees in Algebra and
Programming’, LNCS 59, Springer-Verlag, pp. 269-283.

JoUANNAUD J.-P. AND KIRCHNER H. [1986], ‘Completion of a set of rules modulo a set of equa-
tions’, SIAM Journal of Computing 15, 1155-1194.

JOUANNAUD J.-P. AND MARCHE C. [1992], ‘Termination and completion modulo associativity,
commutativity and identity’, Theoretical Computer Science 104, 29-51.

JOUANNAUD J.-P. AND OKADA M. [1991], Satisfiability of systems of ordinal notations with the
subterm property is decidable, in ‘18th International Colloquium Automata, Languages and
Programming (ICALP)’, LNCS 510, Springer-Verlag, Madrid, Spain, pp. 455-468.

JoUANNAUD J.-P. AND WALDMANN B. {1986], Reductive conditional term rewriting systems, in
‘Proc. Third IFIP Working Conference on Formal Description of Programming Concepts’,
Ebberup, Denmark.

KAMIN S. AND LEVY J.-J. [1980], Two generalizations of the recursive path ordering. Unpublished
note, Dept. of Computer Science, Univ. of Illinois, Urbana, IL.

KAPLAN S. [1984)], ‘Conditional rewrite rules’, Theoretical Computer Science 33, 175-193.

KAPUR D. AND NARENDRAN P. [1992], Double exponential complexity of computing complete
sets of AC-unifiers, in ‘Seventh Annual IEEE Symposium on Logic in Computer Science’,
IEEE Computer Society Press, Santa Cruz, California, USA, pp. 11-21.

KAPUR D., NARENDRAN P. AND SIVAKUMAR G. [1985], A path ordering for proving termination for
term rewriting systems, in ‘Proc. of 10th Colloquium on Trees in Algebra and Programming’,
LNCS 185, Springer-Verlag, Germany, pp. 173-185.

KAPUR D. AND SIVAKUMAR G. [1997], A total, ground path ordering for proving termination of
ac-rewrite systems, in H. Comon, ed., ‘8th International Conference on Rewriting Techniques
and Applications (RTA)’, LNCS 1232, Springer-Verlag, Sitges, Spain, pp. 142-156.

KAPUR D., SIVAKUMAR G. AND ZHANG H. [1990], A new method for proving termination of ac-
rewrite systems, in ‘Conf. Found. of Software Technology and Theoretical Computer Science’,
LNCS 472, Springer-Verlag, New Delhi, India, pp. 134-148.

KIRCHNER C., KIRCHNER H. AND RUsINOWITCH M. [1990], ‘Deduction with symbolic constraints’,
Revue Frangaise d’Intelligence Artificielle 4(3), 9-52.

KNuTH D. AND BENDIX P. [1970], Simple word problems in universal algebras, in ‘J. Leech, ed.,
Computational Problems in Abstract Algebra’, Pergamon Press, Oxford, pp. 263-297.

KorovIN K. AND VORONKOV A. [20004], A decision procedure for the existential theory of term
algebras with the Knuth-Bendix ordering, in ‘Proc. 15th Annual IEEE Symp. on Logic in
Computer Science’, Santa Barbara, California, pp. 291-302.

436 ROBERT NIEUWENHUIS AND ALBERT RUBIO

KorovIN K. AND VORONKOV A. [20003), Knuth-bendix constraint solving is NP-complete,
Preprint CSPP-8, Department of Computer Science, University of Manchester.

URL: http://www.cs.man.ac.uk/preprints/indez.html

KouNaLls E. AND RusiNowITCH M. [1991], ‘On word problems in Horn theories’, Journal of
Symbolic Computation 11(1-2), 113-128.

LANKFORD D. S. [1975], Canonical inference, Technical Report ATP-32, Dept. of Mathematics
and Computer Science, Univ. of Texas, Austin, TX.

LANKFORD D. S. AND BALLANTYNE A. M. [1977], Decision procedures for simple equational
theories with commutative-associative axioms: Complete sets of commutative-associative re-
ductions, Technical Report Memo ATP-39, Dept. of Mathematics and Computer Science,
Univ. of Texas, Austin, TX.

LESCANNE P. [1990], ‘On the recursive decomposition ordering with lexicographical status and
other related orderings’, Journal of Automated Reasoning 6(1), 39—49.

LOVELAND D. W. [1978], Automated Theorem Proving: a Logical Basis, 1 edn, North-Holland,
Amsterdam.

LyNcH C. [1997], ‘Oriented equational logic programming is complete’, Journal of Symbolic
Computation 23(1), 23-46.

LyncH C. AND SCHARFF C. [1998], Basic completion with E-cycle simplification, in J. Calmet
and J. Plaza, eds, ‘Proceedings of the International Conference on Artificial Intelligence and
Symbolic Computation (AISC-98)’, LNAI 1476, Springer Verlag, pp. 209-221.

LyNcH C. AND SNYDER W. [1993], Redundancy criteria for constrained completion, in C. Kirch-
ner, ed., ‘5th International Conference on Rewriting Techniques and Applications (RTA)’,
LNCS 690, Springer-Verlag, Montreal, Canada, pp. 2-16.

MaRcHE C. [1991], On ground AC-completion, in R. V. Book, ed., ‘4th Int. Conf. Rewriting
Techniques and Applications (RTA)’, LNCS 488, Springer-Verlag, Como, Italy, pp. 411-422.

MARCHE C. [1996], ‘Normalized rewriting: An alternative to rewriting Modulo a set of equations’,
Journal of Symbolic Computation 21(3), 253-288.

MARTIN U. AND N1pkow T. [1990], Ordered rewriting and confluence, in M. E. Stickel, ed., ‘10th
International Conference on Automated Deduction (CADE)’, LNAI 449, Springer-Verlag,
Kaiserslautern, FRG, pp. 366-380.

McCuNE W. [1990], Skolem functions and equality in automated deduction, in W. Dietterich,
Tom; Swartout, ed., ‘Proceedings of the 8th National Conference on Artificial Intelligence’,
MIT Press, Hynes Convention Centre?, pp. 246-251.

McCunE W. [1994], OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6,
Argonne National Laboratory.

MCcCuNE W. [1997q], 33 basic test problems: A practical evaluation of some paramodulation
strategies, in R. Veroff, ed., ‘Automated Reasoning and its Applications: Essays in Honor of
Larry Wos’, MIT Press, pp. 71-114.

McCuNe W. [1997b], ‘Solution of the Robbins problem’, Journal of Automated Reasoning
19(3), 263-276.

McCuNE W. [1997¢], Well behaved search and the Robbins problem, in H. Comon, ed., ‘8th Inter-
national Conference on Rewriting Techniques and Applications (RTA)’, LNCS 1232, Springer-
Verlag, Sitges, Spain, pp. 1-7.

NARENDRAN P. AND RUSINOWITCH M. [1991], Any ground associative commutative theory has
a finite canonical system, in ‘4th Int. Conf. Rewriting Techniques and Applications (RTA)’,
LNCS 488, Springer-Verlag, Como, Italy, pp. 423-434.

NARENDRAN P. AND RUSINOWITCH M. {1993], The Unifiability Problem in Ground AC Theories,
in ‘Eighth Annual IEEE Symposium on Logic in Computer Science’, IEEE Computer Society
Press, Montreal, canada, pp. 364-370.

NARENDRAN P., RUSINOWITCH M. AND VERMA R. [1998], RPO constraint solving is in NP, in
G. Gottlob, E. Grandjean and K. Seyr, eds, ‘12th Int. Conference of the European Association
of Computer Science Logic (CSL)’, LNCS 1584, Springer-Verlag, Brno, Czech Republic.

PARAMODULATION-BASED THEOREM PROVING 437

NIEUWENHUIS R. [1993], ‘Simple LPO constraint solving methods’, Information Processing Let-
ters 47, 65-69.

NIEUWENHUIS R. [1995], On Narrowing, Refutation Proofs and Constraints, in J. Hsiang, ed.,
‘6th International Conference on Rewriting Techniques and Applications (RTA)’, LNCS 914,
Springer-Verlag, Kaiserslautern, Germany, pp. 56-70.

NIEUWENHUIS R. [1998], ‘Decidability and complexity analysis by basic paramodulation’, Infor-
mation and Computation 147, 1-21.

NIEUWENHUIS R. AND NIVELA P. [1991], ‘Efficient deduction in equality horn logic by horn-
completion’, Information Processing Letters 39(1), 1-6.

NIEUWENHUIS R. AND OREJAS F. [1990], Clausal rewriting, in S. Kaplan and M. Okada, eds, ‘Con-
ditional and Typed Rewriting Systems, 2nd International Workshop’, LNCS 5186, Springer-
Verlag, Montreal, Canada, pp. 246-258.

NIEUWENHUIS R. AND RIVERO J. M. [1999], Solved forms for path ordering constraints, in
P. Narendran and M. Rusinowitch, eds, ‘Tenth International Conference on Rewriting Tech-
niques and Applications (RTA)’, LNCS 1631, Springer-Verlag, Trento, Italy, pp. 1-15.

NIEUWENHUIS R. AND RUBIO A. [19924], Basic superposition is complete, in B. Krieg-Briickner,
ed., ‘European Symposium on Programming’, LNCS 582, Springer-Verlag, Rennes, France,
pp. 371-390.

NIEUWENHUIS R. AND RuBIO A. [1992}], Theorem proving with ordering constrained clauses, in
D. Kapur, ed., ‘11th International Conference on Automated Deduction (CADE)’, LNAI 607,
Saratoga Springs, New York, pp. 477-491.

NIEUWENHUIS R. AND RuBIO A. [1994], AC-Superposition with constraints: No AC-unifiers
needed, in A. Bundy, ed., ‘12th International Conference on Automated Deduction (CADE)’,
LNALI 814, Springer-Verlag, Nancy, France, pp. 545-559.

NIEUWENHUIS R. AND RuBIO A. [1995], ‘Theorem Proving with Ordering and Equality Con-
strained Clauses’, Journal of Symbolic Computation 19(4), 321-351.

NIEUWENHUIS R. AND RUBIO A. [1997], ‘Paramodulation with Built-in AC-Theories and Symbolic
Constraints’, Journal of Symbolic Computation 23(1), 1-21.

NiveLa P. AND NIEUWENHUIS R. [1993], Practical results on the saturation of full first-order
clauses: Experiments with the saturate system. (system description), in C. Kirchner, ed.,
‘5th International Conference on Rewriting Techniques and Applications (RTA)’, LNCS 690,
Springer-Verlag, Montreal, Canada, pp. 436-440.

Nurt W., RETY P. AND SMOLKA G. [1989], ‘Basic narrowing revisited’, Journal of Symbolic
Computation T, 295-317.

Pais J. AND PETERSON G. {1991], ‘Using Forcing to Prove Completeness of Resolution and
Paramodulation’, Journal of Symbolic Computation 11(1), 3-19.

PauL E. [1992], ‘A general refutational completeness result for an inference procedure based on
associative-commutative unification’, Journal of Symbolic Computation 14(6), 577-618.

PETERSON G. E. [1983], ‘A technique for establishing completeness results in theorem proving
with equality’, SIAM J. on Computing 12(1), 82-100.

PETERSON G. E. [1990], Complete sets of reductions with constraints, in M. E. Stickel, ed., ‘10th
International Conference on Automated Deduction (CADE)’, LNAI 449, Springer-Verlag,
Kaiserslautern, FRG, pp. 381-395.

PETERSON G. AND STICKEL M. [1981], ‘Complete sets of reductions for some equational theories’,
Journal Assoc. Comput. Mach. 28(2), 233-264.

PLoTKIN G. [1972], ‘Building in equational theories’, Machine Intelligence 7, 73-90.

PrzZyMusINsKA H. AND PrzyMusiNski T. [1990], ‘Weakly Stratified Logic Programs’, Funda-
menta Informaticae XIII, 51-65.

PrzyMUsINSKI T. [1988], On the declarative semantics of deductive databases and logic programs,
in ‘Foundations of deductive databases and logic programming’, Morgan Kaufmann, Los Altos,
CA., pp. 193-216.

438 ROBERT NIEUWENHUIS AND ALBERT RUBIO

RAMAKRISHNAN 1., SEKAR R. AND VORONKOV A. [2001], Term indexing, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier Science, chapter 26,
pp. 1853-1964.

RETY P., KIRCHNER C. AND LESCANNE P. [1985], NARROWER: a new algorithm for unification
and its application to logic programming, in J.-P. Jouannaud, ed., ‘1st International Con-
ference Rewriting Techniques and Applications (RTA)’, LNCS 202, Springer-Verlag, Dijon,
France, pp. 141-157.

RoBINSON G. A. AND Wos L. T. [1969], ‘Paramodulation and theorem-proving in first order
theories with equality’, Machine Intelligence 4, 135-150.

RoBINSON J. A. [1965], ‘A machine-oriented logic based on the resolution principle’, Journal of
the ACM 12(1), 23-41.

RuBIO A. [1994], ‘Automated deduction with ordering and equality constrained clauses’, PhD.
Thesis, Technical University of Catalonia, Barcelona, Spain.

RuBio A. [1995], Extension Orderings, in ‘22nd International Colloquium on Automata, Lan-
guages and Programming (ICALP)’, LNCS 944, Springer-Verlag, Szeged, Hungary, pp. 511~
522,

RUBIO A. [1996], Theorem proving modulo associativity, in ‘9th Int. Conference of the European
Association for Computer Science Logic (CSL)’, LNCS 1092, Springer-Verlag, Paderborn,
Germany, pp. 452-467.

RuBIO A. [1999], A fully syntactic AC-RPO, in P. Narendran and M. Rusinowitch, eds, ‘Tenth
International Conference on Rewriting Techniques and Applications (RTA)’, LNCS 1631,
Springer-Verlag, Trento, Italy, pp. 133-147.

RuBIO A. AND NIEUWENHUIS R. [1995], ‘A total AC-compatible ordering based on RPO’, Theo-
retical Computer Science 142(2), 209-227.

RUSINOWITCH M. AND VIGNERON L. [1995], ‘Automated deduction with associative commuta-
tive operators’, J. of Applicable Algebra in Engineering, Communication and Computation
6(1), 23-56.

SLAGLE J. R. [1974], ‘Automated theorem-proving for theories with simplifiers, commutativity,
and associativity’, Journal of the ACM 21(4), 622-642.

SNYDER W. AND LyNcH C. [1991], Goal directed strategies for paramodulation, in R. V. Book, ed.,
‘4th Int. Conf. Rewriting Techniques and Applications (RTA)’, LNCS 488, Springer-Verlag,
Como, Italy, pp. 150-161.

STuBER J. [1998a], ‘Superposition theorem proving for abelian groups represented as integer
modules’, Theoretical Computer Science 208(1-2), 149-177.

STUBER J. [1998b], Superposition theorem proving for commutative rings, in W. Bibel and P. H.
Schmitt, eds, ‘Automated Deduction - A Basis for Applications. Volume III. Applications’,
Kluwer, Dordrecht, The Netherlands, chapter 2, pp. 31-55.

SUTCLIFFE G. AND SUTTNER C. B. [1998], The CADE-14 ATP system competition, Technical
Report JCU-CS-98/01, Department of Computer Science, James Cook University.

URL: http://www.cs.jcu.edu.au/ftp/pub/techreports/98-01.ps.gz

VARDI M. Y. [1982], The complexity of relational query languages (extended abstract), in ‘Pro-
ceedings 14th Annual ACM Symp. on Theory of Computing, STOC’82, San Francisco, CA,
USA, 5-7 May 1982’, ACM Press, New York, pp. 137-146.

VIGNERON L. [1994], Associative Commutative Deduction with constraints, in A. Bundy, ed.,
‘12th International Conference on Automated Deduction (CADE)’, LNAI 814, Springer-
Verlag, Nancy, France, pp. 530-544.

VIGNERON L. [1996], Positive deduction modulo regular theories, in ‘9th Int. Conference of
the European Association for Computer Science Logic (CSL)’, LNCS 1092, Springer-Verlag,
Paderborn, Germany, pp. 468-486.

WALDMANN U. [1998], Superposition for divisible torsion-free abelian monoids, in ‘Proceedings
of the Fifteenth International Conference on Automated Deduction (CADE-98)’, Vol. 1421 of
LNAI, Springer, Berlin, pp. 144-159.

PARAMODULATION-BASED THEOREM PROVING 439

WALDMANN U. [1999], Cancellative superposition decides the theory of divisible torsion-free
abelian groups, in ‘Logic Programming and Automated Reasoning, Int. Conf.', LNAI 1705,
Springer-Verlag, Tiblisi, Georgia, pp. 131-147.

WEIDENBACH C. [1997], ‘SPASS—version 0.49’, Journal of Automated Reasoning 18(2), 247-252.

WEIDENBACH C. [1999], Towards an automatic analysis of security protocols in first-order logic, in
H. Ganzinger, ed., ‘Proceedings of the 16th International Conference on Automated Deduction
(CADE-16)’, Vol. 1632 of LNAI, Springer-Verlag, Berlin, pp. 314-328.

WERTZ U. [1992], First-order theorem proving modulo equations, Technical Report MPI-I-92-
216, Max-Planck-Institut fiir Informatik, Saarbriicken.

Wos L. [1988], Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Englewood
Cliffs.

Wos L. [1996], The Automation of Reasoning: An Ezperimenter’s Notebook with OTTER Tu-
torial, Academic Press.

Wos L., ROBINSON G. A., CARSON D. F. AND SHALLA L. [1967], ‘The concept of demodulation
in theorem proving’, Journal of the ACM 14(4), 698-709.

ZHANG H. [1988], Reduction, Superposition, and Induction: Automated Reasoning in an Equa-
tional Logic, PhD thesis, Renselaer Polytechnic Institute.

440 ROBERT NIEUWENHUIS AND ALBERT RUBIO

Index
Symbols
B T 383
S e 383
3 TN 382
B S 382
Dlp weeeeriiiiiaieiieiieeeea, 374
PP 382
R* e 382
£ 7 T N 387
S it i 401
0 384
& 386
2 391
Y 394
S e 397
L 382
B e 382
PR e 382
o 383
S T 383
SlET 383
B ey 386, 387
Pl cceierectettcttitiitiaietnenans 383
S pPO erer e en e 383
T 383
L S S 382
B S 382
A e 375
S 382
Bslp ceriiii 381
Elp wereneeneniee e 381
vars(l) ..o 381
TAG ee e e 423
A
AC-superpositionccciiiiiinn 424
AC-top-superposition 424
AC-unificationoiiiiii, 380
answer computation 427
antecedentoiiiiiiea, 384
ATgONNe groupveeiviiiiiiiaiian. 374
B

basic

paramodulation 378, 417

Strategyiiiiiiiiiiiiiiiiiinn 378

superpositionooo0eell 378
basicness

restrictioniiiiiian 380
blocked positions00.l 417

built-in equational theories 421
built-in theories 379
C
Church-Rosser property 382
clausal rewriting 376
clause ...l 384
constrained 385, 414
constrained clause
equality 378
irreducibility000L 378
clauses
general ..., 394
Hornooiviiiiiiiiiiiiiiiiinin 386
closure substitution 378
compatibility
AC-compatibility 383
E-compatibility 383
completion
E-completiono0 379
Knuth-Bendix 375
modulo ACiciiiiiiii 379
unfailingo, 375
conditional equation 376
conditional rewriting 376
confluence0iins 375, 382
groundiiiiiiiiiiiiieeian 413
CONEIUENCE .veuvvvrrneeroneesanncennns 382
FRTaTe) ¢ o - 373
congruence axiomsc....... 373
consistency proving 377
constrained clause 378, 385, 414
equalityc.oiiiiiiiiii 378
generaliiiiiiiiiin, 420
constrained empty clause 385
constrained formulae 378
constraintooilll, 378, 385
decidability of 379
equalityl 385, 425
equality constrained clause 378
extended signature 426
fixed signature00l 426
global ...l 393
inheritance strategies 379
localooviviiiiiiiiii 393
orderingcociiiiinnen 385, 425
satisfiableo 385
solutionc.oiiiiiiin, 385
solvingol 379, 425

complexityooiiinn 426

PARAMODULATION-BASED THEOREM PROVING 441

decidability 426
symbolicciiiiiiiiiiian 425
tautology «...iiiniiiiiiiiiiiiena., 385
without inheritance 393

constraint inheritance
with built-in E 424
CONVEIGENCEvvurennrenerannnenanan 382
critical paircoiiiiiiiiiii, 375
criteria ..., 376
D
Datalogvoiiiiiiiiii i 428
decision procedures 412
demodulationoell 377
derivationl 400, 402
E
E-unificationccooiiian, 380
E-unifieroiiiiieia, 380
empty clauseooiiel, 384
EQP i 374
equality constraint
inheritanceol 414
equality factoring, 395
equality resolution 386, 395
equationoiiciiiieia., 382
conditional00, 376
extended E-rewriting 379
F
factoringioiiiiiiiiiia, 373
fair derivations00lll 404
fairnessciiiiiiiiiiiiiian, 404
groundoiiiiiiiiiiiiiieeien, 408
in practice 404, 409
non-groundieienieeanaan 406
follows fromcoiiiiiiiiiiin, 384
forcing ...l 376
functional reflexivity axioms 374
G
ground
substitution0.. 381
term ... 381
ground confluence 413
ground fairol 408
H
Herbrand interpretation 384
I
inductive proofs 377
inference T, 385
rule ... 385

completec.iiiiiiiiiians 385
[174) ¢ {1 o 20N 385
ENZ517=1 + AN 385
AC-clauses TAC +:ecvvnrnvennns 423
general clauses Z 394
general clauses M 397
general clauses S 397
ground Horn clauses G 386
Horn clauses H 391
with selection & 397
instanceciiiiiiiiiiiiiiins 381
interpretation0ll 384
equality Herbrand 384
irreducibilityl 382
irreducible substitution 420
K
Knuth-Bendix completion 375
L
Leibnizccooiiiiiiiiiiiiiiii. 374
lexicographic path ordering (LPO)384
liftingocoiviiiiii, 394, 406
Argumentc.oiieeiiiiiiienaes 406
local confluenceooill 382
logical consequence 384
LPO ciiiiiiiiiiii i 384
M
matchingooiiiiiiiiin, 381
merging paramodulation 397
074V 373, 381
minimal Herbrand model 398
model
minimal Herbrand 398
perfecticiiiiiiiiiiiiiiie 398
model generation 376, 389
for general clauses 396
methodooviiiiiiiiiiiinn, 386
MONOLONIC +.vvvvvnrinininnneinenneass 382
monotonicity axioms 374
most general unifier 373
muitisetiiiiiiiii i 382
N
NAITOWINE ..ovvvvrnrnninnnrnennns 378, 427
normal form, 375, 382
o
ordered factoringo0l 397
ordered paramodulation 374, 376
ordered resolution 390
orderingcoiiiiiiiiiiiiiinn., 383

compatibleol 383

442 ROBERT NIEUWENHUIS AND ALBERT RUBIO

E-compatible 383
reductionieeiieinn. 375, 383
simplification 383
term ... 374
well-founded 383
ordering constraint
inheritanceL 417
orderings
A-compatible 422
AC-compatible 422
ACD-compatible 423
ACU-compatible 423
C-compatible0. 422
combination of 413
E-compatiblel, 422
I-compatible 423
reWIiteihiiiiiiiiiiiiiien. 383
(07173 P 374
P
paramodulation 373, 374
-based complexity analysis 428
-based decidability analysis 428
basicoiiiiiiiiiiiii 417
modulo AC 421, 423
moduloEoiiil 421
orderedi.oinaenn 374, 376
path ordering
lexicographic (LPO) 384
recursive (RPO) 384
path orderingscocioiiiinen 384
perfect modeloiiial 398
persistentol 402
positionciiiiiiiiiiiiiiii 381
positive strategies 397
positive unit strategies 397
predicates
non-equality0.el 390
proof orderingscieiiiiiian, 376
R
recursive path ordering (RPO) 384
reduction ordering 383
redundancyccciiiiiniine. 376, 402
abstractcooiiiiiiiat, 376
backward ...l 399
forwardoiiiiiiiiian 399
practical methods 402
redundantooiiiiiiiiiieiiine., 401
clauseoiiieiiian, 376, 402
inferenceo0iiiiin 376, 401
refutation complete 373
relation ...l 382

Church-Rosser 382
confluentoielll. 382
Inverseoiiiiiiiiiiiiian. 382
locally confluent 382
monotoniCceevviiiiinrinannn. 382
normal formc.oiiiiian.. 382
reflexive-transitive closure 382
terminatingol 382
transitive closure 382
well-founded 382
resolutionol 373
binary ...l 373
rewrite
rule ..o 382
system ..o, 382
rewrite orderingl 383
rewrite system e 382
Church-Rosser 382
confluentl 382
locally confluent 382
terminatingool 382
rewriting ..., 375, 382
clausalciiiiiiiiiiiiiian, 376
conditionall 376
extended E- 379
modulo Eooiiiiiiiiiiia., 379
orderedciiiiiiiiiiiinnn. 375
Robbins conjecture 374
Robbins problem, 380
Robinsonco.iiiiiiii., 373
3 0 T 384
S
Saturateccoiiiiiiiiiiiiiiieen, 377
saturated setciiiiiiiiinann 400
saturated sets8iiiiiinennn, 377
combination of00n 413
finite ...t 377
saturation 376, 377, 400, 401
for constrained clauses 418
non-groundiiiiiiieiiiaian. 405
procedures 377, 401
selectionoiiiiiiiiiiiiiiiiien 397
8et-0f-SUPPOrtc.iiiiiiiiininn 377
SIGNALUTE ..oviviniiniiiiiiinarreienans 381
extendedoi... 413, 426
157 Ys R 413, 426
simplification ordering 383
Skolem symbolscooiiii, 413
solution of a constraint 385
solved formsooiiiiae, 426
SPass ...ttt e 377

stability

PARAMODULATION-BASED THEOREM PROVING

under substitutions 383
strategies
selectionciiiiiiiiiiiinn, 397
strict superposition0.. 376
substitution 375, 381
applicationciiieinnn. 381
groundoiiiiiiiiiiieenn.. 381
irreduciblecooiiiiiiiia, 415
subsumption000.e.e 377, 381
subtermo i 381
propertyciiiiiiiiiiiiieie 383
succedentiiiiiiiiiiiiiienaa.. 384
superposition0000.n. 375, 386
basic ..., 378
left ... 386, 395
right ...l 386, 395
1513 o {01 2 376
T
173 o ¢ T 381
maximalc.oiieiiiiiieeaen 386
POSItioniiiiiiiiiiiinieiaan 381
strictly maximal 386
term orderingciiiiall 374
term rewrite system 382
terminationl 382
theories
built-in 379
totalitycciiiiiiiiiiiiint, 383
transfinite semantic trees 376
U
unfailing completion 375
unification00ciiiiiiiiiienenn 381
AC i 380
unifier ... 381
W
well-constrained sets 415

word problemoociie 375

443

