
RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 12, 20 November 2025



Transactions: desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 2 / 16

- All or nothing Bank
,
internal transfers

- Maintan properties Transferl
- Persistence i

Transferen
No change in total
amount across

accounts



Transactions: desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 2 / 16

Transfer se from A to B

Audit Transaction

A = A -x
o sum =0

foreach accountX
Shortfall

BeBtu

·
S

sum= sumtX

the surplus



Transaction logs

Log each update before it happens

Rollback updates in case of failure

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 3 / 16

en



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 4 / 16

1000 lovo

950
↳op gro

410
450

Soo



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 5 / 16

1000

950

450
950
as

855

545



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 5 / 16

lowe

900

Soo

ag

850

sso



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 5 / 16

G
Interleaved order of operation look

across transaction

!
950

↑
950

855
40

Time

so I to



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 5 / 16

1000
Some schedules

950 loop

are not "valid"
E lop

900

⑮950 C overwritten

2



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 6 / 16

Guaranteed to be

"OK" It
In T

T
,



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 6 / 16

Be
B



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 6 / 16

-

crotsweW* W



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 6 / 16

ladjacent



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 6 / 16



Conflict equivalence

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 7 / 16

serial Conflict serializable

D

=
↓ r

signal ↓successful
update



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 8 / 16



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 8 / 16

T1 is Schedule

(a) W(A) b) after (a)

TX (b) R(A)

-



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 8 / 16



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 8 / 16

·
Win

n
E



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 8 / 16



Directed Anyche Graph
i modes - mut be a mode wit no incoming

edge
S S

=3
Topological ·99Sort

7S4 ⑫- .. B- 1+
V,



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16

Strict non interference



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16

No interference



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16

Read from anothe transaction

But no from change



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 9 / 16



Concurrency control

Ensure that only serializable schedules are generated

Allow concurrency

Control access to data to avoid conflicts

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 10 / 16



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 11 / 16



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 11 / 16



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 11 / 16



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 12 / 16

R

A- B - Audit

lock(A)

A= A-x
unlock(A)⑨ ·
lock (B)
B<B+x

Unlock (B)



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 12 / 16



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 12 / 16



Lock protocols

Just using locks does not guarantee isolation

Locking protocol — convention for using locks, respected by all transactions

Legal schedule — agrees with the locking protocol
Goal: Locking protocol that guarantees all legal schedules are conflict serializable

Two phase locking
Growing phase — acquire or upgrade locks

Shrinking phase — release or downgrade locks

Guarantees conflict serializability

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 12 / 16



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 13 / 16

A-B CXA B- > A
Deadlock 1 lock(A)
-
- 2 Lock(c) lock(B)

3 lock (B) ?
? lock(A ?

: >Unlock(A ,B



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 13 / 16

Want B

Ti Kill a
WantA transaction



Deadlocks

Transactions hold some locks and block each other

Detecting deadlocks — look for cycles in wait-for graph

Resolve deadlocks — kill and rollback some transaction to break the cycle

Estimate “cost” of rollback for each transaction

Choose the one with minimum cost

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 13 / 16



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj , decide whether to wait or roll back one of them, based
on TS(Ti ) and TS(Tj)

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 14 / 16



Deadlock prevention and pre-emption

Deadlock prevention

Fix an order on all data items, always lock items in that order

Example — always lock bank accounts in ascending order of account number

Deadlock pre-emption

Assign each Ti a timestamp TS(Ti ) when it starts

If Ti needs a lock held by Tj , decide whether to wait or roll back one of them, based
on TS(Ti ) and TS(Tj)

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 14 / 16



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 15 / 16

< title) XML
-

< / title]



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 15 / 16

Itmotorya*
consistency D

shared distributed

data



Beyond RDBMS

Semi-structured data

CAP theorem

Weak consistency

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 15 / 16



Weak consistency example

Uber webpage Uber Android app
Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 20 Nov 2025 16 / 16


