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Combine Schemas?Combine Schemas?

 Suppose we combine instructor and department into inst_dept
 (No connection to relationship set inst_dept)

 Result is possible repetition of information
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A Combined Schema Without RepetitionA Combined Schema Without Repetition

 Consider combining relations 
 sec_class(sec_id, building, room_number) and 
 section(course_id, sec_id, semester, year) 
into one relation
 section(course_id, sec_id, semester, year, 

               building, room_number)
 No repetition in this case

couse see you...Secld-buildin,comm
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What About Smaller Schemas?What About Smaller Schemas?

 Suppose we had started with inst_dept.  How would we know to split up 
(decompose) it into instructor  and department?

 Write a rule “if there were a schema (dept_name, building, budget), then 
dept_name would be a candidate key”

 Denote as a functional dependency: 
dept_name  building, budget

 In inst_dept, because dept_name is not a candidate key, the building 
and budget of a department may have to be repeated.  
 This indicates the need to decompose inst_dept

 Not all decompositions are good.  Suppose we decompose
 employee(ID, name, street, city, salary) into
employee1 (ID, name)
employee2 (name, street, city, salary)

 The next slide shows how we lose information -- we cannot reconstruct 
the original employee relation -- and so, this is a lossy decomposition.
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A Lossy DecompositionA Lossy Decomposition
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Example of Lossless-Join DecompositionExample of Lossless-Join Decomposition  

 Lossless join decomposition

 Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)
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Goal — Devise a Theory for the FollowingGoal — Devise a Theory for the Following

 Decide whether a particular relation R is in “good” form.
 In the case that a relation R is not in “good” form, decompose it into a 

set of relations {R1, R2, ..., Rn} such that 
 each relation is in good form 
 the decomposition is a lossless-join decomposition

 Our theory is based on:
 functional dependencies
 multivalued dependencies->ignore
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Functional DependenciesFunctional Dependencies

 Constraints on the set of legal relations.
 Require that the value for a certain set of attributes determines 

uniquely the value for another set of attributes.
 A functional dependency is a generalization of the notion of a key.
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 Let R be a relation schema
  R  and    R

 The functional dependency

   
holds on R if and only if for any legal relations r(R), whenever any 
two tuples t1 and t2 of r agree on the attributes , they also agree 
on the attributes .  That is, 

 t1[] = t2 []      t1[ ]  = t2 [ ] 
 Example:  Consider r(A,B ) with the following instance of r.

 On this instance, A  B does NOT hold, but  B  A does hold. 

1 4
1     5
3     7

A B
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 K is a superkey for relation schema R if and only if K  R
 K is a candidate key for R if and only if 

 K  R, and
 for no   K,   R

 Functional dependencies allow us to express constraints that cannot be 
expressed using superkeys.  Consider the schema:
 inst_dept (ID, name, salary, dept_name, building, budget ).
We expect these functional dependencies to hold:

dept_name building
           and              ID  building

but would not expect the following to hold: 
dept_name  salary

-

ED-dept, dept-> bldg
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Use of Functional DependenciesUse of Functional Dependencies

 We use functional dependencies to:
 test relations to see if they are legal under a given set of functional 

dependencies. 
  If a relation r is legal under a set F of functional dependencies, we 

say that r satisfies F.
 specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set 
of functional dependencies F.

 Note:  A specific instance of a relation schema may satisfy a functional 
dependency even if the functional dependency does not hold on all legal 
instances.  
 For example, a specific instance of instructor may, by chance, satisfy 

               name  ID.
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

 A functional dependency is trivial if it is satisfied by all instances of a 
relation
 Example:

  ID, name  ID
  name  name

 In general,    is trivial if    
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Closure of a Set of Functional Closure of a Set of Functional 

DependenciesDependencies

 Given a set F  of functional dependencies, there are certain other 
functional dependencies that are logically implied by F.
 For example:  If  A  B and  B  C,  then we can infer that A  

C
 The set of all functional dependencies logically implied by F is the 

closure of F.
 We denote the closure of F by F+.
 F+ is a superset of F.

Et F*
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Boyce-Codd Normal FormBoyce-Codd Normal Form

     is trivial (i.e.,   )
  is a superkey for R

A relation schema R is in BCNF with respect to a set F of 
functional  dependencies if for all functional dependencies in F+ of 
the form 

                

where   R and   R, at least one of the following holds:

Example schema not in BCNF:

     instr_dept (ID, name, salary, dept_name, building, budget )

because dept_name building, budget
holds on instr_dept, but dept_name is not a superkey

8
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Decomposing a Schema into BCNFDecomposing a Schema into BCNF

 Suppose we have a schema R and a non-trivial dependency   
causes a violation of BCNF.
We decompose R into:

• (U  )
• ( R - (  -  ) )

 In our example, 
  = dept_name
  = building, budget
and inst_dept is replaced by
  (U  ) = ( dept_name, building, budget )
 ( R - (  -  ) ) = ( ID, name, salary, dept_name )

- split off
If <1p =4, then R-B
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Example of BCNF DecompositionExample of BCNF Decomposition

 R = (A, B, C )
F = {A  B

 B  C}
Key = {A}

 R is not in BCNF (B  C but B is not  superkey)
 Decomposition

 R1 = (B, C)
 R2 = (A,B)
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Example of BCNF DecompositionExample of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year, 
building, room_number, capacity, time_slot_id)

 Functional dependencies:
 course_idT title, dept_name, credits
 building, room_numberTcapacity
 course_id, sec_id, semester, yearTbuilding, room_number, 

time_slot_id
 A candidate key {course_id, sec_id, semester, year}.
 BCNF Decomposition:

 course_idT title, dept_name, credits  holds
 but course_id is not a superkey.

  We replace class by:
 course(course_id, title, dept_name, credits)
 class-1 (course_id, sec_id, semester, year, building,           

             room_number, capacity, time_slot_id)
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BCNF Decomposition (Cont.)BCNF Decomposition (Cont.)

 course is in BCNF
 How do we know this?

 building, room_numberTcapacity  holds on class-1
  but {building, room_number} is not a superkey for class-1.
 We replace class-1 by:

 classroom (building, room_number, capacity)
 section (course_id, sec_id, semester, year, building, 

room_number, time_slot_id)
 classroom and section are in BCNF.
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BCNF and Dependency PreservationBCNF and Dependency Preservation

 R = (J, K, L )
F = {JK  L

  L  K }
Two candidate keys = JK and JL

 R is not in BCNF
 Any decomposition of R will fail to preserve

JK  L
      This implies that testing for JK  L requires a join

It is not always possible to get a BCNF decomposition that is 
dependency preserving

a p

TKL-K 2-M

⑭

⑧ fee, ec,

file ezk,

19, by
J, b2K,
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Third Normal Form: MotivationThird Normal Form: Motivation

 There are some situations where 
 BCNF is not dependency preserving, and 
 eFcient checking for FD violation on updates is important

 Solution: define a weaker normal form, called Third                    
Normal Form (3NF)
 Allows some redundancy (with resultant problems; we will 

see examples later)
 But functional dependencies can be checked on individual 

relations without computing a join.
 There is always a lossless-join, dependency-preserving 

decomposition into 3NF.
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Third Normal FormThird Normal Form

 A relation schema R is in third normal form (3NF) if for all:
   in F+

at least one of the following holds:
    is trivial (i.e.,   )
  is a superkey for R
 Each attribute A in  –  is contained in a candidate key for R.
   (NOTE: each attribute may be in a diHerent candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two 
conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure dependency 
preservation (will see why later).
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3NF Example3NF Example

 Relation dept_advisor:
 dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name  i_ID,  i_ID  dept_name}
 Two candidate keys:  s_ID, dept_name, and  i_ID, s_ID
 R is in 3NF

 s_ID, dept_name  i_ID   s_ID
–  dept_name is a superkey

  i_ID  dept_name 
– dept_name is contained in a candidate key
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Redundancy  in 3NFRedundancy  in 3NF

J
j1

j2

j3
null

L
l1

l1

l1

l2

K
k1

k1

k1

k2

 repetition of information (e.g., the relationship l1, k1) 
 (i_ID, dept_name)

 need to use null values (e.g., to represent the relationship
     l2, k2 where there is no corresponding value for J).
 (i_ID, dept_nameI) if there is no separate relation mapping 

instructors to departments

 There is some redundancy in this schema
 Example of problems due to redundancy in 3NF

 R = (J, K, L)
F = {JK  L, L  K }
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Comparison of BCNF and 3NFComparison of BCNF and 3NF

 It is always possible to decompose a relation into a set of  relations 
that are in 3NF such that:
 the decomposition is lossless
 the dependencies are preserved

 It is always possible to decompose a relation into a set of relations that 
are in BCNF such that:
 the decomposition is lossless
 it may not be possible to preserve dependencies.
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Design GoalsDesign Goals

 Goal for a relational database design is:
 BCNF.
 Lossless join.
 Dependency preservation.

 If we cannot achieve this, we accept one of
 Lack of dependency preservation 
 Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying functional 
dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, (and 
currently not supported by any of the widely used databases!)

 Even if we had a dependency preserving decomposition, using SQL we 
would not be able to eFciently test a functional dependency whose left 
hand side is not a key.

- Absolute!

- Optional
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Chapter 14: Transactions Chapter 14: Transactions 
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Transaction ConceptTransaction Concept
 A transaction is a unit of program execution that accesses and  

possibly updates various data items.
 E.g., transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)
 Two main issues to deal with:

 Failures of various kinds, such as hardware failures and 
system crashes

 Concurrent execution of multiple transactions
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Required  Properties of a TransactionRequired  Properties of a Transaction
 Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)
 Atomicity requirement 

 If the transaction fails after step 3 and before step 6, money will be 
“lost” leading to an inconsistent database state

 Failure could be due to software or hardware
 The system should ensure that updates of a partially executed 

transaction are not reflected in the database
 Durability requirement — once the user has been notified that the 

transaction has completed (i.e., the transfer of the $50 has taken place), the 
updates to the database by the transaction must persist even if there are 
software or hardware failures.

⑭D
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Required Properties of a Transaction (Cont.)Required Properties of a Transaction (Cont.)

 Consistency requirement in above example:
  The sum of A and B is unchanged by the execution of the transaction

 In general, consistency requirements include 
 Explicitly specified integrity constraints such as primary keys and 

foreign keys
 Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan 
amounts must equal value of cash-in-hand

 A transaction, when starting to execute,  must see a consistent database.
 During transaction execution the database may be temporarily 

inconsistent.
 When the transaction completes successfully the database must be 

consistent
 Erroneous transaction logic can lead to inconsistency
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Required Properties of a Transaction (Cont.)Required Properties of a Transaction (Cont.)

 Isolation requirement — if between steps 3 and 6 (of the fund transfer 
transaction) , another transaction T2 is allowed to access the partially 
updated database, it will see an inconsistent database (the sum  A + B 
will be less than it should be).

               T1                                        T2
1. read(A)

2. A := A – 50

3. write(A)
                                      read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B
 Isolation can be ensured trivially by running transactions serially

  That is, one after the other.   
 However, executing multiple transactions concurrently has significant 

benefits, as we will see later.
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ACID PropertiesACID Properties

 Atomicity.  Either all operations of the transaction are properly reflected 
in the database or none are.

 Consistency.  Execution of a transaction in isolation preserves the 
consistency of the database.

 Isolation.  Although multiple transactions may execute concurrently, 
each transaction must be unaware of other concurrently executing 
transactions.  Intermediate transaction results must be hidden from other 
concurrently executed transactions.  

 That is, for every pair of transactions Ti and Tj, it appears to Ti that 
either Tj, finished execution before Ti started, or Tj started execution 
after Ti finished.

 Durability.  After a transaction completes successfully, the changes it 
has made to the database persist, even if there are system failures. 

A  transaction  is a unit of program execution that accesses and possibly 
updates various data items. To preserve the integrity of data the database 
system must ensure:
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Concurrent ExecutionsConcurrent Executions
 Multiple transactions are allowed to run concurrently in the 

system.  Advantages are:
 Increased processor and disk utilization, leading to 

better transaction throughput
 E.g. one transaction can be using the CPU while 

another is reading from or writing to the disk
 Reduced average response time for transactions: short 

transactions need not wait behind long ones.
 Concurrency control schemes – mechanisms  to achieve 

isolation
 That is, to control the interaction among the concurrent 

transactions in order to prevent them from destroying the 
consistency of the database
 Will study in Chapter 15, after studying notion of 

correctness of concurrent executions.
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SchedulesSchedules

 Schedule – a sequences of instructions that specify the 
chronological order in which instructions of concurrent transactions 
are executed
 A schedule for a set of transactions must consist of all 

instructions of those transactions
 Must preserve the order in which the instructions appear in 

each individual transaction.
 A transaction that successfully completes its execution will have a 

commit instructions as the last statement 
 By default transaction assumed to execute commit instruction 

as its last step
 A transaction that fails to successfully complete its execution will 

have an abort instruction as the last statement 
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Schedule 1Schedule 1
 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.  
 An example of a  serial schedule in which T1 is followed by T2 :
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Schedule 2Schedule 2
 A serial schedule in which T2 is followed by T1 :
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Schedule 3Schedule 3
 Let T1 and T2 be the transactions defined previously.  The following 

schedule is not a serial schedule, but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved.

&

↓ ↑
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Schedule 4Schedule 4
 The following concurrent schedule does not preserve the sum  

of  “A + B”

A -> A-5T

③-> B+ 155
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SerializabilitySerializability

 Basic Assumption – Each transaction preserves database 
consistency.

 Thus, serial execution of a set of transactions preserves 
database consistency.

 A (possibly concurrent) schedule is serializable if it is 
equivalent to a serial schedule.  DiEerent forms of schedule 
equivalence give rise to the notions of:

1. conflict serializability
2. view serializability--



©Silberschatz, Korth and Sudarshan14.17Database System Concepts - 6th Edition

Simplified view of transactionsSimplified view of transactions

 We ignore operations other than read and write instructions
 We assume that transactions may perform arbitrary 

computations on data in local buEers in between reads and 
writes.  

 Our simplified schedules consist of only read and write 
instructions.
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Conflicting Instructions Conflicting Instructions 

 Let li and lj  be two Instructions of transactions Ti and Tj 
respectively.  Instructions li and lj conflict if and only if there 
exists some item Q accessed by both li and lj, and at least one of 
these instructions wrote Q.
   1. li = read(Q), lj = read(Q).   li and lj don’t conflict.
   2. li = read(Q),  lj = write(Q).  They conflict.
   3. li = write(Q), lj = read(Q).   They conflict
   4. li = write(Q), lj = write(Q).  They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal 
order between them.  

 If li and lj are consecutive in a schedule and they do not 
conflict, their results would remain the same even if they had 
been interchanged in the schedule.
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Conflict SerializabilityConflict Serializability

 If a schedule S can be transformed into a schedule S´  by 
a series of swaps of non-conflicting instructions, we say 
that S and S´ are conflict equivalent.

 We say that a schedule S is conflict serializable if it is 
conflict equivalent to a serial schedule
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Conflict Serializability (Cont.)Conflict Serializability (Cont.)
 Schedule 3 can be transformed into Schedule 6 -- a serial schedule where 

T2 follows T1, by a series of swaps of non-conflicting instructions.  
Therefore, Schedule 3 is conflict serializable.

Schedule 3 Schedule 6
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Conflict Serializability (Cont.)Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to 
obtain either the serial schedule < T3, T4 >, or the serial 
schedule < T4, T3 >.
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Precedence GraphPrecedence Graph

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are 
the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict, 
and Ti accessed the data item on which the conflict arose 
earlier.

 We may label the arc by the item that was accessed.
 Example
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Testing for Conflict SerializabilityTesting for Conflict Serializability
 A schedule is conflict serializable if and only if its 

precedence graph is acyclic.
 Cycle-detection algorithms exist which take order 

n2 time, where n is the number of vertices in the 
graph.  
 (Better algorithms take order n + e where e is 

the number of edges.)
 If precedence graph is acyclic, the serializability 

order can be obtained by a topological sorting of 
the graph. 
 That is, a linear order consistent with the 

partial order of the graph.
 For example, a serializability order for the 

schedule (a)  would be one of either (b) or (c)


