
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 10: Storage and File StructureChapter 10: Storage and File Structure

©Silberschatz, Korth and Sudarshan10.11Database System Concepts - 6th Edition

Magnetic Hard Disk MechanismMagnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

<

©Silberschatz, Korth and Sudarshan10.18Database System Concepts - 6th Edition

Optimization of Disk-Block AccessOptimization of Disk-Block Access

 Block – a contiguous sequence of sectors from a single track
 data is transferred between disk and main memory in blocks
 sizes range from 512 bytes to several kilobytes

 Smaller blocks: more transfers from disk
 Larger blocks: more space wasted due to partially filled blocks
 Typical block sizes today range from 4 to 16 kilobytes

 Disk-arm-scheduling algorithms order pending accesses to tracks so
that disk arm movement is minimized
 elevator algorithm:

R1 R5 R2 R4R3R6

Inner track Outer track

X

©Silberschatz, Korth and Sudarshan10.19Database System Concepts - 6th Edition

Optimization of Disk Block Access (Cont.)Optimization of Disk Block Access (Cont.)

 File organization – optimize block access time by organizing the
blocks to correspond to how data will be accessed
 E.g. Store related information on the same or nearby cylinders.
 Files may get fragmented over time

 E.g. if data is inserted to/deleted from the file
 Or free blocks on disk are scattered, and newly created file

has its blocks scattered over the disk
 Sequential access to a fragmented file results in increased

disk arm movement
 Some systems have utilities to defragment the file system, in

order to speed up file access

©Silberschatz, Korth and Sudarshan10.38Database System Concepts - 6th Edition

File OrganizationFile Organization

 The database is stored as a collection of files. Each file is a
sequence of records. A record is a sequence of fields.

 One approach:
assume record size is fixed
each file has records of one particular type only
di&erent files are used for di&erent relations
This case is easiest to implement; will consider variable length
records later.

-

Trows "columns

©Silberschatz, Korth and Sudarshan10.39Database System Concepts - 6th Edition

Fixed-Length RecordsFixed-Length Records

 Simple approach:
 Store record i starting from byte n  (i – 1), where n is the size of

each record.
 Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

 Deletion of record i:
alternatives:
 move records i + 1, . . ., n

to i, . . . , n – 1
 move record n to i
 do not move records, but

link all free records on a
free list

©Silberschatz, Korth and Sudarshan10.40Database System Concepts - 6th Edition

Deleting record 3 and compactingDeleting record 3 and compacting

©Silberschatz, Korth and Sudarshan10.41Database System Concepts - 6th Edition

Deleting record 3 and moving last recordDeleting record 3 and moving last record

©Silberschatz, Korth and Sudarshan10.42Database System Concepts - 6th Edition

Free ListsFree Lists

 Store the address of the first deleted record in the file header.
 Use this first record to store the address of the second deleted record,

and so on
 Can think of these stored addresses as pointers since they “point” to

the location of a record.
 More space ePcient representation: reuse space for normal attributes

of free records to store pointers. (No pointers stored in in-use records.)
RowA

*
-3 4

->

©Silberschatz, Korth and Sudarshan10.43Database System Concepts - 6th Edition

Variable-Length RecordsVariable-Length Records

 Variable-length records arise in database systems in several ways:
 Storage of multiple record types in a file.
 Record types that allow variable lengths for one or more fields such as

strings (varchar)
 Record types that allow repeating fields (used in some older data

models).
 Attributes are stored in order
 Variable length attributes represented by fixed size (o&set, length), with

actual data stored after all fixed length attributes
 Null values represented by null-value bitmap

⑭inofhuman
-

-for
on

asi
Flexible width

Predictable with
T

cl 23 VIilik
-

Fixed

noeDriesare
x3 I

(M

©Silberschatz, Korth and Sudarshan10.44Database System Concepts - 6th Edition

Variable-Length Records: Slotted Page StructureVariable-Length Records: Slotted Page Structure

 Slotted page header contains:
 number of record entries
 end of free space in the block
 location and size of each record

 Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.

 Pointers should not point directly to record — instead they should
point to the entry for the record in header.

Re
-a

©Silberschatz, Korth and Sudarshan10.45Database System Concepts - 6th Edition

Organization of Records in FilesOrganization of Records in Files

 Heap – a record can be placed anywhere in the file where there
is space

 Sequential – store records in sequential order, based on the
value of the search key of each record

 Hashing – a hash function computed on some attribute of each
record; the result specifies in which block of the file the record
should be placed

 Records of each relation may be stored in a separate file. In a
multitable clustering file organization records of several
di&erent relations can be stored in the same file
 Motivation: store related records on the same block to

minimize I/O

©Silberschatz, Korth and Sudarshan10.46Database System Concepts - 6th Edition

Sequential File OrganizationSequential File Organization
 Suitable for applications that require sequential processing of

the entire file
 The records in the file are ordered by a search-key

©Silberschatz, Korth and Sudarshan10.47Database System Concepts - 6th Edition

Sequential File Organization (Cont.)Sequential File Organization (Cont.)

 Deletion – use pointer chains
 Insertion –locate the position where the record is to be inserted

 if there is free space insert there
 if no free space, insert the record in an overflow block
 In either case, pointer chain must be updated

 Need to reorganize the file
 from time to time to restore
 sequential order

©Silberschatz, Korth and Sudarshan10.48Database System Concepts - 6th Edition

Multitable Clustering File OrganizationMultitable Clustering File Organization
Store several relations in one file using a multitable clustering
file organization

department

instructor

multitable clustering
of department and
instructor

©Silberschatz, Korth and Sudarshan10.49Database System Concepts - 6th Edition

Multitable Clustering File Organization (cont.)Multitable Clustering File Organization (cont.)

 good for queries involving department instructor, and for queries
involving one single department and its instructors

 bad for queries involving only department
 results in variable size records
 Can add pointer chains to link records of a particular relation

©Silberschatz, Korth and Sudarshan10.50Database System Concepts - 6th Edition

Data Dictionary StorageData Dictionary Storage

 Information about relations
 names of relations
 names, types and lengths of attributes of each relation
 names and definitions of views
 integrity constraints

 User and accounting information, including passwords
 Statistical and descriptive data

 number of tuples in each relation
 Physical file organization information

 How relation is stored (sequential/hash/…)
 Physical location of relation

 Information about indices (Chapter 11)

The Data dictionary (also called system catalog) stores
metadata; that is, data about data, such as

©Silberschatz, Korth and Sudarshan10.51Database System Concepts - 6th Edition

Relational Representation of System Metadata

 Relational
representation on
disk

 Specialized data
structures
designed for
ePcient access, in
memory

©Silberschatz, Korth and Sudarshan10.52Database System Concepts - 6th Edition

Storage AccessStorage Access

 A database file is partitioned into fixed-length storage units called
blocks. Blocks are units of both storage allocation and data
transfer.

 Database system seeks to minimize the number of block transfers
between the disk and memory. We can reduce the number of
disk accesses by keeping as many blocks as possible in main
memory.

 Bu9er – portion of main memory available to store copies of disk
blocks.

 Bu9er manager – subsystem responsible for allocating bu&er
space in main memory.

©Silberschatz, Korth and Sudarshan10.53Database System Concepts - 6th Edition

Bu9er ManagerBu9er Manager

 Programs call on the bu&er manager when they need a block
from disk.
1. If the block is already in the bu&er, bu&er manager returns the

address of the block in main memory
2. If the block is not in the bu&er, the bu&er manager

1. Allocates space in the bu&er for the block
1. Replacing (throwing out) some other block, if required,

to make space for the new block.
2. Replaced block written back to disk only if it was

modified since the most recent time that it was written
to/fetched from the disk.

2. Reads the block from the disk to the bu&er, and returns
the address of the block in main memory to requester.

©Silberschatz, Korth and Sudarshan10.54Database System Concepts - 6th Edition

Bu9er-Replacement PoliciesBu9er-Replacement Policies

 Most operating systems replace the block least recently used
(LRU strategy)

 Idea behind LRU – use past pattern of block references as a
predictor of future references

 Queries have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references
 LRU can be a bad strategy for certain access patterns involving

repeated scans of data
 For example: when computing the join of 2 relations r and s

by a nested loops
 for each tuple tr of r do
 for each tuple ts of s do
 if the tuples tr and ts match …

 Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

©Silberschatz, Korth and Sudarshan10.55Database System Concepts - 6th Edition

Bu9er-Replacement Policies (Cont.)Bu9er-Replacement Policies (Cont.)

 Pinned block – memory block that is not allowed to be written
back to disk.

 Toss-immediate strategy – frees the space occupied by a block
as soon as the final tuple of that block has been processed

 Most recently used (MRU) strategy – system must pin the
block currently being processed. After the final tuple of that block
has been processed, the block is unpinned, and it becomes the
most recently used block.

 Bu&er manager can use statistical information regarding the
probability that a request will reference a particular relation
 E.g., the data dictionary is frequently accessed. Heuristic:

keep data-dictionary blocks in main memory bu&er
 Bu&er managers also support forced output of blocks for the

purpose of recovery (more in Chapter 16)

©Silberschatz, Korth and Sudarshan11.53Database System Concepts - 6th Edition

Static HashingStatic Hashing

 A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well
as deletion.

 Records with di4erent search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

©Silberschatz, Korth and Sudarshan11.54Database System Concepts - 6th Edition

Example of Hash File OrganizationExample of Hash File Organization

 There are 10 buckets,
 The binary representation of the ith character is assumed to be the

integer i.
 The hash function returns the sum of the binary representations of

the characters modulo 10
 E.g. h(Music) = 1 h(History) = 2

 h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key
 (See figure in next slide.)

©Silberschatz, Korth and Sudarshan11.55Database System Concepts - 6th Edition

Example of Hash File Organization Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key
(see previous slide for details).

©Silberschatz, Korth and Sudarshan11.56Database System Concepts - 6th Edition

Hash FunctionsHash Functions

 Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key values
in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.

 Typical hash functions perform computation on the internal binary
representation of the search-key.
 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

©Silberschatz, Korth and Sudarshan11.57Database System Concepts - 6th Edition

Handling of Bucket OverflowsHandling of Bucket Overflows

 Bucket overflow can occur because of
 Insu1cient buckets
 Skew in distribution of records. This can occur due to two

reasons:
 multiple records have same search-key value
 chosen hash function produces non-uniform distribution of key

values
 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan11.58Database System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.

 Above scheme is called closed hashing.
 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

©Silberschatz, Korth and Sudarshan11.59Database System Concepts - 6th Edition

Hash IndicesHash Indices
 Hashing can be used not only for file organization, but also for index-

structure creation.
 A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.
 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary hash
index on it using the same search-key is unnecessary.

 However, we use the term hash index to refer to both secondary
index structures and hash organized files.

©Silberschatz, Korth and Sudarshan11.60Database System Concepts - 6th Edition

Example of Hash IndexExample of Hash Index

hash index on instructor, on attribute ID

©Silberschatz, Korth and Sudarshan11.61Database System Concepts - 6th Edition

Deficiencies of Static HashingDeficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B
of bucket addresses. Databases grow or shrink with time.
 If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.
 If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).
 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash
function
 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

©Silberschatz, Korth and Sudarshan11.62Database System Concepts - 6th Edition

Dynamic HashingDynamic Hashing

 Good for database that grows and shrinks in size
 Allows the hash function to be modified dynamically
 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0  i  32.
 Bucket address table size = 2i. Initially i = 0
 Value of i grows and shrinks as the size of the database grows

and shrinks.
 Multiple entries in the bucket address table may point to a bucket

(why?)
 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan11.63Database System Concepts - 6th Edition

General Extendable Hash Structure General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next
slide for details)

©Silberschatz, Korth and Sudarshan11.64Database System Concepts - 6th Edition

Use of Extendable Hash StructureUse of Extendable Hash Structure

 Each bucket j stores a value ij
 All the entries that point to the same bucket have the same values on

the first ij bits.
 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj
 follow same procedure as look-up and locate the bucket, say j.
 If there is room in the bucket j insert record in the bucket.
 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)

©Silberschatz, Korth and Sudarshan11.65Database System Concepts - 6th Edition

Insertion in Extendable Hash Structure (Cont) Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)
 allocate a new bucket z, and set ij = iz = (ij + 1)
 Update the second half of the bucket address table entries originally

pointing to j, to point to z
 remove each record in bucket j and reinsert (in j or z)
 recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)
 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

 Else
 increment i and double the size of the bucket address table.
 replace each entry in the table by two entries that point to the

same bucket.
 recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

©Silberschatz, Korth and Sudarshan11.66Database System Concepts - 6th Edition

Deletion in Extendable Hash StructureDeletion in Extendable Hash Structure

 To delete a key value,
 locate it in its bucket and remove it.
 The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).
 Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is
present)

 Decreasing bucket address table size is also possible
 Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes
much smaller than the size of the table

©Silberschatz, Korth and Sudarshan11.67Database System Concepts - 6th Edition

Use of Extendable Hash Structure: ExampleUse of Extendable Hash Structure: Example

©Silberschatz, Korth and Sudarshan11.68Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)

 Initial Hash structure; bucket size = 2

©Silberschatz, Korth and Sudarshan11.69Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)

 Hash structure after insertion of “Mozart”, “Srinivasan”,
 and “Wu” records

©Silberschatz, Korth and Sudarshan11.70Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)

 Hash structure after insertion of Einstein record

©Silberschatz, Korth and Sudarshan11.71Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)
 Hash structure after insertion of Gold and El Said records

©Silberschatz, Korth and Sudarshan11.72Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)
 Hash structure after insertion of Katz record

©Silberschatz, Korth and Sudarshan11.73Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)

And after insertion of
eleven records

©Silberschatz, Korth and Sudarshan11.74Database System Concepts - 6th Edition

Example (Cont.)Example (Cont.)

And after insertion of
Kim record in previous
hash structure

