- 1. Consider relations $r_1(A, B, C)$ and $r_2(C, D, E)$. We wish to compute $r_1 \bowtie r_2$, the natural join of r_1 and r_2 . Explain the difference in efficiency in computing this join under the following two assumptions:
 - (a) A is a primary key for r_1 , there is no primary key for r_2 .
 - (b) C is a primary key for r_2 , there is no primary key for r_1 .
- 2. Let relations $r_1(A, B, C)$ and $r_2(C, D, E)$ have the following properties: r_1 has 6×10^6 tuples, r_2 has 3×10^6 tuples, 15 tuples of r_1 fit in one block, 30 tuples of r_2 fit in one block and the memory can hold approximately 100 blocks.

Estimate the number of block accesses required using the following strategies for $r_1 \bowtie r_2$. Assume that neither r_1 nor r_2 is already sorted with respect to any of its attributes. Explain your answer, including your choice of outer and inner relations.

- (a) Nested-loop join
- (b) Block nested-loop join
- 3. Consider the following schedules of concurrent read and write operations.

Schedule A					Schedule B				
T_a	T_b	T_c	T_d	T_e	T_a	T_b	T_c	T_d	T_e
$w(x_1)$	$w(x_2)$ $r(x_1)$		$w(x_3)$	$r(x_1)$	$w(x_1)$	$\frac{w(x_2)}{r(x_1)}$		$r(x_1)$	$r(x_1)$
$r(x_3)$	$r(x_4)$	$r(x_4)$ $r(x_3)$	$r(x_2)$ $r(x_4)$	$w(x_4)$	$r(x_3)$	$r(x_4)$	$r(x_4)$ $r(x_3)$	$r(x_2)$ $r(x_4)$	$w(x_4)$

- (a) One of these schedules is conflict-serializable and the other is not. Explain which is which.
- (b) For the schedule that is conflict-serializable, list out all possible serial schedules that are consistent with this schedule.
- 4. Describe a concurrent schedule for the following two transactions T_1 and T_2 that is serializable, but not *conflict serializable*. Explain your answer.

T_{\cdot} : read(A):	T_2 : read(A);
1_1 . read(11), 4 = 4 50:	temp := A * 0.1;
A = A = 30,	A := A - temp;
write(A);	write (A) ;
read(B);	read(B);
B := B + 50;	B := B + temp;
write(B).	write(B).