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Transactions: desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties
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Transaction logs

Log each update before it happens

Rollback updates in case of failure
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Concurrent execution and schedules
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Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule
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Conflict equivalence
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Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.
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Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
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Concurrency control

Ensure that only serializable schedules are generated

Allow concurrency

Control access to data to avoid conflicts
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Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation
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Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability
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Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost
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Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj , decide whether to wait or roll back one of them, based
on TS(Ti ) and TS(Tj)
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Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency
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Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency
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Weak consistency example

Uber webpage Uber Android app
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