
Language emptiness for timed
automata

B. Srivathsan

Chennai Mathematical Institute, India

In this document, we’ll consider the following question:

Given a timed automaton A, is the language L(A) empty?

This problem is known as the emptiness or the reachability problem for timed automa-
ton. It essentially amounts to checking if there is an execution of the automaton from an
initial state to a final state. In practice, solutions to this problem can be used to check if
a bad state of a system modelled as a timed automaton can ever be reached.

Figure 1.1 gives an example of a time automaton. Figure 1.2 shows the different be-
haviours of this automaton.

q0 q1q2

a, {x}

b, x ≤ 2

c, y > 5

Figure 1.1: A timed automaton A1

Nodes in Figure 1.2 are configurations of the form (q, v) where q is a state of the
automaton and v is a valuation giving values for each of the clocks. Each arrow gives the
amount of time spent at a configuration and the action that is taken subsequently. For

instance, (q1, 〈0, 1.3〉)
2,b−−→ (q0, 〈2, 3.3〉) means that at state q1 with the clock values being

〈0, 1.3〉 the automaton spends 2 time units and takes the transition b. Hence the values of
the clocks would become 〈2, 3.3〉.

As we see, the space of configurations is uncountably infinite due to the dense time
component. To solve the emptiness problem, one needs to know if there is a sequence of
enabled transitions leading to the final state. To know if a transition is enabled, one needs
to check if the values of clocks before taking the transition satisfy the corresponding guard.

1

2 Language emptiness for timed automata

· · · · · · · · ·
· · ·

· · ·

· · ·

(q0, 〈0, 0〉)

(q1, 〈0, 0〉) (q1, 〈0, 1.3〉) (q1, 〈0, 10.9〉) (q1, 〈0, 100〉)

(q0, 〈0, 1.3〉) (q0, 〈2, 3.3〉)

· · · (q2, 〈3.75, 5.05〉) (q2, 〈12, 13.3〉)

...
...

...

...

...
...

0, a 100, a

1.3, a 10.9, a

0, b 2, b

1.75, c 10, c

Figure 1.2: Part of the transition system showing the behaviours of the timed automaton A1 of
Figure 1.1

This calls for an effective and efficient handling of the uncountably infinite space of clock
valuations. This is the main challenge faced in the analysis.

The first solution to this problem was given in the paper that introduced timed au-
tomata [AD94]. We will now see this solution, before which we would need some prelimary
definitions.

1 Preliminaries

Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges over R≥0.
Let X be a set of clocks. A clock constraint φ is a conjunction of comparisons of a clock
with a constant, given by the following grammar:

φ := x ∼ c | φ ∧ φ

where x ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ N. For example, (x ≤ 3 ∧ y > 0) is a clock
constraint. Let Φ(X) denote the set of clock constraints over the set of clocks X.

Remark 1 In the above, we have chosen only integer constants in the clock constraints.
We will see later that for the emptiness problem, choosing c to be in N or in Q does not
make a difference.

Definition 2 (Clock valuation) A clock valuation over X is a function v : X → R≥0.
The set of all clock valuations is denoted by RX

≥0.

We denote by 0 the valuation that associates 0 to every clock in X. A valuation v
is said to satisfy a constraint φ, written as v � φ, when every constraint in φ holds after
replacing every x by v(x). For example, 〈x = 0.4, y = 9.3, z = 4.6〉 � (x < 5) ∧ y > 4.

Preliminaries 3

For δ ∈ R≥0, let v + δ be the valuation that associates v(x) + δ to every clock x. For
instance, 〈0.4, 9.3, 4.6〉 + 5.1 = 〈5.5, 14.4, 9.7〉. We will use this notation to talk about the
valuations that arise after some δ time-elapse.

For R ⊆ X, let [R]v be the valuation that sets x to 0 if x ∈ R, and that sets x to v(x)
otherwise. For example, [{x, y}]〈0.4, 9.3, 4.6〉 = 〈0, 0, 4.6〉. This notation would be used to
denote the valuation that is obtained from v after resetting clocks in R.

For a valuation v and a clock x, we denote the integral part of v(x) by bv(x)c and the
fractional part of v(x) by {v(x)}. We write l to mean either ≤ or <, and m to mean either
≥ or >.

Let us start with a formal definition of a timed automaton.

Definition 3 (Timed automaton [AD94]) A Timed Automaton (TA) is a tuple A =
(Q,Σ, X, T, q0,Acc) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• X is a finite set of clocks,

• q0 ∈ Q is the initial state,

• Acc ⊆ Q is a set of accepting states,

• T ⊆ Q × Σ × Φ(X) × 2X × Q is a finite set of transitions (q, a, g, R, q′) where a is
a letter in Σ, g is a clock constraint called the guard, and R is the set of clocks that
are reset on the transition.

Remark 4 For technical convenience, we choose to have a single initial state q0 ∈ Q
instead of a set of initial states Q0 ⊆ Q. For the algorithm that we propose, this does not
make any difference. One can easily extrapolate it to the case of multiple initial states.

The behaviour of a timed automaton is described by a graph as in Figure 1.2. We will
call it the semantics of a timed automaton. Here is the formal definition of this infinite
graph.

Definition 5 (Semantics of a timed automaton) Let A be a timed automaton. The
semantics of A is given by a transition system SA whose nodes are configurations (q, v)
consisting of a state q of A and a valuation v giving the values of clocks. The initial
configuration is given by (q0,0) with q0 being the initial state of A. The transition relation
→ is a union of two kinds of transitions:

delay (q, v)→δ (q, v + δ) for some δ ∈ R≥0;

action (q, v) →t (q′, v′) for some transition t = (q, a, g, R, q′) ∈ T such that v � g and
v′ = [R]v.

4 Language emptiness for timed automata

A run of A is a finite sequence of transitions starting from the initial configuration
(q0,0). Without loss of generality, we can assume that the first transition is a delay

transition and that delay and action transitions alternate (Why?). We write (q, v)
δ,t−→

(q′, v′) if there is a delay transition (q, v) →δ (q, v + δ) followed by an action transition
(q, v + δ)→t (q′, v′). So a run of A can be written as:

(q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ (q2, v2)
δ2,t2−−→ . . .

δn−1,tn−1−−−−−→ (qn, vn)

where (q0, v0) represents the initial configuration (q0,0).
A run is accepting if it ends in a configuration (qn, vn) with qn ∈ Acc.

Definition 6 (Emptiness problem) The emptiness problem for timed automata is to
decide whether a given automaton has an accepting run. This problem is known to be
decidable [AD94, CY92].

2 Algorithm for the emptiness problem

Since the transition system determined by an automaton is infinite, the standard solution
is to find a finite approximation of this transition system by grouping valuations together.
The grouping should be done in such a way that v and v′ are in the same group if all the
states of the automaton that are reachable from (q, v) and (q, v′) are the same, for all q.
That is, if there is the following run from (q, v):

(q, v)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ (q2, v2)
δ2,t2−−→ . . .

δn−1,tn−1−−−−−→ (qn, vn)

then there should be a run with the same sequence of discrete states q1, . . . , qn from (q, v′).
That is, there exist δ′0, δ

′
1, . . . , δ

′
n−1 ∈ R≥0 such that the following is a valid run from (q, v′):

(q, v′)
δ′0,t0−−→ (q1, v

′
1)

δ′1,t1−−→ (q2, v
′
2)

δ′2,t2−−→ . . .
δ′n−1,tn−1−−−−−→ (qn, v

′
n)

Note that for the emptiness problem, we do not care about the intermediate times spent
in a run. We just insist that v′ should be able to take the same sequence of transitions as
v.

One such grouping is given by the region abstraction [AD94]. The space of valuations
is partitioned into a finite number of regions. Two valuations within a region are indis-
tinguishable with respect to reachability. Having formed these finite number of regions, a
cross product with the states of the automaton is taken to give state-augmented regions.
These state-augmented regions act as nodes of what is called the region graph of the au-
tomaton whose transitions are defined in a natural way, using the valuations present in the
region. The analysis of the automaton is then performed using this finite region graph.

Let X be a finite set of clocks. Let M : X 7→ N ∪ {−∞} be a bound function that
associates a constant Mx ∈ N to every clock x. This is a slight generalization from what
we saw in class, where considered a single constant M for all clocks.

Definition 7 (Region equivalence [AD94]) Two valuations v, v′ ∈ RX
≥0 are region

equivalent w.r.t. M , denoted v ∼M v′ iff for every x, y ∈ X:

Algorithm for the emptiness problem 5

x

y

0

My

Mx

12 corner points, e.g. (2,1)
30 open line segments, e.g. 1 < x = y < 2
18 open regions, e.g. 0 < x < y < 1

Figure 1.3: Division into regions with two clocks x and y [AD94].

1. v(x) > Mx iff v′(x) > Mx;

2. if v(x) ≤Mx, then bv(x)c = bv′(x)c;

3. if v(x) ≤Mx, then {v(x)} = 0 iff {v′(x)} = 0;

4. if v(x) ≤Mx and v(y) ≤My then {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}.

Given an automaton A, a bound function is obtained by choosing for a clock x, the
maximum constant appearing in a guard involving x. Then, the first three conditions in
the above definition ensure that the two valuations satisfy the same guards. The last one
enforces that for every δ ∈ R≥0 there is δ′ ∈ R≥0, such that valuations v + δ and v′ + δ′

satisfy the same guards.

Definition 8 (Region [AD94]) Let M : X 7→ N∪{−∞} be a bound function. A region
is an equivalence class of ∼M . We write [v]M for the region of v, and RM for the set of all
regions with respect to M .

Figure 1.3 shows the division into regions when there are two clocks x and y. We
also give below a constructive definition of regions which would be useful to estimate the
number of regions.

Definition 9 (Region: constructive definition [AD94]) A region with respect to
bound function M is a set of valuations specified as follows:

1. for each clock x ∈ X, one constraint from the set:

{x = c | c = 0, . . . ,Mx} ∪ {c− 1 < x < c | c = 1, . . . ,Mx} ∪ {x > Mx}

2. for each pair of clocks x, y having interval constraints: c−1 < x < c and d−1 < y < d,
it is specified if {x} is less than, equal to or greater than {y}.

If r is a region then we will write r � g to mean that every valuation in r satisfies the
guard g. It is straightforward to see that if a valuation v ∈ r satisfies the guard g, then
every valuation v′ ∈ r satisfies g. We will now show the other property with respect to
time-elapse mentioned above.

6 Language emptiness for timed automata

Lemma 10 Let v, v′ be valuations such that v′ ∼M v. Then, for all δ ∈ R≥0, there exists
a δ′ ∈ R≥0 such that v′ + δ′ ∼M v + δ.

Proof
We know v′ ∼M v and we are given δ. We need to choose δ′. Put bδ′c to be bδc. Clearly,
we have v′+bδ′c ∼M v+bδc: that is, valuations v′+bδ′c and v+bδc have the same integral
parts and the same ordering of fractional parts (modulo M). Let x1 l1 x2 l2 . . . lk−1 xk
be the ordering of fractional parts of clocks less than M in both the valuations. Here l
denotes either < or =.

From v + bδc, elapsing a fractional amount {δ} might move some of the clocks up to
the next integer. Let xj, xj+1, . . . , xk be the clocks that have their integral values increased
from v + bδc due to the fractional elapse {δ}. Thanks to the denseness of the real line,
one can choose {δ′} between the fractional values of clocks xj−1 and xj in v′ + bδ′c so that
v′ + δ′ has the same integers as v + δ and the same ordering of fractional parts (modulo
M). �

Given a bound function M , the number of regions in RM is finite. Once this finite
partition of the valuations is obtained, we proceed to define a finite graph built from these
regions, that captures the behaviour of the timed automaton.

For an automaton A, to define its region graph, we consider a bound function MA that
is obtained from the automaton’s definition.

Definition 11 (Maximal bounds) Given an automaton A, the maximal bounds func-
tion MA : X 7→ N ∪ {−∞} associates to each clock x the biggest constant appearing in a
guard of the automaton that involves x. If there is no guard involving x, then MA(x) is
assigned −∞.

We define the region graph of an automaton A using the ∼MA relation. Note that in
class, we used the terminology region automaton. As we are not interested in the language
accepted by this automaton, and instead we care if there is a path to the accepting state,
we will stick to calling this a region graph.

Definition 12 (Region graph [AD94]) Nodes of the region graph denoted by RG(A)
are of the form (q, r) for q a state of A and r ∈ RMA a region. There is a transition

(q, r)
t−→ (q′, r′) if there are v ∈ r, δ ∈ R≥0 and v′ ∈ r′ with (q, v)

δ,t−→ (q′, v′). The initial
node of the region graph is (q0, [0]∼MA

) where [0]∼MA
represents the region to which the

initial valuation 0 belongs to. A node (q, r) is said to be an accepting node if q ∈ Acc.

Observe that a transition in the region graph is not decorated with a delay. Figure 1.4
shows a part of the region graph RG(A1) of the automaton A1 shown in Figure 1.1.

It will be important to understand the property of pre-stability of regions [TYB05].

Lemma 13 (Pre-stability of regions) Let A be an automaton. Transitions in RG(A)

are pre-stable: in each transition (q, r)
t−→ (q′, r′), for every v ∈ r there is a δ ∈ R≥0 and a

valuation v′ ∈ r′ such that (q, v)
δ,t−→ (q′, v′)

Algorithm for the emptiness problem 7

(q0, 0 = x = y)

(q1, 0 = x = y) (q1, 0 = x ∧ 0 < y < 1) (q1, 0 = x ∧ y > 5)

(q0, 0 < x < y < 1) (q0, 0 < x < 1 ∧ y = 1) (q0, x = 2 ∧ 2 < y < 3)

(q2, x > 2 ∧ y > 5)

· · ·

· · ·

Figure 1.4: Part of region graph of the automaton A1 shown in Figure 1.1

Proof
By definition of the region graph, a transition (q1, r1)

t−→ (q2, r2) exists in RG(A) if there

are v1 ∈ r1, δ ∈ R≥0 and v2 ∈ r2 with (q1, v1)
δ,t−→ (q2, v2).

Let the transition t be (q1, g, R, q2). Pick a valuation v′1 ∈ r1. By Lemma 10, there
exists a δ′ such that v1 + δ and v′1 + δ′ belong to the same region. We know that valuations
within the same region satisfy the same guards. Therefore since v1 + δ � g, we get that
v′1 + δ′ � g too. From the definition of region equivalence, we get that regions are stable
under projection to a subset of clocks and in particular, this entails that [R](v′1+δ′) belongs
to the same region as [R](v1 + δ). �

We will now establish the correspondence between paths of the region graph and runs
of the automaton. Consider two sequences

(q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ · · · (qn, vn) (1.1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (qn, rn) (1.2)

where the first is a run in A, and the second is a path in RG(A). We say that the first
is an instantiation of the second if vi ∈ ri for all i ∈ {1, . . . , n}. Equivalently, we say that
the second is an abstraction of the first. The following lemma is a direct consequence of
the pre-stability property.

Lemma 14 Every path in RG(A) is an abstraction of a run of A, and conversely, every
run of A is an instantiation of a path in RG(A).

The above lemma shows that the region graph is sound and complete for state reacha-
bility.

Theorem 15 ([AD94]) Automaton A has an accepting run iff there is a path in the region
graph RG(A) starting from its initial node to an accepting node.

8 Language emptiness for timed automata

While this theorem gives an algorithm for solving our problem, it turns out that this
method is very impractical. The number of regions obtained using a bound function M
is O

(
|X|! · 2|X| ·

∏
x∈X(2Mx + 2)

)
[AD94] and constructing all of them, or even searching

through them on-the-fly, has proved to be very costly. Later during the course, we will
look at more efficient solutions to this problem.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Form. Methods Syst. Des., 1(4):385–415, 1992.

[TYB05] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata empti-
ness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

9

	Language emptiness for timed automata
	Preliminaries
	Algorithm for the emptiness problem

