RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 8, 23 October 2025

Relational database design

- Set of attributes that one needs to keep track of
- Why not combine into a single table?

IPL 2024 data
IPL 2025
Ball by ball

Relational database design

ID	name	dept_tame	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

■ Combine these into a single table?

Relational database design

- Redundant storage
- Maintaining consistency
 - Updates
 - Inserts and deletes

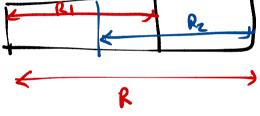
4	Instruction					
	ID	пате	salary	dept_name	building	budget
	22222	Einstein	95000	Physics	Watson	70000
	12121	Wu	90000	Finance	Painter	120000
	32343	El Said	60000	History	Painter	50000
	45565	Katz	75000	Comp. Sci.	Taylor	100000
	98345	Kim	80000	Elec. Eng.	Taylor	85000
	76766	Crick	72000	Biology	Watson	90000
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
	58583	Califieri	62000	History	Painter	50000
	83821	Brandt	92000	Comp. Sci.	Taylor	100000
	15151	Mozart	40000	Music	Packard	80000
	33456	Gold	87000	Physics	Watson	70000
	76543	Singh	80000	Finance	Painter	120000

Decomposition and information

- (customer_name,regd_phone,regd_email)
- Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
- Name is not unique loss of information
- Recombining decomposed relation should not add tuples
- Lossless decomposition
 - Decompose R as R_1 and R_2
 - Want $R = R_1 \bowtie R_2$

Functional dependencies

- $\blacksquare A_1, A_2, \ldots, A_k \to B_1, B_2, \ldots B_m$
 - LHS atributes uniquely fix RHS attributes
 - Must hold for every instance
 semantic property of attributes
- Need not correspond to superkeys
 - dept_name → building
 - dept_name → budget
- Use to identify sources of redundancy, guide decomposition


				•	
ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Lossless decomposition and functional dependencies

■ Decompose R as R_1 and R_2 Sufficient but not necessary

 Decomposition is lossless if at least one of the following functional dependencies hold

- \blacksquare $R_1 \cap R_2 \rightarrow R_1$
- $\blacksquare R_1 \cap R_2 \to R_2$

PI Abc EI
P2 ABC SE

ABC P1 C1
ABC P1 C2
ABC P1 C2
APL P2 E1 (Name, Phone) W (Name, Emi) = Original table

Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold
 - $\blacksquare R_1 \cap R_2 \rightarrow R_1$
 - $\blacksquare R_1 \cap R_2 \rightarrow R_2$
- Decompose Instructor-Department as Instructor and Department
 - Instructor ∩ Department is dept_name
 - dept_name is primary key for Department

Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold
 - $\blacksquare R_1 \cap R_2 \rightarrow R_1$
 - $\blacksquare R_1 \cap R_2 \rightarrow R_2$
- Decompose Instructor-Department as Instructor and Department
 - Instructor ∩ Department is dept_name
 - dept_name is primary key for Department
- In general need to compute all implied dependencies
 - From $A \rightarrow B$ and $B \rightarrow C$, conclude that $A \rightarrow C$
- Closure of a set of dependencies F denoted F^+

-aven

To be anythed

Computing the closure of a set of attributes

■ Given $A = \{A_1, A_2, \dots, A_k\}$ and B, does $A_1, A_2, \dots, A_k \rightarrow B$?

Computing the closure of a set of attributes

- Given $A = \{A_1, A_2, \dots, A_k\}$ and B, does $A_1, A_2, \dots, A_k \rightarrow B$?
- Iterative algorithm check if B is in closure A^+

 M B Such that

Initialize
$$A^+$$
 to $\{A_1, A_2, \dots, A_k\}$
repeat

for each $\beta \to \gamma$ in F

if $\beta \subseteq A^+$, add γ to A^+

end

until no change in A^+

Must terminate

because finite attributes

Take my XX & attributes, is X->YEF+? Check Y Y & X+

■ Criteria to determine if the collection of tables is "good"

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 8, 23 Oct 2025 9/16

Normal forms

- Criteria to determine if the collection of tables is "good"
- Normalization decompose tables till they achieve a normal form

Normal forms

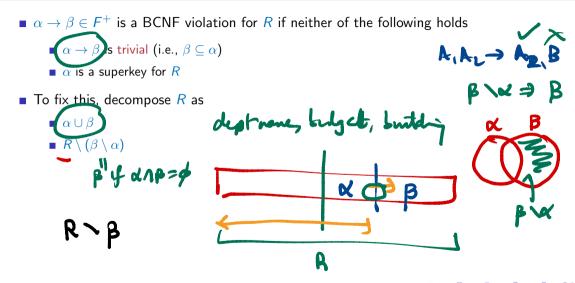
- Criteria to determine if the collection of tables is "good"
- Normalization decompose tables till they achieve a normal form
- Guided by functional dependencies

■ Relational schema R, set of functional dependencies F

- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes $\underbrace{A_1, A_2, \ldots, A_k}_{\textbf{K}}$, $\underbrace{B_1, B_2, \ldots, B_m}_{\textbf{B}}$

- Relational schema R, set of functional dependencies
- Write α , β to represent sequences of attributes A_1, A_2, \ldots, A_k , B_1, B_2, \ldots, B_m
- R is in BCNF if, for every $\alpha \to \beta$ F^+ one of the following holds $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)

 - α is a superkey for R


- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes A_1, A_2, \ldots, A_k , B_1, B_2, \ldots, B_m
- *R* is in BCNF if, for every $\alpha \to \beta \in F^+$, one of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R

■ InstructorDepartment(ID,name,salary,dept_name,building,budget) not in BCNF

- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes A_1, A_2, \ldots, A_k , B_1, B_2, \ldots, B_m
- *R* is in BCNF if, for every $\alpha \to \beta \in F^+$, one of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R
- InstructorDepartment(ID,name,salary,dept_name,building,budget) not in BCNF
- Instructor(ID,name,dept_name,salary) and
 Department(dept_name,building,budget) are in BCNF

- lacktriangledown $lpha
 ightarrow eta \in F^+$ is a BCNF violation for R if neither of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R

- $\alpha \rightarrow \beta \in F^+$ is a BCNF violation for R if neither of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R
- To fix this, decompose R as
 - $\blacksquare \alpha \cup \beta$
 - $\blacksquare R \setminus (\beta \setminus \alpha)$
- Example: dept_name → building, budget is a BCNF violation for InstructorDepartment(ID, name, salary, dept_name, building, budget)

- lacktriangledown $lpha
 ightarrow eta \in F^+$ is a BCNF violation for R if neither of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R
- To fix this, decompose R as
 - $\alpha \cup \beta$
 - $\blacksquare R \setminus (\beta \setminus \alpha)$
- Example: dept_name → building, budget is a BCNF violation for InstructorDepartment(ID, name, salary, dept_name, building, budget)
- Decompose as
 - Department(dept_name, building, budget)
 - Instructor(ID, name, dept_name, salary)

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- Functional dependencies
 - \blacksquare faculty_id \rightarrow dept_name
 - student_id,dept_name → faculty_id

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- Functional dependencies
 - \blacksquare faculty_id \rightarrow dept_name
 - lacktriangledown student_id,dept_name o faculty_id
- BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- Functional dependencies
 - faculty_id → dept_name
 - lacktriangledown student_id,dept_name o faculty_id
- BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)
- Need join to check dependency student_id,dept_name → faculty_id

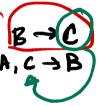
• Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \to \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \to \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ ocally checkable in R_i

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \to \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ locally checkable in R_i
- Let $G = F_1 \cup F_2 \cup \cdots \cup F_k$. Is $G^+ = F^+$?

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \to \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ locally checkable in R_i
- Let $G = F_1 \cup F_2 \cup \cdots \cup F_k$. Is $G^+ = F^+$?
- How do we compute F_i for each R_i ?
 - Let R_i have attributes A_1, A_2, \ldots, A_m
 - For each subset α of A_1, A_2, \ldots, A_m , compute α^+ with respect to F^+
 - For each $B \in \alpha^+ \cap \{A_1, A_2, \dots, A_m\}$, add $\alpha \to B$ to R_i


Third normal form (3NF)

- **R** is in 3NF if, for every $\alpha \to \beta \in F^+$, one of the following holds
 - $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)

 BCNF

 wishes superkey for β
 - \blacksquare α is a superkey for R
 - Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R

What about INF & ZNF? Why SNF ? All altributes A BONF are atomic

Third normal form (3NF)

- **R** is in 3NF if, for every $\alpha \to \beta \in F^+$, one of the following holds
 - $\bullet \quad \alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - \blacksquare α is a superkey for R
 - Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R
- BCNF is a stricter condition than 3NF

Third normal form (3NF)

- **R** is in 3NF if, for every $\alpha \to \beta \in F^+$, one of the following holds
 - \bullet $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - lacksquare α is a superkey for R
 - Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R
- BCNF is a stricter condition than 3NF
- Priorities
 - Lossless decomposition
 - BCNF
 - Dependency preservation

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies
- Multivalued dependency closure under swaps

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies
- Multivalued dependency closure under swaps
- 4NF Flags indepulmed & splits

Practical matters

Validating functional dependencies

Practical matters

- Validating functional dependencies
- Redundancy vs computing joins materialized views