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Overview
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Automata (Finite State Machines) are good abstractions of many real
systems

hardware circuits, communication protocols, biological processes, . . .
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Automata can model many properties of systems

request

response

every request is followed by a response
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Model-checking

System Property

Automaton A Automaton B

L(A) ⊆ L(B)?

Does system satisfy property?
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In practice...
Huge system Property

Higher-level description Higher-level description

Automaton A Automaton B

translation translation

Model-Checker

L(A) ⊆ L(B)?

Some model-checkers: SMV, NuSMV, SPIN, . . .

Turing Awards: Clarke, Emerson, Sifakis and Pnueli
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Automata are good abstractions of many real systems

Our course: Automata for real-time systems

Picture credits: F. Herbreteau

pacemaker, vehicle control systems, air traffic controllers, . . .
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Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, . . .
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Goals of our course

Study language theoretic and algorithmic properties of timed automata
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Lecture 7:
Timed languages and timed

automata
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Σ

Σ∗

L ⊆ Σ∗

alphabet

words

language

{a, b}

{ε, a, b, aa, ab, ba, bb, aab, . . . }

:

:

:

L1 := {set of words starting with an “ a ”}

{a, aa, ab, aaa, aab, . . . }

L2 := {set of words with a non-zero even length }

{aa, bb, ab, ba, abab, aaaa, . . . }

property over words

Finite automata, pushdown automata, Turing machines, . . .
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Σ

T Σ∗

alphabet

timed words

:

:

{a, b}

0 0.8

a

2.5

a

0 π

a

203

b

312.3

b

(aa; 0.8, 2.5) (abb; π, 203, 312.3)

(w, τ )
Word Time sequence

w = a1 . . . an

ai ∈ Σ

τ = τ1 . . . τn

τ1 ≤ · · · ≤ τn

τi ∈ R≥0
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L ⊆ T Σ∗ Timed language: property over timed words

L1 := {( ab(a + b)∗, τ ) | τ2 − τ1 = 1}

0 1 2

a b ab b

0 10 11

a b

0 10 11

a b b

L2 := { (w, τ) | τi+1 − τi ≥ 2 for all i < |w|}

0 1.2 3.5 6

a b a

0 10 12

a b

0 100

a

Timed automata
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Timed automaton: Finite automaton + Finite no. of Clocks

Guards
φ := x ≤ c | x ≥ c | ¬φ | φ ∧ φ

x ∈ Clocks , c ∈ Q≥0

Resets

Clock

time0

{( ab(a + b)∗, τ) | τ2 ≤ 2}

q0 q1 q2
ba

{x}

a, b

0 1 2

a b b

q0 q1 q2

0 1 2

a b b

q0 q1 ×
accept reject
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{x}
a, b

0 1 2

a b b

q0 q1 q2

0 1 2

a b b

q0 q1 ×
accept reject

0 1 2

a b b

q0 q1

x : 0
q2
x ≤ 2

0 1 2.5 2.5

a bb

q0 q1

x : 0
×

x > 2

accept reject
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L3 := { ( ak, τ ) | k > 0, τi = i for all i ≤ k}
An “a” occurs in every integer from 1, . . . , k

a a a a a

0 1 2 3 4 5

q0 q1
x = 1, a

{x}

x = 1, a
{x}
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L4 := { ( ak, τ ) | exist i, j s.t. τj − τi = 1}
There are 2 “a”s which are at distance 1 apart

0 t t + 1

a a a a aa a

q0 q1 q2
a

{x}

x = 1, a

a aa
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{x}
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Three mechanisms to exploit:

I Reset: to start measuring time

I Guard: to impose time constraint on action

I Non-determinism: for existential time constraints

17/35



A = (Q,Σ,X,T ,Q0, F)

T ⊆ Q× Σ× guard× reset×Q

s0 s1 s3

s2

a, {y}
c, (x < 1)

a, (y < 1), {y}

c, (x < 1)

d, (x > 1)

b, (y = 1)

(ac; 0.4, 0.9)

s0

0
0

s0

0.4
0.4

s1

0.4
0

s1

0.9
0.5

s3

0.9
0.5

0.4 a 0.5 c
x
y

Run of A over (a1a2 . . . ak; τ1τ2 . . . τk) δi := τi − τi−1; τ0 := 0

(q0, v0)
δ1−−→ (q0, v0 + δ1)

a1−−→ (q1, v1)
δ2−−→ (q1, v1 + δ2) · · · ak−−→ (qk, vk)

(w, τ) ∈ L(A) if A has an accepting run over (w, τ)
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L5 := { ( abcd.Σ∗, τ ) | τ3 − τ1 ≤ 2 and τ4 − τ2 ≥ 5}
Interleaving distances

0 1 2 3 4 5 6 7

a b c d

q0 q1 q2 q3 q4
a

{x}

b

{y}

x ≤ 2, c y ≥ 5, d

Σ
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n interleavings⇒ need n clocks

n + 1 clocks more expressive than n clocks
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Timed automata
Runs

1 clock < 2 clocks < . . .
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L6 := { ( ak, τ ) | τi is some integer for each i}

0 1 2 3 4 5 6 7

a a a

Claim: No timed automaton can accept L6
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Step 1: Suppose L6 = L(A)

Let cmax be the maximum constant appearing in a guard of A

Step 2: For a clock x,

x = dcmaxe+ 1 and x = dcmaxe+ 1.1

satisfy the same guards

Step 3: (a; dcmaxe+ 1) ∈ L6 and so A has an accepting run

(q0, v0)
δ = dcmaxe+1−−−−−−−−−→ (q0, v0 + δ)

a−→ (qF , vF )

Step 4: By Step 2, the following is an accepting run

(q0, v0)
δ′ = dcmaxe+1.1−−−−−−−−−−→ (q0, v0 + δ′)

a−→ (qF , v′F )

Hence (a; dcmaxe+ 1.1) ∈ L(A) 6= L6

Therefore no timed automaton can accept L6
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Timed automata
Runs

1 clock < 2 clocks < . . .

Role of max constant

Timed regular lngs.
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Timed regular languages

Timed languages

L′ 6= L(A)

Timed regular languages
L = L(A)

L′
L

Definition

A timed language is called timed regular if it can be accepted by a
timed automaton

25/35



L = L(A)

L

L′ L′ = L(A′)

L ∪ L′

L ∪ L′ = L(A∪)

A = (Q,Σ,X,T ,Q0, F) A′ = (Q′,Σ,X ′,T ′,Q′0, F
′)

A∪ = ( Q ∪Q′ , Σ , X ∪ X ′ , T ∪ T ′ , Q0 ∪Q′0 , F ∪ F ′ )

L(A) ∪ L(A′) = L(A∪)

Timed regular languages are closed under union

26/35



L = L(A)

L

L′ L′ = L(A′)

L ∩ L′

L ∩ L′ = L(A∩)

A = (Q,Σ,X,T ,Q0, F) A′ = (Q′,Σ,X ′,T ′,Q′0, F
′)

A∩ = ( Q×Q′ , Σ , X ∪ X ′ , T∩ , Q0 ×Q′0 , F × F ′ )

T∩ : (q1, q′1)
a, g ∧ g′−−−−−−−→ (q2, q′2) if

R ∪ R′

q1
a, g
−−−−→ q2 ∈ T and q′1

a, g′
−−−−→ q′2 ∈ T ′

R R′

Timed regular languages are closed under intersection

27/35



L : a timed language over Σ

Untime(L) ≡ {w ∈ Σ∗ | ∃τ. (w, τ) ∈ L}

Untiming construction

For every timed automaton A there is a finite automaton Au s.t.

Untime( L(A) ) = L(Au)

more about this later . . .

28/35



Complementation

Σ : {a, b}

L = { (w, τ) | there is an a at some time t and
no action occurs at time t + 1 }

L = { (w, τ) | every a has an action at
a distance 1 from it }

Claim: No timed automaton can accept L

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM’04: RT

29/35
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Step 1: L = { (w, τ) | every a has an action at
a distance 1 from it }

Suppose L is timed regular

Step 2: Let L′ = { (a∗b∗, τ) | all a’s occur before time 1 and
no two a’s happen at same time }

Clearly L′ is timed regular

Step 3: Untime( L ∩ L′ ) should be a regular language

Step 4: But, Untime( L ∩ L′ ) = {anbm | m ≥ n}, not regular!

Therefore L cannot be timed regular

30/35
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L
L

Timed regular languages are not closed under complementation
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Timed automata
Runs

1 clock < 2 clocks < . . .

Role of max constant

Timed regular lngs.

Closure under ∪, ∩

Non-closure under complement

ε-transitions
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L6 := { ( ak, τ ) | τi is some integer for each i}

ε ε ε ε

0 1 2 3 4 5 6 7

a a a

q0

x = 1, ε, {x}

x = 1, a, {x}

Claim: No timed automaton can accept L6
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ε-transitions

ε-transitions add expressive power to timed automata.

However,
they add power only when a clock is reset in an ε-transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae’98
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Timed automata
Runs

1 clock < 2 clocks < . . .

Role of max constant

Timed regular lngs.

Closure under ∪, ∩

Non-closure under complement

ε-transitions

More expressive

ε−−→ without reset ≡ TA
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