
Theorem Proving, January–April 2014

Assignment 2, 15 April 2014
Due Friday, 2 May 2014

Instructions for submitting solutions

Please submit your solutions electronically by email to madhavan@cmi.ac.in to facili-
tate evaluation.

Preferrably, send an electronic document in PDF (you can generate it in LATEX or
OpenOffice or Word or whatever, but send only PDF). If you can’t do this, send
scanned copies of handwritten pages.

The numbers quoted with each question refer to the book Decision Procedures: An Algo-
rithmic Point of View by Daniel Kroening and Ofer Strichman. Check if you think there
are typos!

1. Exercise 2.9 (polynomial-time (restricted) SAT)

Consider the following two restrictions of CNF:

• A CNF formula in which there is not more than one positive literal in each clause.

• A CNF formula in which no clause has more than two literals.

(a) Show a polynomial-time algorithm that solves each of the problems above.

(b) Show that every CNF can be converted to another CNF which is a conjunction of
the two types of formula above. In other words, in the resulting formula all the
clauses are either unary, binary, or have not more than one positive literal. How
many additional variables are necessary for the conversion?

2. Problem 2.12 (incremental satisfiability).

Given two CNF formulas C1 and C2, under what conditions can a conflict clause learned
while solving C1 be reused when solving C2? In other words, if c is a conflict clause
learned while solving C1, under what conditions is C2 satisfiable if and only if C2 ∧ c
is satisfiable? Try to get as general, i.e., weak, set of conditions on C2 relative to C1

and c. How can the condition that you suggest be implemented inside a SAT solver?

Hint: Think of CNF formulas as sets of clauses.

3. Problem 2.14 (implementing Apply with ite)

Efficient implementations of BDD packages do not use Apply; rather they use a recur-
sive procedure based on the ite (if-then-else) operator. All binary Boolean operators
can be expressed as such expressions. For example,

f ∨ g = ite(f, 1, g), f ∧ g = ite(f, g, 0),
f ⊕ g = ite(f, g, g), ¬f = ite(f, 0, 1).

How can a BDD for the ite operator be constructed? Assume that x labels the root
nodes of two BDDs f and g, and that we need to compute ite(c, f, g). Observe the
following equivalence:

1

mailto:madhavan@cmi.ac.in

ite(c, f, g) = ite(x, ite(c|x=1, f |x=1, g|x=1), ite(c|x=0, f |x=0, g|x=0)).

Hence, we can construct the BDD for ite(c, f, g) on the basis of a recursive construction.
The root node of the result is x, low(x) = ite(c|x=0, f |x=0, g|x=0), and high(x) =
ite(c|x=1, f |x=1, g|x=1). The terminal cases are

ite(1, f, g) = ite(0, g, f) = ite(f, 1, 0) = ite(g, f, f) = f,
ite(f, 0, 1) = ¬f.

(a) Let f := (x ∧ y), g := ¬x. Show an ite-based construction of f ∨ g.

(b) Present pseudocode for constructing a BDD for the ite operator. Describe the data
structure that you assume. Explain how your algorithm can be used to replace
Apply.

2

