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What is a hybrid system?

• Digital system which reads and reacts to

analog environmental parameters such as

time, position, temperature . . .

• Examples:

– Controllers for cars, aircraft,

manufacturing plants

– Medical equipment

– Robots

• Extension of finite-state automata with ana-

log inputs— hybrid automata .
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Example: A temperature controller

(thermostat)

• Heater may be off or on.

• If heater is off, temperature drops

exponentially — T(t) = Tinit e−kt

• If heater is on, temperature rises

exponentially —

T(t) = Tinit e−kt + h(1− e−kt)

• Heater switches between on and off when

temperature crosses threshold values.

Typical question:

Show that heater is on for less than 50% of

the first 60 units of time.
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on

1 ≤ x ≤ 3

off

1 ≤ x ≤ 3

x = 2 ∧ y = 0 ∧ z = 0

turnoff

x = 3 ∧ stable(x, y, z)

A thermostat

∧ ẋ = −x

∧ ẏ = 0

∧ ż = 1

turnon

∧ ẋ = 5− x

∧ ẏ = 1

∧ ż = 1

x = 1 ∧

stable(x, y, z)
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Hybrid automata

A hybrid automaton consists of:

• A finite set V of control modes — i.e.,

states, in the sense of automata theory. In

the example, V = {on,off}.

• A finite set E of control switches — i.e.,

transitions, in the sense of automata the-

ory. In the example, E = {(on,off), (off,on)}.

(V,E) defines a directed graph, as usual.

• A set X of variables taking values over R.

In the example, X = {x, y, z}.

For each variable x, ẋ denotes the first

derivative of x with respect to time. This

is called the flow of x.
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Labels on control modes:

• Control modes labelled by initial condition

init(v) and flow condition flow(v) —

predicates over X ∪ Ẋ. In the example:

– init(on) : x = 2 ∧ y = 0 ∧ z = 0

– flow(on) : 1 ≤ x ≤ 3 ∧ ẋ = 5− x ∧
ẏ = 1 ∧ ż = 1

• Initial conditions marked on incoming arcs

with no source state. Initial condition false

is not marked — for instance, init(off).

• Flow condition flow(v) constrains

flows in the control mode v — for instance,

ẋ = 5− x.

• Flow conditions implicitly include invariants

— for instance, 1 ≤ x ≤ 3.
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Labels on control switches:

• Control switches (v, v′) labelled by jump

condition jump(v, v′) — predicate over

X,X ′, Ẋ, Ẋ ′.

Jump condition relates values of variables

before and after the transition — x′ and ẋ′

denote values of x and ẋ after the transi-

tion.

Example:

jump(on,off) : x = 3 ∧ stable(x, y, z)

where stable(x) abbreviates x′ = x.

• Control switches also labelled by events—

used for synchronization of parallel compo-

nents.

Example: (off,on) is labelled by the event

turnon.
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Special types of variables

• A clock is a variable with constant

flow 1, which is either stable or reset to 0

on each control switch.

In the thermostat automaton, z is a clock.

• A stopwatch is a variable which can have

flows 0 or 1, which is either stable or reset

to 0 on each control switch.

In the thermostat automaton, y is a stop-

watch which measures how much time the

system spends in control mode on.

• Show that heater is on for less than

50% of the first 60 units of time.

is equivalent to proving that

(z = 60) implies y ≤ z/2

8



Controller for a railway level crossing

When the train is far from the gate it moves

at 48 to 52 m/s. At 1000 m from the gate is

a sensor. After passing the sensor, the train

slows down to 40 to 52 m/s.

After sensing the train, the controller requires

upto 5 secs to start lowering the gate. The

gate moves at 20 deg/s.

At 100 m past the gate, there is a second sen-

sor. Once the train passes this sensor, the

controller requires upto 5 secs to start raising

the gate. The gate again moves at 20 deg/s.

Consecutive trains are at least 1500 m apart.
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x = 0

exit

past

far near

48 ≤ −ẋ ≤ 52

1000 ≤ x

40 ≤ −ẋ ≤ 52

0 ≤ x ≤ 1000

x = 1000

app

x = 100→

x′ ≥ 1500

0 ≤ x ≤ 1000

40 ≤ −ẋ ≤ 52

Train

Controller

exit
exitapp

app

exit

raiselower

app

0 ≤ z ≤ 5

ż = 0

idle

ż = 1

0 ≤ z ≤ 5

ż = 1

z′ = 0 z′ = 0

z′ = 0
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Gate

open

down closed

up

0 ≤ y ≤ 90

ẏ = 20 ẏ = 0

0 ≤ y ≤ 90

ẏ = −20

y = 0

ẏ = 0

y = 90

y = 0

y = 90

lower

raise

lowerraise

raise raise

lower lower
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Configurations

• A configuration is a triple (v,a, ȧ) where

a is a point in R
n and ȧ is a vector of

trajectories, also in R
n.

• Let ϕ be a predicate over X ∪ Ẋ. The

models of ϕ, [[ϕ]], is defined as:

[[ϕ]] = {〈a, ȧ〉 | ϕ is true when X ← a, Ẋ ← ȧ}.

• The configuration (v,a, ȧ) is admissible if

〈a, ȧ〉 belongs to [[flow(v)]].

• The configuration (v,a, ȧ) is initial if 〈a, ȧ〉

belongs to [[init(v)]].
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Timed Transition Systems

TTS = (Q,Qi,Σ,−→)

• Q a set of states with initial states

Qi ⊆ Q.

• Set of actions Σ, includes silent action

τ .

• Labelled transition relation

−→ ⊆ Q× (Σ ∪ R≥0)×Q.

Jump transition: q
a
−→ q′, a ∈ Σ.

If a = τ , the transition is silent.

Flow transition: q
δ
−→ q, δ ∈ R≥0.
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Hybrid automaton
A

=⇒
Timed transition system

TTSA = (Q,Qi,Σ,−→)

Q : admissible configurations of A

Qi : initial configurations of A

Σ : events of A

−→ : moves of the following form:

Jump: (v,a, ȧ)
σ
−→ (v′,a′, ȧ′)

– σ is the event label on edge (v, v′)

– 〈a, ȧ,a′, ȧ′〉 belongs to [[jump(v, v′)]]

Flow : (v,a, ȧ)
δ
−→ (v,a′, ȧ′)

– δ = 0, a = a′ and ȧ = ȧ
′,

or

– there exists f : [0, δ]→ R
n,

f is continuously differentiable,

〈f(0), ḟ(0)〉 = 〈a, ȧ〉,

〈f(δ), ḟ(δ)〉 = 〈a′, ȧ′〉,

and 〈f(t), ḟ(t)〉 in [[flow(v)]] for all t ∈ [0, δ].
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Reachability

• A trajectory of automaton A is a finite

path s0
a0−→ s1

a1−→ · · ·
an−1
−→ sn in TTSA,

where s0 is an initial state and each move

is permitted by −→.

State s is reachable if there is a trajectory

from an initial state which ends in s.

Question: Given an automaton A and a

state s, is s reachable in A?

Non-emptiness: Infinite behaviours

• An infinite path s0
a0−→ s1

a1−→ · · · in TTSA
diverges if the time elapsed in flow transi-

tions tends to ∞.

Question: Given an automaton A, does

TTSA admit at least one divergent infinite

path?
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Reachability and non-emptiness are decidable

for very restricted classes of hybrid systems.

A timed automaton is a hybrid system where

• Every variable is a clock.

• Every jump condition is simple —

comparison of variables to constants or the

difference of two variables to a constant.

For example, x ≤ 5 ∧ y − z ≥ 3 ∧ x′ = 7.

Theorem Reachability and non-emptiness are

decidable (PSPACE-complete) for timed au-

tomata.
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A multirate timed system extends timed au-

tomata with variables with arbitrary constant

slope.

Theorem Reachability is undecidable for 2-

rate timed systems.

Proof Reduction of halting problem for non-

deterministic 2-counter machines.

Use accurate clocks with slope 1 and skewed

clocks with slope 2.

Use an accurate clock y to mark off time seg-

ments of unit length.

1

t

y
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Counter value n⇔ Accurate clock value x = 1
2n

To reproduce x(t) at x(t+1), reset when x = 1.

x

t t+1
0

1

To increment x:

x = 1
2n x = 1

2n+1

x

z

z′

0

1

To decrement x:

x

z

z′

x = 1
2n−1

1

0

x = 1
2n
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Rectangular automata

• ẋ can vary within a range [min,max]. Can

model drifting clocks.

• Values of variables with different flows are

never compared.

• Whenever the flow constraint of a variable

changes, the variable is reset.

Theorem Reachability is decidable for rect-

angular automata.

Theorem Reachability is undecidable if either

the second or the third constraint is violated.
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Linear hybrid automata

• A linear predicate over X built out of atomic

predicates of the form Σiaixi op c, where

op is a relational operator.

If all the ai’s are rational, this is called a

rational linear predicate.

• In a linear hybrid automaton, all initial,

jump and flow conditions are written using

linear predicates such that variables from X

and Ẋ never appear together in an atomic

predicate.

For instance, x + 2ẏ ≤ 7 or x = −ẋ is not

allowed, but x ≤ 7∧3ẋ+2ẏ = 8 is allowed.
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Linear regions

• A region is a set of configurations of A.

• A region R is linear if there is a linear pred-

icate ϕv for each control mode v such that

R =
⋃
v∈V {v} × [[ϕv]].

Example: Let A be a linear hybrid automa-

ton and let TTSA be its timed transition

system. Then, Q, Qi are linear regions.

• Let R be a region.

post(R) = {s2 | ∃s1 ∈ R.s1 −→ s2}.

pre(R) = {s1 | ∃s2 ∈ R.s1 −→ s2}.
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Theorem Let A be a linear automaton and R

a linear region of A. Then, post(R) and pre(R)

are also linear regions of A.

Moreover, if all conditions used to define A and

R are rational linear predicates, then the ratio-

nal linear predicates for post(R) and pre(R)

can be effectively constructed from the predi-

cate for R.

This gives a semi-decision procedure for reach-

ability in (rational) linear hybrid automata.

Every reachable state can be obtained from Qi

(which is a rational linear region), by taking

postj(Qi) for sufficiently large j.
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Handling non-linearity

Replace non-linear system by equivalent lin-

ear system. Equivalence is defined in terms

of timed bisimulation.

Stutter closure

Let TTS = 〈Q,Qi,Σ,−→〉 be a timed transition

system. The stutter closure of −→ is given as

follows.

For σ ∈ Σ, q
σ

=⇒ q′ if there is a sequence of

the form q
τ
−→
∗
q1

σ
−→ q′.

For δ ∈ R≥0, q
δ

=⇒ q′ if there is a sequence of

the form q
τ
−→ q1

δ1−→ r1
τ
−→ · · ·

δn−→ q′ such that

Σiδi = δn.
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