# RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 11, 13 November 2025

#### Query processing

- Translate the query from SQL into relational algebra
- Evaluate the relational algebra expression
- Challenges
  - Many equivalent relational algebra expressions

```
\sigma_{salary < 75000}(\pi_{salary}(instructor)) vs \pi_{salary}(\sigma_{salary < 75000}(instructor))
```

- Many ways to evaluate a given expression
- Query plan
  - Annotate the expression with a detailed evaluation strategy key values
    - Use index on *salary* to find instructors with *salary* < 75000
    - Or, scan entire relation, discard rows with salary ≥ 75000

- Choose plan with lowest cost
- Maintain database catalogue number of tuples in each relationn, size of tuples, . . .
- Assess cost in terms of disk access and transfer, CPU time, . . .
- For simplicity, ignore in-memory costs (CPU time), restrict to disk access
- Disk accesses
  - Relation r occupies  $b_r$  blocks
  - Disk seeks time *t<sub>S</sub>* per seek
  - Block transfers time  $t_T$  per transfer

#### Selection

Linear search

- I seek, by transfers
- Clustering index index height *h<sub>i</sub>* 
  - Equality on key
  - Equality on nonkey
- Secondary index (key, non-key)
- Clustering index, comparison on A
  - Sorted on A
  - Not sorted on A
- Boolean combinations
  - Conjunctive selection using one index
  - Conjunctive selection using composite index
  - Disjunction, negation, . . .



#### External merge sort

- $\blacksquare$  N records,  $b_r$  blocks, M blocks in memory
- Compute sorted runs of size M
- Merge sorted runs
- Complexity
  - $b_r/M$  sorted runs,  $\lceil \log_{M-1}(b_r/M) \rceil$  merge passes
  - Block transfers  $b_r (2\lceil \log_{M-1}(b_r/M) \rceil + 1)$
  - Block seeks  $2\lceil b_r/M \rceil + b_r \left(2(\lceil \log_{M-1}(b_r/M) \rceil 1\right)$

5/33

#### Nested-loop join

- (5000 rows, 100 blocks) Student ⋈ Takes (10000 rows, 400 blocks)
- Complexity
  - $r\bowtie_{\theta} s-r$  is outer relation, s is inner relation
  - Block transfers:  $b_r$   $n_r \cdot b_s$
  - Block seeks:  $b_r + n_r$  inner relation read sequentially
  - Special case: smaller relation fits in memory

$$n_{r}.b_{s} = 2 \times 10^{6}$$
  
+  $b_{r} = 2,000,000$ 

Take 17- 65- 100

1, 1, 1 × 10 4

Madhavan Mukund

RDBMS and SQL

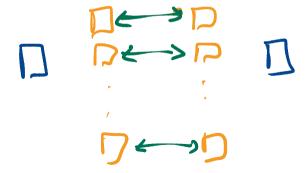
# Block nested-loop join

- (5000 rows, 100 blocks) *Student* ⋈ *Takes* (10000 rows, 400 blocks)
- Complexity
  - $r \bowtie_{\theta} s r$  is outer relation, s is inner relation
  - Block transfers  $b_r + b_r \cdot b_s$  VS Nr.LS
  - Block seeks:  $b_r + b_r = 2b_r$

# Indexed nested-loop join

- (5000 rows, 100 blocks) *Student* ⋈ *Takes* (10000 rows, 400 blocks)
- Complexity
  - $r \bowtie_{\theta} s r$  is outer relation, s is inner relation
  - Total cost:  $b_r(t_T + t_S) + n_r$ 
    - c is cost of single selection on s

# Merge join


- (5000 rows, 100 blocks) *Student* ⋈ *Takes* (10000 rows, 400 blocks)
- Complexity
  - $r\bowtie_{\theta} s-r$  is outer relation, s is inner relation
    - Assume relations are sorted (add cost of sorting)
  - Block transfers:  $b_r + b_s$
  - Block seeks:  $\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil$ 
    - Read a chunk of blocks b<sub>b</sub> at a time

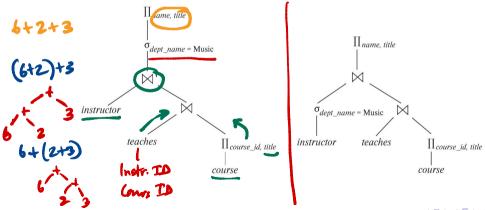


9/33

#### Hash join

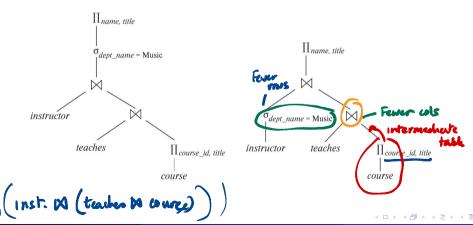
- (5000 rows, 100 blocks) Student ⋈ Takes (10000 rows, 400 blocks)
- Hash function on join attribute A,  $n_h$  output values
- Join each pair of hash buckets build index and probe



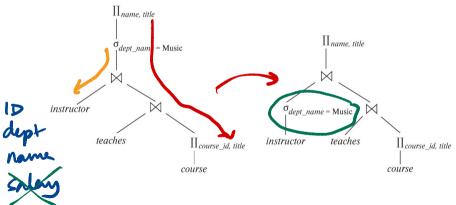

Choose plan with lowest cost

SQL -> Relational Algebra
U
Choose best implementation
of each operation

- Choose plan with lowest cost
- Find names and course titles of courses taught by instructors from Music Dept

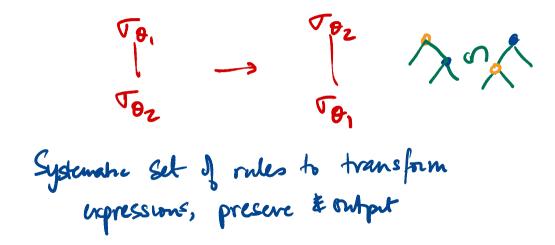

11/33

- Choose plan with lowest cost
- Find names\_and course titles of courses taught by instructors from Music Dept

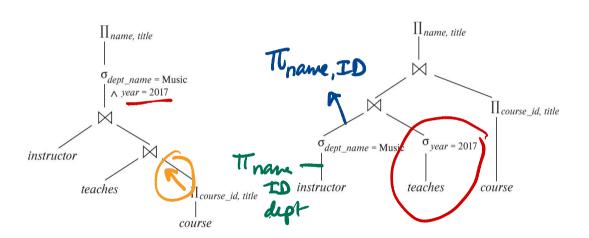



11 / 33

- Choose plan with lowest cost
- Find names and course titles of courses taught by instructors from Music Dept




- Choose plan with lowest cost
- Find names and course titles of courses taught by instructors from Music Dept




11/33

# Transforming expressions



### Transforming expressions



# Maintaining a database catalogue

- $\blacksquare$   $n_r$  number of tuples in r
- $b_r$  number of blocks used by r
- $\bullet$   $\ell_r$  size of a tuple in r
- $f_r$  blocking factor of r, how many tuples fit in a block  $\checkmark$
- number of distinct values of attribute A in r
  - Store distribution of values as histogram

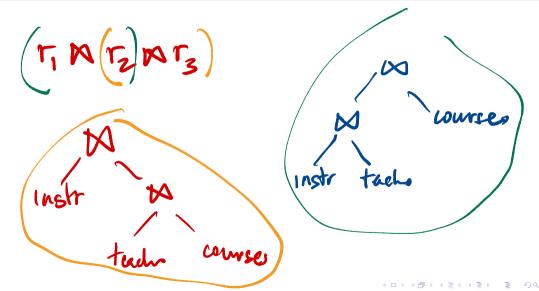
Pandas -> data sumany

Background update

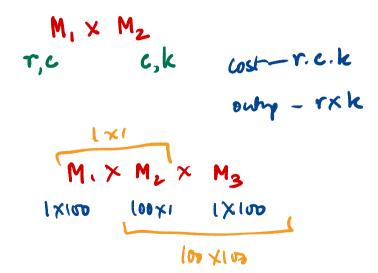
- Selection
  - Simple, range, conjunction, disjunction



- Selection
  - Simple, range, conjunction, disjunction
- Join
  - Keys and non-keys


- Selection
  - Simple, range, conjunction, disjunction
- Join
  - Keys and non-keys
- Projection

- Selection
  - Simple, range, conjunction, disjunction
- Join
  - Keys and non-keys
- Projection
- Aggregation


- Selection
  - Simple, range, conjunction, disjunction
- Join
  - Keys and non-keys
- Projection
- Aggregation
- Set operations

- Selection
  - Simple, range, conjunction, disjunction
- Join
  - Keys and non-keys
- Projection
- Aggregation
- Set operations
- Outer joins

# Join ordering



# Join ordering



#### Heuristics

■ Perform selection early

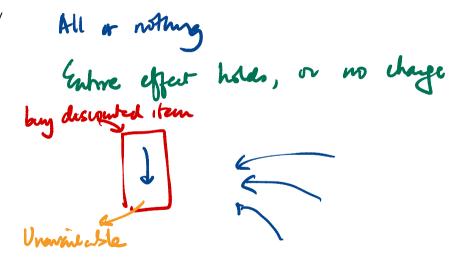
#### Heuristics

- Perform selection early
- Perform projection early

Touse id, title

#### Heuristics

- Perform selection early
- Perform projection early
- Perform most restrictive selection/join first


Query planny

16/33

#### **Transactions**

Mulhple bow level operators => One high land hold What grantees should 1. Check avail. 2. Choose Eight provide

Atomicity



- Atomicity
- Consistency

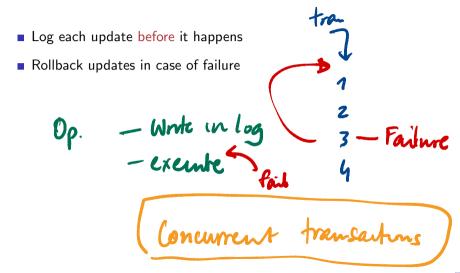
depteneme in instructor

is a foreign key in depr

Bank tromsfu who a bal Insert a new dept, add instructor

 $\begin{array}{c|c}
A & x \\
\hline
A-n & B+n
\end{array}$ 

Atomicity in the presence of Consistency Isolation No Intreference


- Atomicity
- Consistency
- Isolation
- Durability

Persistence of noteonie

18/33

AtomicityConsistencyIsolationDurabilityACID properties

# Transaction logs

