
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 8: Relational Database DesignChapter 8: Relational Database Design

©Silberschatz, Korth and Sudarshan8.3Database System Concepts - 6th Edition

Combine Schemas?Combine Schemas?

 Suppose we combine instructor and department into inst_dept
 (No connection to relationship set inst_dept)

 Result is possible repetition of information

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 6th Edition

A Combined Schema Without RepetitionA Combined Schema Without Repetition

 Consider combining relations
 sec_class(sec_id, building, room_number) and
 section(course_id, sec_id, semester, year)
into one relation
 section(course_id, sec_id, semester, year,

 building, room_number)
 No repetition in this case

couse see you...Secld-buildin,comm

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 6th Edition

What About Smaller Schemas?What About Smaller Schemas?

 Suppose we had started with inst_dept. How would we know to split up
(decompose) it into instructor and department?

 Write a rule “if there were a schema (dept_name, building, budget), then
dept_name would be a candidate key”

 Denote as a functional dependency:
dept_name  building, budget

 In inst_dept, because dept_name is not a candidate key, the building
and budget of a department may have to be repeated.
 This indicates the need to decompose inst_dept

 Not all decompositions are good. Suppose we decompose
 employee(ID, name, street, city, salary) into
employee1 (ID, name)
employee2 (name, street, city, salary)

 The next slide shows how we lose information -- we cannot reconstruct
the original employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 6th Edition

A Lossy DecompositionA Lossy Decomposition

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 6th Edition

Example of Lossless-Join DecompositionExample of Lossless-Join Decomposition

 Lossless join decomposition

 Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)

A B




1
2

A




B

1
2

r B,C(r)

A (r) B (r)
A B




1
2

C

A
B

B

1
2

C

A
B

C

A
B

A,B(r)

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 6th Edition

Goal — Devise a Theory for the FollowingGoal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.
 In the case that a relation R is not in “good” form, decompose it into a

set of relations {R1, R2, ..., Rn} such that
 each relation is in good form
 the decomposition is a lossless-join decomposition

 Our theory is based on:
 functional dependencies
 multivalued dependencies->ignore

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 6th Edition

Functional DependenciesFunctional Dependencies

 Constraints on the set of legal relations.
 Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.
 A functional dependency is a generalization of the notion of a key.

©Silberschatz, Korth and Sudarshan8.12Database System Concepts - 6th Edition

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 Let R be a relation schema
  R and   R

 The functional dependency

   
holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes , they also agree
on the attributes . That is,

 t1[] = t2 []  t1[] = t2 []
 Example: Consider r(A,B) with the following instance of r.

 On this instance, A  B does NOT hold, but B  A does hold.

1 4
1 5
3 7

A B

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 6th Edition

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K  R
 K is a candidate key for R if and only if

 K  R, and
 for no   K,   R

 Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:
 inst_dept (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:

dept_name building
 and ID  building

but would not expect the following to hold:
dept_name  salary

-

ED-dept, dept-> bldg

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 6th Edition

Use of Functional DependenciesUse of Functional Dependencies

 We use functional dependencies to:
 test relations to see if they are legal under a given set of functional

dependencies.
 If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.
 specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set
of functional dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.
 For example, a specific instance of instructor may, by chance, satisfy

 name  ID.

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 6th Edition

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 A functional dependency is trivial if it is satisfied by all instances of a
relation
 Example:

 ID, name  ID
 name  name

 In general,    is trivial if   

©Silberschatz, Korth and Sudarshan8.16Database System Concepts - 6th Edition

Closure of a Set of Functional Closure of a Set of Functional

DependenciesDependencies

 Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.
 For example: If A  B and B  C, then we can infer that A 

C
 The set of all functional dependencies logically implied by F is the

closure of F.
 We denote the closure of F by F+.
 F+ is a superset of F.

Et F*

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 6th Edition

Boyce-Codd Normal FormBoyce-Codd Normal Form

    is trivial (i.e.,   )
  is a superkey for R

A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in F+ of
the form

  

where   R and   R, at least one of the following holds:

Example schema not in BCNF:

 instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name building, budget
holds on instr_dept, but dept_name is not a superkey

8

©Silberschatz, Korth and Sudarshan8.18Database System Concepts - 6th Edition

Decomposing a Schema into BCNFDecomposing a Schema into BCNF

 Suppose we have a schema R and a non-trivial dependency 
causes a violation of BCNF.
We decompose R into:

• (U )
• (R - ( - ))

 In our example,
  = dept_name
  = building, budget
and inst_dept is replaced by
 (U ) = (dept_name, building, budget)
 (R - ( - )) = (ID, name, salary, dept_name)

- split off
If <1p =4, then R-B

©Silberschatz, Korth and Sudarshan8.47Database System Concepts - 6th Edition

Example of BCNF DecompositionExample of BCNF Decomposition

 R = (A, B, C)
F = {A  B

 B  C}
Key = {A}

 R is not in BCNF (B  C but B is not superkey)
 Decomposition

 R1 = (B, C)
 R2 = (A,B)

©Silberschatz, Korth and Sudarshan8.48Database System Concepts - 6th Edition

Example of BCNF DecompositionExample of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

 Functional dependencies:
 course_idT title, dept_name, credits
 building, room_numberTcapacity
 course_id, sec_id, semester, yearTbuilding, room_number,

time_slot_id
 A candidate key {course_id, sec_id, semester, year}.
 BCNF Decomposition:

 course_idT title, dept_name, credits holds
 but course_id is not a superkey.

 We replace class by:
 course(course_id, title, dept_name, credits)
 class-1 (course_id, sec_id, semester, year, building,

 room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan8.49Database System Concepts - 6th Edition

BCNF Decomposition (Cont.)BCNF Decomposition (Cont.)

 course is in BCNF
 How do we know this?

 building, room_numberTcapacity holds on class-1
 but {building, room_number} is not a superkey for class-1.
 We replace class-1 by:

 classroom (building, room_number, capacity)
 section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)
 classroom and section are in BCNF.

©Silberschatz, Korth and Sudarshan8.50Database System Concepts - 6th Edition

BCNF and Dependency PreservationBCNF and Dependency Preservation

 R = (J, K, L)
F = {JK  L

 L  K }
Two candidate keys = JK and JL

 R is not in BCNF
 Any decomposition of R will fail to preserve

JK  L
 This implies that testing for JK  L requires a join

It is not always possible to get a BCNF decomposition that is
dependency preserving

a p

TKL-K 2-M

⑭

⑧ fee, ec,

file ezk,

19, by
J, b2K,

©Silberschatz, Korth and Sudarshan8.51Database System Concepts - 6th Edition

Third Normal Form: MotivationThird Normal Form: Motivation

 There are some situations where
 BCNF is not dependency preserving, and
 eFcient checking for FD violation on updates is important

 Solution: define a weaker normal form, called Third
Normal Form (3NF)
 Allows some redundancy (with resultant problems; we will

see examples later)
 But functional dependencies can be checked on individual

relations without computing a join.
 There is always a lossless-join, dependency-preserving

decomposition into 3NF.

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 6th Edition

Third Normal FormThird Normal Form

 A relation schema R is in third normal form (3NF) if for all:
   in F+

at least one of the following holds:
    is trivial (i.e.,   )
  is a superkey for R
 Each attribute A in  –  is contained in a candidate key for R.
 (NOTE: each attribute may be in a diHerent candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two
conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure dependency
preservation (will see why later).

©Silberschatz, Korth and Sudarshan8.52Database System Concepts - 6th Edition

3NF Example3NF Example

 Relation dept_advisor:
 dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name  i_ID, i_ID  dept_name}
 Two candidate keys: s_ID, dept_name, and i_ID, s_ID
 R is in 3NF

 s_ID, dept_name  i_ID s_ID
– dept_name is a superkey

 i_ID  dept_name
– dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan8.53Database System Concepts - 6th Edition

Redundancy in 3NFRedundancy in 3NF

J
j1

j2

j3
null

L
l1

l1

l1

l2

K
k1

k1

k1

k2

 repetition of information (e.g., the relationship l1, k1)
 (i_ID, dept_name)

 need to use null values (e.g., to represent the relationship
 l2, k2 where there is no corresponding value for J).
 (i_ID, dept_nameI) if there is no separate relation mapping

instructors to departments

 There is some redundancy in this schema
 Example of problems due to redundancy in 3NF

 R = (J, K, L)
F = {JK  L, L  K }

©Silberschatz, Korth and Sudarshan8.59Database System Concepts - 6th Edition

Comparison of BCNF and 3NFComparison of BCNF and 3NF

 It is always possible to decompose a relation into a set of relations
that are in 3NF such that:
 the decomposition is lossless
 the dependencies are preserved

 It is always possible to decompose a relation into a set of relations that
are in BCNF such that:
 the decomposition is lossless
 it may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan8.60Database System Concepts - 6th Edition

Design GoalsDesign Goals

 Goal for a relational database design is:
 BCNF.
 Lossless join.
 Dependency preservation.

 If we cannot achieve this, we accept one of
 Lack of dependency preservation
 Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)

 Even if we had a dependency preserving decomposition, using SQL we
would not be able to eFciently test a functional dependency whose left
hand side is not a key.

- Absolute!

- Optional

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 14: Transactions Chapter 14: Transactions

©Silberschatz, Korth and Sudarshan14.3Database System Concepts - 6th Edition

Transaction ConceptTransaction Concept
 A transaction is a unit of program execution that accesses and

possibly updates various data items.
 E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)
 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and
system crashes

 Concurrent execution of multiple transactions

©Silberschatz, Korth and Sudarshan14.4Database System Concepts - 6th Edition

Required Properties of a TransactionRequired Properties of a Transaction
 Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)
 Atomicity requirement

 If the transaction fails after step 3 and before step 6, money will be
“lost” leading to an inconsistent database state

 Failure could be due to software or hardware
 The system should ensure that updates of a partially executed

transaction are not reflected in the database
 Durability requirement — once the user has been notified that the

transaction has completed (i.e., the transfer of the $50 has taken place), the
updates to the database by the transaction must persist even if there are
software or hardware failures.

⑭D

©Silberschatz, Korth and Sudarshan14.5Database System Concepts - 6th Edition

Required Properties of a Transaction (Cont.)Required Properties of a Transaction (Cont.)

 Consistency requirement in above example:
 The sum of A and B is unchanged by the execution of the transaction

 In general, consistency requirements include
 Explicitly specified integrity constraints such as primary keys and

foreign keys
 Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

 A transaction, when starting to execute, must see a consistent database.
 During transaction execution the database may be temporarily

inconsistent.
 When the transaction completes successfully the database must be

consistent
 Erroneous transaction logic can lead to inconsistency

©Silberschatz, Korth and Sudarshan14.6Database System Concepts - 6th Edition

Required Properties of a Transaction (Cont.)Required Properties of a Transaction (Cont.)

 Isolation requirement — if between steps 3 and 6 (of the fund transfer
transaction) , another transaction T2 is allowed to access the partially
updated database, it will see an inconsistent database (the sum A + B
will be less than it should be).

 T1 T2
1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B
 Isolation can be ensured trivially by running transactions serially

 That is, one after the other.
 However, executing multiple transactions concurrently has significant

benefits, as we will see later.

©Silberschatz, Korth and Sudarshan14.7Database System Concepts - 6th Edition

ACID PropertiesACID Properties

 Atomicity. Either all operations of the transaction are properly reflected
in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

 Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from other
concurrently executed transactions.

 That is, for every pair of transactions Ti and Tj, it appears to Ti that
either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

 Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

©Silberschatz, Korth and Sudarshan14.10Database System Concepts - 6th Edition

Concurrent ExecutionsConcurrent Executions
 Multiple transactions are allowed to run concurrently in the

system. Advantages are:
 Increased processor and disk utilization, leading to

better transaction throughput
 E.g. one transaction can be using the CPU while

another is reading from or writing to the disk
 Reduced average response time for transactions: short

transactions need not wait behind long ones.
 Concurrency control schemes – mechanisms to achieve

isolation
 That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the
consistency of the database
 Will study in Chapter 15, after studying notion of

correctness of concurrent executions.

©Silberschatz, Korth and Sudarshan14.11Database System Concepts - 6th Edition

SchedulesSchedules

 Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent transactions
are executed
 A schedule for a set of transactions must consist of all

instructions of those transactions
 Must preserve the order in which the instructions appear in

each individual transaction.
 A transaction that successfully completes its execution will have a

commit instructions as the last statement
 By default transaction assumed to execute commit instruction

as its last step
 A transaction that fails to successfully complete its execution will

have an abort instruction as the last statement

©Silberschatz, Korth and Sudarshan14.12Database System Concepts - 6th Edition

Schedule 1Schedule 1
 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.
 An example of a serial schedule in which T1 is followed by T2 :

©Silberschatz, Korth and Sudarshan14.13Database System Concepts - 6th Edition

Schedule 2Schedule 2
 A serial schedule in which T2 is followed by T1 :

©Silberschatz, Korth and Sudarshan14.14Database System Concepts - 6th Edition

Schedule 3Schedule 3
 Let T1 and T2 be the transactions defined previously. The following

schedule is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.

&

↓ ↑

©Silberschatz, Korth and Sudarshan14.15Database System Concepts - 6th Edition

Schedule 4Schedule 4
 The following concurrent schedule does not preserve the sum

of “A + B”

A -> A-5T

③-> B+ 155

©Silberschatz, Korth and Sudarshan14.16Database System Concepts - 6th Edition

SerializabilitySerializability

 Basic Assumption – Each transaction preserves database
consistency.

 Thus, serial execution of a set of transactions preserves
database consistency.

 A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. DiEerent forms of schedule
equivalence give rise to the notions of:

1. conflict serializability
2. view serializability--

©Silberschatz, Korth and Sudarshan14.17Database System Concepts - 6th Edition

Simplified view of transactionsSimplified view of transactions

 We ignore operations other than read and write instructions
 We assume that transactions may perform arbitrary

computations on data in local buEers in between reads and
writes.

 Our simplified schedules consist of only read and write
instructions.

©Silberschatz, Korth and Sudarshan14.18Database System Concepts - 6th Edition

Conflicting Instructions Conflicting Instructions

 Let li and lj be two Instructions of transactions Ti and Tj
respectively. Instructions li and lj conflict if and only if there
exists some item Q accessed by both li and lj, and at least one of
these instructions wrote Q.
 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal
order between them.

 If li and lj are consecutive in a schedule and they do not
conflict, their results would remain the same even if they had
been interchanged in the schedule.

©Silberschatz, Korth and Sudarshan14.19Database System Concepts - 6th Edition

Conflict SerializabilityConflict Serializability

 If a schedule S can be transformed into a schedule S´ by
a series of swaps of non-conflicting instructions, we say
that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

©Silberschatz, Korth and Sudarshan14.20Database System Concepts - 6th Edition

Conflict Serializability (Cont.)Conflict Serializability (Cont.)
 Schedule 3 can be transformed into Schedule 6 -- a serial schedule where

T2 follows T1, by a series of swaps of non-conflicting instructions.
Therefore, Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

©Silberschatz, Korth and Sudarshan14.21Database System Concepts - 6th Edition

Conflict Serializability (Cont.)Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

©Silberschatz, Korth and Sudarshan14.22Database System Concepts - 6th Edition

Precedence GraphPrecedence Graph

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are
the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict,
and Ti accessed the data item on which the conflict arose
earlier.

 We may label the arc by the item that was accessed.
 Example

©Silberschatz, Korth and Sudarshan14.23Database System Concepts - 6th Edition

Testing for Conflict SerializabilityTesting for Conflict Serializability
 A schedule is conflict serializable if and only if its

precedence graph is acyclic.
 Cycle-detection algorithms exist which take order

n2 time, where n is the number of vertices in the
graph.
 (Better algorithms take order n + e where e is

the number of edges.)
 If precedence graph is acyclic, the serializability

order can be obtained by a topological sorting of
the graph.
 That is, a linear order consistent with the

partial order of the graph.
 For example, a serializability order for the

schedule (a) would be one of either (b) or (c)

