
©Silberschatz, Korth and Sudarshan1.3Database System Concepts - 6th Edition

IntroductionIntroduction
 Alternative ways of evaluating a given query

 Equivalent expressions
 Di'erent algorithms for each operation



©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 6th Edition

Introduction (Cont.)Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite database

"Explain"
X in MySQL



©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 6th Edition

Introduction (Cont.)Introduction (Cont.)

 Cost di'erence between evaluation plans for a query can be 
enormous
 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization
1. Generate logically equivalent expressions using equivalence 

rules
2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost
 Estimation of plan cost based on:

 Statistical information about relations. Examples:
 number of tuples, number of distinct values for an attribute

 Statistics estimation for intermediate results
 to compute cost of complex expressions

 Cost formulae for algorithms, computed using statistics



©Silberschatz, Korth and Sudarshan12.7Database System Concepts - 6th Edition

Measures of Query CostMeasures of Query Cost

 Cost is generally measured as total elapsed time for answering 
query
 Many factors contribute to time cost

 disk accesses, CPU, or even network communication
 Typically disk access is the predominant cost, and is also 

relatively easy to estimate.   Measured by taking into account
 Number of seeks             * average-seek-cost
 Number of blocks read     * average-block-read-cost
 Number of blocks written * average-block-write-cost

 Cost to write a block is greater than cost to read a block 
– data is read back after being written to ensure that the 

write was successful

⑧



©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 6th Edition

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)

 For simplicity we just use the number of block transfers from 
disk and the number of seeks as the cost measures
 tT – time to transfer one block
 tS – time for one seek
 Cost for b block transfers plus S seeks

        b * tT + S * tS 
 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account
 We do not include cost to writing output to disk in our cost 

formulae

0 O



©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 6th Edition

Join OperationJoin Operation

 Several di0erent algorithms to implement joins
 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Choice based on cost estimate
 Examples use the following information

 Number of records of student:  5,000     takes: 10,000
 Number of blocks of   student:     100     takes:      400o g

50 rows 25 cows

perblock per block



©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 6th Edition

Nested-Loop JoinNested-Loop Join

 To compute the theta join        r       s
for each tuple tr in r do begin

for each tuple ts  in s do begin
test pair (tr,ts) to see if they satisfy the join condition  
if they do, add tr • ts to the result.

end
end

 r  is called the outer relation and s the inner relation of the join.
 Requires no indices and can be used with any kind of join 

condition.
 Expensive since it examines every pair of tuples in the two 

relations. 

I Not counted in
calculation



©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 6th Edition

Nested-Loop Join (Cont.)Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block of each 
relation, the estimated cost is 
                nr  bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000  400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost estimate will be 
500 block transfers.

 Block nested-loops algorithm (next slide) is preferable.

*seeks inOO-sels
↑

(EES UrK3s + by
-

-



©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 6th Edition

Block Nested-Loop JoinBlock Nested-Loop Join

 Variant of nested-loop join in which every block of inner 
relation is paired with every block of outer relation.

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br  do begin
for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition 
if they do, add tr • ts to the result.

end
end

end
end

brkb + by
VS

u.bst by



©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)Block Nested-Loop Join (Cont.)

 Worst case estimate:  br  bs + br  block transfers + 2 * br  seeks
 Each block in the inner relation s is read once for each block in the 

outer relation
 Best case: br + bs block transfers + 2 seeks.
 Improvements to nested loop and block nested loop algorithms:

 In block nested-loop, use M — 2 disk blocks as blocking unit for 
outer relations, where M = memory size in blocks; use remaining 
two blocks to bu0er inner relation and output
   Cost =   br  / (M-2)  bs + br block transfers +

               2 br  / (M-2) seeks
 If equi-join attribute forms a key or inner relation, stop inner loop on 

first match
 Scan inner loop forward and backward alternately, to make use of 

the blocks remaining in bu0er (with LRU replacement)
 Use index on inner relation if available (next slide)



©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 6th Edition

Indexed Nested-Loop JoinIndexed Nested-Loop Join

 Index lookups can replace file scans if
 join is an equi-join or natural join and
 an index is available on the inner relation’s join attribute

 Can construct an index just to compute a join.
 For each tuple tr in the outer relation r, use the index to look up 

tuples in s that satisfy the join condition with tuple tr.
 Worst case:  bu0er has space for only one page of r, and, for each 

tuple in r, we perform an index lookup on s.
 Cost of the join:  br (tT + tS) + nr  c

 Where c is the cost of traversing index and fetching all matching s 
tuples for one tuple or r

 c can be estimated as cost of a single selection on s using the join 
condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

d
O



©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 6th Edition

Example of Nested-Loop Join CostsExample of Nested-Loop Join Costs
 Compute student     takes, with student as the outer relation.
 Let takes have a primary B+-tree index on the attribute ID, which 

contains 20 entries in each index node.
 Since takes has 10,000 tuples, the height of the tree is 4, and one 

more access is needed to find the actual data
 student has 5000 tuples
 Cost of block nested loops join

 400*100 + 100 =  40,100 block transfers + 2 * 100 = 200 seeks
  assuming worst case memory 
 may be significantly less with more memory

  Cost of indexed nested loops join
 100 + 5000 * 5 = 25,100  block transfers and seeks.
 CPU cost likely to be less than that for block nested loops join 



©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 6th Edition

Merge-JoinMerge-Join
1. Sort both relations on their join attribute (if not already sorted on the 

join attributes).
2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge algorithm. 
 

2. Main di0erence is handling of duplicate values in join attribute — 
every pair with same value on join attribute must be matched

3. Detailed algorithm in book



©Silberschatz, Korth and Sudarshan12.31Database System Concepts - 6th Edition

Merge-Join (Cont.)Merge-Join (Cont.)

 Can be used only for equi-joins and natural joins
 Each block needs to be read only once (assuming all tuples for any 

given value of the join attributes fit in memory
 Thus the cost of merge join is: 

         br + bs  block transfers  + br / bb + bs / bb  seeks
 + the cost of sorting if relations are unsorted.

 hybrid merge-join: If one relation is sorted, and the other has a 
secondary B+-tree index on the join attribute
 Merge the sorted relation with the leaf entries of the B+-tree . 
 Sort the result on the addresses of the unsorted relation’s tuples
 Scan the unsorted relation in physical address order and merge 

with previous result, to replace addresses by the actual tuples
 Sequential scan more eMcient than random lookup

⑧



©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 6th Edition

Hash-JoinHash-Join

 Applicable for equi-joins and natural joins.
 A hash function h is used to partition tuples of both relations 
 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the 

common attributes of r and s used in the natural join. 
 r0, r1, . . ., rn denote partitions of r tuples

 Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]).

 r0,, r1. . ., rn denotes partitions of s tuples

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book,  ri   is denoted as Hri, si is denoted as Hsi  and
 n is denoted as nh. 



©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 6th Edition

Hash-Join (Cont.)Hash-Join (Cont.)
x Ey
h(x)=h(D2

h(x7+hL3)
=>xFY
-



©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 6th Edition

Hash-Join (Cont.)Hash-Join (Cont.)

 r  tuples in ri need only to be compared with s tuples in si 
Need not be compared with s tuples in any other partition, 
since:
 an r tuple and an s tuple that satisfy the join condition 

will have the same value for the join attributes.
 If that value is hashed to some value i, the r tuple has 

to be in ri and the s tuple in si.



©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 6th Edition

Transformation of Relational ExpressionsTransformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if 
the two expressions generate the same set of tuples on every 
legal database instance
 Note: order of tuples is irrelevant
 we don’t care if they generate di'erent results on databases 

that violate integrity constraints
 In SQL, inputs and outputs are multisets of tuples

 Two expressions in the multiset version of the relational 
algebra are said to be equivalent if the two expressions 
generate the same multiset of tuples on every legal database 
instance. 

 An equivalence rule says that expressions of two forms are 
equivalent
 Can replace expression of first form by second, or vice versa



©Silberschatz, Korth and Sudarshan1.8Database System Concepts - 6th Edition

Equivalence RulesEquivalence Rules

1. Conjunctive selection operations can be deconstructed into a 
sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is 
needed, the others can be omitted.

4. Selections can be combined with Cartesian products and 
theta joins.

a. (E1 X E2) =  E1      E2 

b. 1(E1     2 E2) =  E1     1 2 E2 

)())))((((
121
EE

LLnLL
 

-



©Silberschatz, Korth and Sudarshan1.9Database System Concepts - 6th Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
E1        E2 = E2       E1

6. (a) Natural join operations are associative:

 (E1      E2)    E3 = E1      (E2     E3)

(b) Theta joins are associative in the following manner:

 (E1       1 E2)     2 3 E3 = E1        1 3 (E2     2 E3)
     
     where 2 involves attributes from only E2 and E3.

is is



©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence RulesPictorial Depiction of Equivalence Rules

O



©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 6th Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation 
under the following two conditions:
(a)  When all the attributes in 0  involve only the attributes of one 
       of the expressions (E1) being joined.

                0E1      E2) = (0(E1))     E2 

(b) When  1 involves only the attributes of E1 and 2  involves  
      only the attributes of E2.

                  1 E1     E2) =  (1(E1))     ( (E2))



©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 6th Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation 
as follows:

(a) if  involves only attributes from L1  L2:

(b) Consider a join E1       E2. 

  Let L1 and L2 be sets of attributes from E1 and E2, 
respectively.  

 Let L3 be attributes of E1 that are involved in join condition , 
but are not in L1  L2, and

  let L4 be attributes of E2 that are involved in join condition , 
but are not in L1  L2.

))(())(()( 2121 2121
EEEE LLLL

  

)))(())((()( 2121 42312121
EEEE

LLLLLLLL  




©Silberschatz, Korth and Sudarshan1.13Database System Concepts - 6th Edition

Equivalence Rules (Cont.)Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative 
E1  E2  = E2  E1 
E1  E2  = E2  E1 

9. (set di'erence is not commutative).

10. Set union and intersection are associative.

                 (E1  E2)  E3 = E1  (E2  E3)

              (E1  E2)  E3 = E1  (E2  E3)

9. The selection operation distributes over ,  and –. 

                   (E1  –  E2) =  (E1) –  (E2)

                     and similarly for  and  in place of  –

Also:            (E1  –  E2) = (E1) –  E2

                          and similarly for  in place of  –, but not for 

12. The projection operation distributes over union

                       L(E1  E2) = (L(E1))  (L(E2)) 



©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 6th Edition

Transformation Example: Pushing SelectionsTransformation Example: Pushing Selections

 Query:  Find the names of all instructors in the Music 
department, along with the titles of the courses that they teach

 name, title(dept_name= “Music”

(instructor     (teaches          course_id, title (course))))

 Transformation using rule 7a.

 name, title((dept_name= “Music”(instructor))     
               (teaches          course_id, title (course)))

 Performing the selection as early as possible reduces the size 
of the relation to be joined. 

A
I *

->



©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 6th Edition

Example with Multiple TransformationsExample with Multiple Transformations

 Query: Find the names of all instructors in the Music 
department who have taught a course in 2009, along with the 
titles of the courses that they taught

 name, title(dept_name= “Music”year = 2009

    (instructor     (teaches       course_id, title (course))))

 Transformation using join associatively (Rule 6a):

 name, title(dept_name= “Music”gear = 2009

    ((instructor     teaches)       course_id, title (course)))

 Second form provides an opportunity to apply the “perform 
selections early” rule, resulting in the subexpression

           dept_name = “Music” (instructor)      year = 2009 (teaches)

C (( C

-



©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 6th Edition

Multiple Transformations (Cont.)Multiple Transformations (Cont.)

↓S



©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 6th Edition

Transformation Example: Pushing ProjectionsTransformation Example: Pushing Projections

 Consider: name, title(dept_name= “Music” (instructor)     teaches) 
                                                      course_id, title (course))))

 When we compute

(dept_name = “Music” (instructor     teaches)

we obtain a relation whose schema is:
(ID, name, dept_name, salary, course_id, sec_id, semester, 
year)

 Push projections using equivalence rules 8a and 8b; eliminate 
unneeded attributes from intermediate results to get:
      name, title(name, course_id (
                             dept_name= “Music” (instructor)     teaches)) 
                        course_id, title (course))))

 Performing the projection as early as possible reduces the size of 
the relation to be joined. 



©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 6th Edition

Join Ordering ExampleJoin Ordering Example

 For all relations r1, r2, and r3,

(r1    r2)    r3  = r1    (r2    r3 )

(Join Associativity)

 If r2    r3  is quite large and r1    r2 is small, we choose

 (r1    r2)    r3 

so that we compute and store a smaller temporary relation.



©Silberschatz, Korth and Sudarshan1.20Database System Concepts - 6th Edition

Join Ordering Example (Cont.)Join Ordering Example (Cont.)

 Consider the expression

name, title(dept_name= “Music” (instructor)     teaches) 
                                                      course_id, title (course))))

 Could compute   teaches      course_id, title (course) first, and 
join result with 

 dept_name= “Music” (instructor) 
but  the result of the first join is likely to be a large relation.

 Only a small fraction of the university’s instructors are likely to 
be from the Music department
  it is better to compute

 dept_name= “Music” (instructor)     teaches 

       first. 



©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 6th Edition

Enumeration of Equivalent ExpressionsEnumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate 
expressions equivalent to the given expression

 Can generate all equivalent expressions as follows: 
  Repeat

 apply all applicable equivalence  rules on every subexpression of 
every equivalent expression found so far

 add newly generated expressions to the set of equivalent 
expressions 

Until no new equivalent expressions are generated above
 The above approach is very expensive in space and time

 Two approaches
 Optimized plan generation based on transformation rules
 Special case approach for queries with only selections, projections 

and joins



©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 6th Edition

Choice of Evaluation PlansChoice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing 
evaluation plans
 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g.
 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 
aggregation.

 nested-loop join may provide opportunity for pipelining
 Practical query optimizers incorporate elements of the following two 

broad approaches:

1. Search all the plans and choose the best plan in a 
cost-based fashion.

2. Uses heuristics to choose a plan.



©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 6th Edition

Choice of Evaluation PlansChoice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing 
evaluation plans
 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g.
 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 
aggregation.

 nested-loop join may provide opportunity for pipelining
 Practical query optimizers incorporate elements of the following two 

broad approaches:

1. Search all the plans and choose the best plan in a 
cost-based fashion.

2. Uses heuristics to choose a plan.


