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Abstract. We consider a variant of the Boolean satisfiability problem where a
subset

�
of the propositional variables appearing in formula � sat encode a sym-

metric, transitive, binary relation over � elements. Each of these relational vari-
ables, �
	��  , for ������������� , expresses whether or not the relation holds
between elements � and � . The task is to either find a satisfying assignment to
� sat that also satisfies all transitivity constraints over the relational variables (e.g.,
� � � ��� � � � ����� � � � ), or to prove that no such assignment exists. Solving this satis-
fiability problem is the final and most difficult step in our decision procedure for
a logic of equality with uninterpreted functions. This procedure forms the core of
our tool for verifying pipelined microprocessors.
To use a conventional Boolean satisfiability checker, we augment the set of clauses
expressing � sat with clauses expressing the transitivity constraints. We consider
methods to reduce the number of such clauses based on the sparse structure of
the relational variables.
To use Ordered Binary Decision Diagrams (OBDDs), we show that for some sets�

, the OBDD representation of the transitivity constraints has exponential size
for all possible variable orderings. By considering only those relational variables
that occur in the OBDD representation of � sat, our experiments show that we can
readily construct an OBDD representation of the relevant transitivity constraints
and thus solve the constrained satisfiability problem.

1 Introduction

Consider the following variant of the Boolean satisfiability problem. We are given a
Boolean formula � sat over a set of variables � . A subset  "!#� symbolically en-
codes a binary, symmetric, transitive relation over $ elements. Each of these relational
variables, %'&)( * , where +-,/.10324,5$ , expresses whether or not the relation holds be-
tween elements . and 2 . Typically,  will be “sparse,” containing much fewer than the
$�67$�83+:9<;>= possible variables. Note that when % &)( *@?A  for some value of . and of 2 ,
this does not imply that the relation does not hold between elements . and 2 . It simply
indicates that � sat does not directly depend on the relation between elements . and 2 .

A transitivity constraint is a formula of the form

%
B &)CD( &FE)GIH %
B &FE'( &FJ)GIHLK:K
KMH %:B &FNDOPCD( &FN<GRQ %
B &)CD( &FNSG (1)
T
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where % B &)( *DG equals %'&)( * when . 0�2 and equals % *'( & when . � 2 . Let �������
	 6F 9 denote
the set of all transitivity constraints that can be formed from the relational variables.
Our task is to find an assignment �� ���������:+�� that satisfies � sat, as well as every
constraint in ��������	 6  9 . Goel, et al. [GSZAS98] have shown this problem is NP-hard,
even when � sat is given as an Ordered Binary Decision Diagram (OBDD) [Bry86].
Normally, Boolean satisfiability is trivial given an OBDD representation of a formula.

We are motivated to solve this problem as part of a tool for verifying pipelined mi-
croprocessors [VB99]. Our tool abstracts the operation of the datapath as a set of unin-
terpreted functions and uninterpreted predicates operating on symbolic data. We prove
that a pipelined processor has behavior matching that of an unpipelined reference model
using the symbolic flushing technique developed by Burch and Dill [BD94]. The major
computational task is to decide the validity of a formula � ver in a logic of equality with
uninterpreted functions [BGV99a,BGV99b]. Our decision procedure transforms � ver
first by replacing all function application terms with terms over a set of domain variables
���
&�� +-,5. , $�� . Similarly, all predicate applications are replaced by formulas over a
set of newly-generated propositional variables. The result is a formula ���ver containing
equations of the form � &! � * , where + , . 0 2-, $ . Each of these equations is then en-
coded by introducing a relational variable % &)( * , similar to the method proposed by Goel
et al. [GSZAS98]. The result of the translation is a propositional formula "#�%$'& 6)���ver 9
expressing the verification condition over both the relational variables and the proposi-
tional variables appearing in �(�ver. Let � sat denote )*"#�%$+& 6)�,�ver 9 , the complement of
the formula expressing the translated verification condition. To capture the transitivity
of equality, e.g., that � &  �D* H �D*  �#- Q �
&  �#- , we have transitivity constraints of
the form %
B &7( * G H %
B *'( -MG Q %
B &)( -'G . Finding a satisfying assignment to � sat that also satis-
fies the transitivity constraints will give us a counterexample to the original verification
condition � ver. On the other hand, if we can prove that there are no such assignments,
then we have proved that � ver is universally valid.

We consider three methods to generate a Boolean formula � trans that encodes the
transitivity constraints. The direct method enumerates the set of chord-free cycles in
the undirected graph having an edge 67.��S2 9 for each relational variable % &)( * A  . This
method avoids introducing additional relational variables but can lead to a formula of
exponential size. The dense method uses relational variables % &)( * for all possible values
of . and 2 such that + ,�. 0 2@,�$ . We can then axiomatize transitivity by forming
constraints of the form % B &)( *DG H %
B *'( -MG Q %
B &7( -'G for all distinct values of . , 2 , and . . This
will yield a formula that is cubic in $ . The sparse method augments  with additional
relational variables to form a set of variables  0/ , such that the resulting graph is chordal
[Rose70]. We then only require transitivity constraints of the form % B &)( *DG:H %:B *'( -MG�Q %:B &)( -MG
such that %
B &)( *DG �D%:B *M( -'G �D%:B &)( -MG A  1/ . The sparse method is guaranteed to generate a smaller
formula than the dense method.

To use a conventional Boolean Satisfiability (SAT) procedure to solve our con-
strained satisfiability problem, we run the checker over a set of clauses encoding both
� sat and � trans. The latest version of the FGRASP SAT checker [M99] was able to
complete all of our benchmarks, although the run times increase significantly when
transitivity constraints are enforced.
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When using Ordered Binary Decision Diagrams to evaluate satisfiability, we could
generate OBDD representations of � sat and � trans and use the APPLY algorithm to
compute an OBDD representation of their conjunction. From this OBDD, finding sat-
isfying solutions would be trivial. We show that this approach will not be feasible in
general, because the OBDD representation of � trans can be intractable. That is, for
some sets of relational variables, the OBDD representation of the transitivity constraint
formula � trans will be of exponential size regardless of the variable ordering. The NP-
completeness result of Goel, et al. shows that the OBDD representation of � trans may
be of exponential size using the ordering previously selected for representing � sat as
an OBDD. This leaves open the possibility that there could be some other variable or-
dering that would yield efficient OBDD representations of both � sat and � trans. Our
result shows that transitivity constraints can be intrinsically intractable to represent with
OBDDs, independent of the structure of � sat.

We present experimental results on the complexity of constructing OBDDs for the
transitivity constraints that arise in actual microprocessor verification. Our results show
that the OBDDs can indeed be quite large. We consider two techniques to avoid con-
structing the OBDD representation of all transitivity constraints. The first of these, pro-
posed by Goel et al. [GSZAS98], generates implicants (cubes) of � sat and rejects those
that violate the transitivity constraints. Although this method suffices for small bench-
marks, we find that the number of implicants generated for our larger benchmarks grows
unacceptably large. The second method determines which relational variables actually
occur in the OBDD representation of � sat. We can then apply one of our three encod-
ing techniques to generate a Boolean formula for the transitivity constraints over this
reduced set of relational variables. The OBDD representation of this formula is gener-
ally tractable, even for the larger benchmarks.

Due to space limitations, this paper omits many technical details. More information,
including formal proofs, is included in [BV00].

2 Benchmarks

Our benchmarks [VB99] are based on applying our verifier to a set of high-level micro-
processor designs. Each is based on the DLX RISC processor described by Hennessy
and Patterson [HP96]:

1 � DLX-C: is a single-issue, five-stage pipeline capable of fetching up to one new
instruction every clock cycle. It implements six instruction types and contains an
interlock to stall the instruction following a load by one cycle if it requires the
loaded result. This example is comparable to the DLX example first verified by
Burch and Dill [BD94].

2 � DLX-CA: has a complete first pipeline, capable of executing the six instruction
types, and a second pipeline capable of executing arithmetic instructions. This
example is comparable to one verified by Burch [Bur96].

2 � DLX-CC: has two complete pipelines, i.e., each can execute any of the 6 instruction
types.

In all of these examples, the domain variables � & , with +L, . , $ , in � �ver encode
register identifiers. As described in [BGV99a,BGV99b], we can encode the symbolic
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Circuit Domain Propositional Equations
Variables Variables

1 � DLX-C 13 42 27
1 � DLX-Ct 13 42 37
2 � DLX-CA 25 58 118
2 � DLX-CAt 25 58 137
2 � DLX-CC 25 70 124
2 � DLX-CCt 25 70 143
Buggy min. 22 56 89
2 � DLX-CC avg. 25 69 124

max. 25 77 132

Table 1. Microprocessor Verification Benchmarks. Benchmarks with suffix “t” were modified
to require enforcing transitivity.

terms representing program data and addresses as distinct values, avoiding the need to
have equations among these variables. Equations arise in modeling the read and write
operations of the register file, the bypass logic implementing data forwarding, the load
interlocks, and the pipeline issue logic.

Our original processor benchmarks do not require enforcing transitivity in order to
verify them. In particular, the formula � sat is unsatisfiable in all cases. This implies
that the constrained satisfiability problems are unsatisfiable as well. We are nonetheless
motivated to study the problem of constrained satisfiability for two reasons. First, other
processor designs might rely on transitivity, e.g., due to more sophisticated issue logic.
Second, to aid designers in debugging their pipelines, it is essential that we generate
counterexamples that satisfy all transitivity constraints. Otherwise the designer will be
unable to determine whether the counterexample represents a true bug or a weakness of
our verifier.

To create more challenging benchmarks, we generated variants of the circuits that
require enforcing transitivity in the verification. For example, the normal forwarding
logic in the Execute stage of 1 � DLX-C compares the two source registers ESrc1 and
ESrc2 of the instruction in the Execute stage to the destination register MDest of the
instruction in the memory stage. In the modified circuit, we changed the bypass condi-
tionESrc1  MDest to be ESrc1  MDest � 6 ESrc1  ESrc2 H ESrc2  MDest 9 .
Given transitivity, these two expressions are equivalent. For each pipeline, we intro-
duced four such modifications to the forwarding logic, with different combinations
of source and destination registers. These modified circuits are named 1 � DLX-Ct,
2 � DLX-CAt, and 2 � DLX-CCt.

To study the problem of counterexample generation for buggy circuits, we gener-
ated 105 variants of 2 � DLX-CC, each containing a small modification to the control
logic. Of these, 5 were found to be functionally correct, e.g., because the modification
caused the processor to stall unnecessarily, yielding a total of 100 benchmark circuits
for counterexample generation.

Table 1 gives some statistics for the benchmarks. The number of domain variables
$ ranges between 13 and 25, while the number of equations ranges between 27 and
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143. The verification condition formulas � �ver also contain between 42 and 77 proposi-
tional variables expressing the operation of the control logic. These variables plus the
relational variables comprise the set of variables � in the propositional formula � sat.
The circuits with modifications that require enforcing transitivity yield formulas con-
taining up to 19 additional equations. The final three lines summarize the complexity of
the 100 buggy variants of 2 � DLX-CC. We apply a number of simplifications during the
generation of formula � sat, and hence small changes in the circuit can yield significant
variations in the formula complexity.

3 Graph Formulation

Our definition of ����� �
	>6F 9 (Equation 1) places no restrictions on the length or form of
the transitivity constraints, and hence there can be an infinite number. We show that we
can construct a graph representation of the relational variables and identify a reduced
set of transitivity constraints that, when satisfied, guarantees that all possible transi-
tivity constraints are satisfied. By introducing more relational variables, we can alter
this graph structure, further reducing the number of transitivity constraints that must be
considered.

For variable set  , define the undirected graph � 6  9 as containing a vertex . for
+L, .-, $ , and an edge 67.��S2 9 for each variable %:&)( * A  . For an assignment � of
Boolean values to the relational variables, we will classify edge 67.�� 2>9 as a 1-edge when
��6)%M&)( * 9  + , and as a 0-edge when ��6)%'&)( *>9  � .

A path is a sequence of vertices � . � �D. � ���������D. -�� having edges between successive
elements, i.e., + , .���, $ for all � such that +�,	�@, . , and 6).
� � .�� / � 9 is in � 6F 9 for
all � such that +-,��L0 . . We consider each edge 67.�� � .�� / � 9 for +-,�L0 . to also be
part of the path. A cycle is a path of the form � . � �D. � ���������D. -%� . � � .
Proposition 1. An assignment to the variables in  violates transitivity if and only if
some cycle in � 6F 9 contains exactly one 0-edge.

A path � . � �D. � ������� �D. -�� is said to be acyclic when .
� ? .�� for all +-,�@0�� , . . A
cycle � . � �D. � ���������D. -�� . � � is said to be simple when its prefix � . � �D. � ������� �D. -�� is acyclic.

Proposition 2. An assignment to the variables in  violates transitivity if and only if
some simple cycle in � 6F 9 contains exactly one 0-edge.

Define a chord of a simple cycle to be an edge that connects two vertices that are
not adjacent in the cycle. More precisely, for a simple cycle � . � �D. � ������� �D. - �D. � � , a chord
is an edge 67. � �D. � 9 in � 6F 9 such that +�,�� 0��-, . , that ��� +�0�� , and either � ? +
or � ? . . A cycle is said to be chord-free if it is simple and has no chords.

Proposition 3. An assignment to the variables in  violates transitivity if and only if
some chord-free cycle in � 6  9 contains exactly one 0-edge.

For a set of relational variables  , we define � trans 6  9 to be the conjunction of
all transitivity constraints generated by enumerating the set of all chord-free cycles in
the graph � 6F 9 . Each length . cycle � . � � . � ������� � . - � . � � yields . constraints. It is easily
proved that an assignment to the relational variables will satisfy all of the transitivity
constraints if and only if it satisfies � trans 6  9 .
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Fig. 1. Class of Graphs with Many Chord-Free Cycles. For a graph with � diamond-shaped
faces, there are � �� � chord-free cycles.

3.1 Enumerating Chord-Free Cycles

To enumerate the chord-free cycles of a graph, we exploit the following properties. An
acyclic path � . � � . � ������� �D. - � is said to have a chord when there is an edge 67. � � . � 9 in � 6F 9
such that + ,�� 0 � , . , that � � + 0 � , and either � ? + or � ? . . We classify a
chord-free path as terminal when 67.'-�� . � 9 is in � 6F 9 , and as extensible otherwise.

Proposition 4. A path � . � � . � ������� �D. - � is chord-free and terminal if and only if the cycle
� . � �D. � ���������D. - � . � � is chord-free.

A proper prefix of path � . � �D. � ���������D. - � is a path � . � � . � ������� � . * � such that + , 2 0 . .

Proposition 5. Every proper prefix of a chord-free path is chord-free and extensible.

Given these properties, we can enumerate the set of all chord-free paths by breadth
first expansion. As we enumerate these paths, we also generate � the set of all chord-
free cycles. Define � - to be the set of all extensible, chord-free paths having . vertices,
for + , . ,3$ . As an initial case, we have � �  � � . ��� + , . ,�� � , and we have �  �� .
At each step we consider all possible extensions to the paths in � - to generate the set
� - / � and to add some cycles of length . � + to � .

As Figure 1 indicates, there can be an exponential number of chord-free cycles in
a graph. In particular, this figure illustrates a family of graphs with ��� �5+ vertices.
Consider the cycles passing through the � diamond-shaped faces as well as the edge
along the bottom. For each diamond-shaped face � & , a cycle can pass through either the
upper vertex or the lower vertex. Thus there are =�� such cycles.

The columns labeled “Direct” in Table 2 show results for enumerating the chord-
free cycles for our benchmarks. For each correct microprocessor, we have two graphs:
one for which transitivity constraints played no role in the verification, and one (in-
dicated with a “t” at the end of the name) modified to require enforcing transitivity
constraints. We summarize the results for the transitivity constraints in our 100 buggy
variants of 2 � DLX-CC, in terms of the minimum, the average, and the maximum of
each measurement. We also show results for five synthetic benchmarks consisting of
� ��� planar meshes � � , with � ranging from 4 to 8, where the mesh for �  �� is
illustrated in Figure 2. For all of the circuit benchmarks, the number of cycles, although
large, appears to be manageable. Moreover, the cycles have at most 4 edges. The syn-
thetic benchmarks, on the other hand, demonstrate the exponential growth predicted as
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Circuit Direct Dense Sparse
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses

1 � DLX-C 27 90 360 78 286 858 33 40 120
1 � DLX-Ct 37 95 348 78 286 858 42 68 204
2 � DLX-CA 118 2,393 9,572 300 2,300 6,900 172 697 2,091
2 � DLX-CAt 137 1,974 7,944 300 2,300 6,900 178 695 2,085
2 � DLX-CC 124 2,567 10,268 300 2,300 6,900 182 746 2,238
2 � DLX-CCt 143 2,136 8,364 300 2,300 6,900 193 858 2,574
Full min. 89 1,446 6,360 231 1,540 4,620 132 430 1,290
Buggy avg. 124 2,562 10,270 300 2,300 6,900 182 750 2,244
2 � DLX-CC max. 132 3,216 12,864 299 2,292 6,877 196 885 2,655���

24 24 192 120 560 1,680 42 44 132���
40 229 3,056 300 2,300 6,900 77 98 294���
60 3,436 61,528 630 7,140 21,420 131 208 624���
84 65,772 1,472,184 1,176 18,424 55,272 206 408 1,224���

112 1,743,247 48,559,844 2,016 41,664 124,992 294 662 1,986

Table 2. Cycles in Original and Augmented Benchmark Graphs. Results are given for the
three different methods of encoding transitivity constraints.

worst case behavior. The number of cycles grows quickly as the meshes grow larger.
Furthermore, the cycles can be much longer, causing the number of clauses to grow
even more rapidly.

3.2 Adding More Relational Variables

Enumerating the transitivity constraints based on only the variables in  runs the risk
of generating a Boolean formula of exponential size. We can guarantee polynomial
growth by considering a larger set of relational variables. In general, let  �� be some set
of relational variables such that  �!  � , and let � trans 6F � 9 be the transitivity constraint
formula generated by enumerating the chord-free cycles in the graph � 6  � 9 .
Proposition 6. If  is the set of relational variables in � sat and  L!  � , then:

� sat H � trans 6F 9
	 � sat H � trans 6F � 9 �
Our goal then is to add as few relational variables as possible in order to reduce the size
of the transitivity formula. We will continue to use our path enumeration algorithm to
generate the transitivity formula.

3.3 Dense Enumeration

For the dense enumeration method, let  �� denote the set of variables % &)( * for all values
of . and 2 such that + , . 0 2 ,�$ . Graph � 6  � 9 is a complete, undirected graph.
In this graph, any cycle of length greater than three must have a chord. Hence our
algorithm will enumerate transitivity constraints of the form %>B &)( *DG�H %:B *'( -MG Q %:B &)( -MG , for
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all distinct values of . , 2 , and . . The graph has $�6)$ 8 +:9 edges and $�6)$ 83+:9M6)$ 8
=>9<; � chord-free cycles, yielding a total of $ 67$ 83+:9'67$ 8 = 9 ;>=  �� 6)$��:9 transitivity
constraints.

The columns labeled “Dense” in Table 2 show the complexity of this method for
the benchmark circuits. For the smaller graphs 1 � DLX-C, 1 � DLX-Ct, ��� and ��� ,
this method yields more clauses than direct enumeration of the cycles in the original
graph. For the larger graphs, however, it yields fewer clauses. The advantage of the
dense method is most evident for the mesh graphs, where the cubic complexity is far
superior to exponential.

3.4 Sparse Enumeration

We can improve on both of these methods by exploiting the sparse structure of � 6F 9 .
Like the dense method, we want to introduce additional relational variables to give a set
of variables  / such that the resulting graph � 6  / 9 becomes chordal [Rose70]. That
is, the graph has the property that every cycle of length greater than three has a chord.

Chordal graphs have been studied extensively in the context of sparse Gaussian
elimination. In fact, the problem of finding a minimum set of additional variables to
add to our set is identical to the problem of finding an elimination ordering for Gaussian
elimination that minimizes the amount of fill-in. Although this problem is NP-complete
[Yan81], there are good heuristic solutions. In particular, our implementation proceeds
as a series of elimination steps. On each step, we remove some vertex . from the graph.
For every pair of distinct, uneliminated vertices 2 and . such that the graph contains
edges 6).��S2 9 and 67.�� .�9 , we add an edge 6�2���. 9 if it does not already exist. The original
graph plus all of the added edges then forms a chordal graph. To choose which vertex to
eliminate on a given step, our implementation uses the simple heuristic of choosing the
vertex with minimum degree. If more than one vertex has minimum degree, we choose
one that minimizes the number of new edges added.

The columns in Table 2 labeled “Sparse” show the effect of making the benchmark
graphs chordal by this method. Observe that this method gives superior results to either
of the other two methods. In our implementation we have therefore used the sparse
method to generate all of the transitivity constraint formulas.

4 SAT-Based Decision Procedures

We can solve the constrained satisfiability problem using a conventional SAT checker
by generating a set of clauses � trans representing � trans 6F / 9 and a set of clauses � sat
representing the formula � sat. We then run the checker on the combined clause set
� trans 	 � sat to find satisfying solutions to � trans 6F / 9 H � sat.

In experimenting with a number of Boolean satisfiability checkers, we have found
that FGRASP [MS99] gives the most consistent results. The most recent version can be
directed to periodically restart the search using a randomly-generated variable assign-
ment [M99]. This is the first SAT checker we have tested that can complete all of our
benchmarks. All of our experiments were conducted on a 336 MHz Sun UltraSPARC
II with 1.2GB of primary memory.
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Circuit � sat � trans � � sat Ratio
Satisfiable? Secs. Satisfiable? Secs.

1 � DLX-C N 3 N 4 1.4
1 � DLX-Ct Y 1 N 9 N.A.
2 � DLX-CA N 176 N 1,275 7.2
2 � DLX-CAt Y 3 N 896 N.A.
2 � DLX-CC N 5,035 N 9,932 2.0
2 � DLX-CCt Y 4 N 15,003 N.A.
Full min. Y 1 Y 1 0.2
Buggy avg. Y 125 Y 1,517 2.3
2 � DLX-CC max. Y 2,186 Y 43,817 69.4

Table 3. Performance of FGRASP on Benchmark Circuits. Results are given both without and
with transitivity constraints.

As indicated by Table 3, we ran FGRASP on clause sets � sat and � trans 	 � sat, i.e.,
both without and with transitivityconstraints. For benchmarks 1 � DLX-C, 2 � DLX-CA,
and 2 � DLX-CC, the formula � sat is unsatisfiable. As can be seen, including tran-
sitivity constraints increases the run time significantly. For benchmarks 1 � DLX-Ct,
2 � DLX-CAt, and 2 � DLX-CCt, the formula � sat is satisfiable, but only because tran-
sitivity is not enforced. When we add the clauses for � trans, the formula becomes un-
satisfiable. For the buggy circuits, the run times for � sat range from under 1 second
to over 36 minutes. The run times for � trans 	 � sat range from less than one second
to over 12 hours. In some cases, adding transitivity constraints actually decreased the
CPU time (by as much as a factor of 5), but in most cases the CPU time increased (by
as much as a factor of 69). On average (using the geometric mean) adding transitiv-
ity constraints increased the CPU time by a factor of 2.3. We therefore conclude that
satisfiability checking with transitivity constraints is more difficult than conventional
satisfiability checking, but the added complexity is not overwhelming.

5 OBDD-Based Decision Procedures

A simple-minded approach to solving satisfiability with transitivity constraints using
OBDDs would be to generate separate OBDD representations of � trans and � sat. We
could then use the APPLY operation to generate an OBDD for � trans H � sat, and then
either find a satisfying assignment or determine that the function is unsatisfiable. We
show that for some sets of relational variables  , the OBDD representation of � trans 6F 9
can be too large to represent and manipulate. In our experiments, we use the CUDD
OBDD package with variable reordering by sifting.

5.1 Lower Bound on the OBDD Representation of � trans
�����

We prove that for some sets  , the OBDD representation of � trans 6F 9 may be of expo-
nential size for all possible variable orderings. As mentioned earlier, the NP-completeness
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� � � � � �

Fig. 2. Mesh Graph
� �

result proved by Goel et al. [GSZAS98] has implications for the complexity of repre-
senting � trans 6  9 as an OBDD. They showed that given an OBDD � sat representing
formula � sat, the task of finding a satisfying assignment of � sat that also satisfies the
transitivity constraints in ����� �
	>6F 9 is NP-complete in the size of � sat. By this, as-
suming � ? �� � , we can infer that the OBDD representation of � trans 6F 9 may be of
exponential size when using the same variable ordering as is used in � sat. Our result
extends this lower bound to arbitrary variable orderings and is independent of the �
vs. � � problem.

Let � � denote a planar mesh consisting of a square array of � ��� vertices. For
example, Figure 2 shows the graph for �  � . Define  ��� � to be a set of relational
variables corresponding to the edges in � � . � trans 6  ��� � 9 is then an encoding of the
transitivity constraints for these variables.

Theorem 1. Any OBDD representation of � trans 6F ��� � 9 must have � 67= � � � 9 vertices.

A complete proof of this theorem is given in [BV00]. We give only a brief sketch
here. Being a planar graph, the edges partition the plane into faces. The proof first
involves a combinatorial argument showing that for any partitioning of the edges into
sets � and 	 , we can identify a set of at least 6 � 8 � 9 ;�
 edge-independent, “split faces,”
where a split face has some of its edge variables in set � and others in set 	 . The proof
of this property is similar to a proof by Leighton [Lei92, Theorem 1.21] that � � has a
bisection bandwidth of at least � , i.e., one must remove at least � vertices to split the
graph into two parts of equal size.

Given this property, for any ordering of the OBDD variables, we can construct a
family of = � �� ��� � � assignments to the variables in the first half of the ordering that must
lead to distinct vertices in the OBDD. That is, the OBDD must encode information
about each split face for the variables in the first half of the ordering so that it can
correctly deduce the function value given the variables in the last half of the ordering.

Corollary 1. For any set of relational variables  such that  ��� � !  , any OBDD
representation of � trans 6F 9 must contain � 6)= � ��� 9 vertices.
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The extra edges in  introduce complications, because they create cycles containing
edges from different faces. As a result, the lower bound is weaker, because our proof
requires that we find a set of vertex-independent, split faces.

Our lower bounds are fairly weak, but this is more a reflection of the difficulty of
proving lower bounds. We have found in practice that the OBDD representations of
the transitivity constraint functions arising from benchmarks tend to be large relative
to those encountered during the evaluation of � sat. For example, although the OBDD
representation of � trans 6F / 9 for benchmark 1 � DLX-Ct is just 2,692 nodes (a function
over 42 variables), we have been unable to construct the OBDD representations of this
function for either 2 � DLX-CAt (178 variables) or 2 � DLX-CCt (193 variables) despite
running for over 24 hours.

5.2 Enumerating and Eliminating Violations

Goel et al. [GSZAS98] proposed a method that generates implicants (cubes) of the func-
tion � sat from its OBDD representation. Each implicant is examined and discarded if it
violates a transitivity constraint. In our experiments, we have found this approach works
well for the normal, correctly-designed pipelines (i.e., circuits 1 � DLX-C, 2 � DLX-CA,
and 2 � DLX-CC) since the formula � sat is unsatisfiable and hence has no implicants.
For all 100 of our buggy circuits, the first implicant generated contained no transitivity
violation, and hence we did not require additional effort to find a counterexample.

For circuits that do require enforcing transitivity constraints, we have found this
approach impractical. For example, in verifying 1 � DLX-Ct by this means, we gen-
erated 253,216 implicants, requiring a total of 35 seconds of CPU time (vs. 0.1 sec-
onds for 1 � DLX-C). For benchmarks 2 � DLX-CAt and 2 � DLX-CCt, our program ran
for over 24 hours without having generated all of the implicants. By contrast, circuits
2 � DLX-CA and 2 � DLX-CC can be verified in 11 and 29 seconds, respectively. Our
implementation could be improved by making sure that we generate only primes that
are irredundant and prime. In general, however, we believe that a verifier that generates
individual implicants will not be very robust. The complex control logic for a pipeline
can lead to formulas � sat containing very large numbers of implicants, even when tran-
sitivity plays only a minor role in the correctness of the design.

5.3 Enforcing a Reduced Set of Transitivity Constraints

One advantage of OBDDs over other representations of Boolean functions is that we
can readily determine the true support of the function, i.e., the set of variables on which
the function depends. This leads to a strategy of computing an OBDD representation of
� sat and intersecting its support with  to give a set

� of relational variables that could
potentially lead to transitivity violations. We then augment these variables to make the
graph chordal, yielding a set of variables

� 1/ and generate an OBDD representation of
� trans 6

�

 1/ 9 . We compute � sat H � trans 6
�

 / 9 and, if it is satisfiable, generate a coun-
terexample.

Table 4 shows the complexity of the graphs generated by this method for our bench-
mark circuits. Comparing these with the full graphs shown in Table 2, we see that we
typically reduce the number of relational vertices (i.e., edges) by a factor of 3 for the
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Circuit Verts. Direct Dense Sparse
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses

1 � DLX-Ct 9 18 14 45 36 84 252 20 19 57
2 � DLX-CAt 17 44 101 395 136 680 2,040 49 57 171
2 � DLX-CCt 17 46 108 417 136 680 2,040 52 66 198
Reduced min. 3 2 0 0 3 1 3 2 0 0
Buggy avg. 12 17 19 75 73 303 910 21 14 42
2 � DLX-CC max. 19 52 378 1,512 171 969 2,907 68 140 420

Table 4. Graphs for Reduced Transitivity Constraints. Results are given for the three different
methods of encoding transitivity constraints based on the variables in the true support of � sat.

benchmarks modified to require transitivity and by an even greater factor for the buggy
circuit benchmarks. The resulting graphs are also very sparse. For example, we can
see that both the direct and sparse methods of encoding transitivity constraints greatly
outperform the dense method.

Circuit OBDD Nodes CPU
� sat � trans

�������� � sat � � trans
��������

Secs.
1 � DLX-C 1 1 1 0.2
1 � DLX-Ct 530 344 1 2
2 � DLX-CA 1 1 1 11
2 � DLX-CAt 22,491 10,656 1 109
2 � DLX-CC 1 1 1 29
2 � DLX-CCt 17,079 7,168 1 441
Reduced min. 20 1 20 7
Buggy avg. 3,173 1,483 25,057 107
2 � DLX-CC max. 15,784 93,937 438,870 2,466

Table 5. OBDD-based Verification. Transitivity constraints were generated for a reduced set of
variables

��
.

Table 5 shows the complexity of applying the OBDD-based method to all of our
benchmarks. The original circuits 1 � DLX-C, 2 � DLX-CA, and 2 � DLX-CC yielded
formulas � sat that were unsatisfiable, and hence no transitivity constraints were re-
quired. The 3 modified circuits 1 � DLX-Ct, 2 � DLX-CAt, and 2 � DLX-CCt are more
interesting. The reduction in the number of relational variables makes it feasible to gen-
erate an OBDD representation of the transitivity constraints. Compared to benchmarks
1 � DLX-C, 2 � DLX-CA, and 2 � DLX-CC, we see there is a significant, although tol-
erable, increase in the computational requirement to verify the modified circuits. This
can be attributed to both the more complex control logic and to the need to apply the
transitivity constraints.

For the 100 buggy variants of 2 � DLX-CC, � sat depends on up to 52 relational
variables, with an average of 17. This yielded OBDDs for � trans 6

� / 9 ranging up to
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93,937 nodes, with an average of 1,483. The OBDDs for � trans 6
� 1/ 9 H � sat ranged

up to 438,870 nodes (average 25,057), showing that adding transitivity constraints does
significantly increase the complexity of the OBDD representation. However, this is just
one OBDD at the end of a sequence of OBDD operations. In the worst case, imposing
transitivity constraints increased the total CPU time by a factor of 2, but on average it
only increased by 2%. The memory required to generate � sat ranged from 9.8 to 50.9
MB (average 15.5), but even in the worst case the total memory requirement increased
by only 2%.

6 Conclusion

By formulating a graphical interpretation of the relational variables, we have shown
that we can generate a set of clauses expressing the transitivity constraints that ex-
ploits the sparse structure of the relation. Adding relational variables to make the graph
chordal eliminates the theoretical possibility of there being an exponential number of
clauses and also works well in practice. A conventional SAT checker can then solve
constrained satisfiability problems, although the run times increase significantly com-
pared to unconstrained satisfiability. Our best results were obtained using OBDDs. By
considering only the relational variables in the true support of � sat, we can enforce
transitivity constraints with only a small increase in CPU time.
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