Automata for Real-time Systems

B. Srivathsan

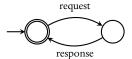
Chennai Mathematical Institute

Overview

Automata (*Finite State Machines*) are **good abstractions** of many real systems

hardware circuits, communication protocols, biological processes, ...

Automata can model many properties of systems



every request is followed by a response

Does system satisfy property?

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})?$$

Does system satisfy property?

Model-checking

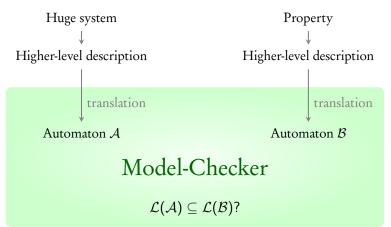
$$\mathcal{L}(\mathcal{A})\subseteq\mathcal{L}(\mathcal{B})$$
?

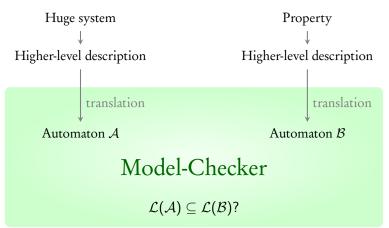
Does system satisfy property?

Huge system

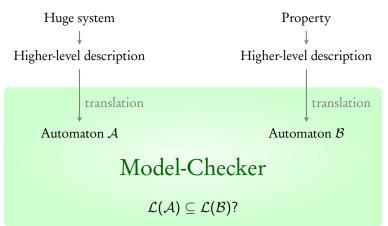
Property

Huge system ↓ Higher-level description $\begin{array}{c} Property \\ \downarrow \\ Higher-level description \end{array}$





Some model-checkers: SMV, NuSMV, SPIN, ...



Some model-checkers: SMV, NuSMV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli

Automata are good abstractions of many real systems

Automata are good abstractions of many real systems

Our course: Automata for real-time systems

Picture credits: F. Herbreteau

pacemaker, vehicle control systems, air traffic controllers,

Timed Automata

R. Alur and D. Dill in early 90s

Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, ...

Goals of our course

Study language theoretic and algorithmic properties of timed automata

Lecture 7:

Timed languages and timed automata

 $\sum : alphabet \{a, b\}$ $\sum^* : words \{\varepsilon, a, b, aa, ab, ba, bb, aab, \dots\}$ $L \subseteq \Sigma^* : language \longrightarrow property over words$

 $L_1 := \{ \text{set of words starting with an " } a " \} \\ \{ a, aa, ab, aaa, aab, \dots \}$

 $L_2 := \{ \text{set of words with a non-zero even length } \}$ $\{aa, bb, ab, ba, abab, aaaa, \dots \}$

 $\sum : alphabet \{a, b\}$ $\sum^* : words \{\varepsilon, a, b, aa, ab, ba, bb, aab, \dots\}$ $L \subseteq \Sigma^* : language \longrightarrow property over words$

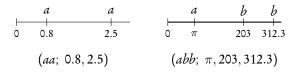
 $L_1 := \{ \text{set of words starting with an " } a " \} \\ \{ a, aa, ab, aaa, aab, \dots \}$

 $L_2 := \{ \text{set of words with a non-zero even length } \} \\ \{ aa, bb, ab, ba, abab, aaaa, \dots \}$

Finite automata, pushdown automata, Turing machines, ...

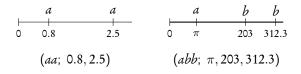
 Σ : alphabet $\{a, b\}$

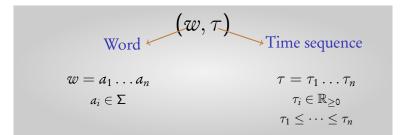
 $T\Sigma^*$: timed words



 Σ : alphabet $\{a, b\}$

 $T\Sigma^*$: timed words

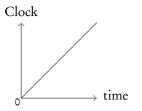


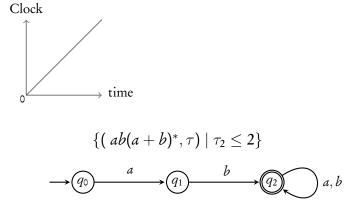


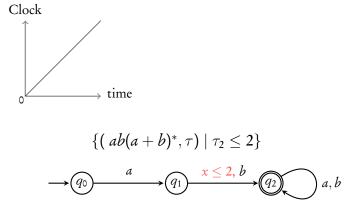
 $L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

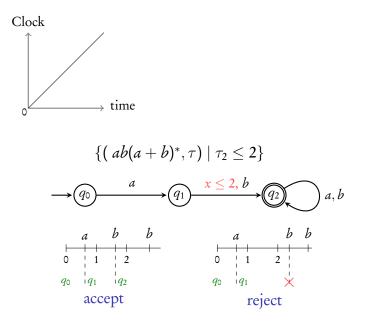
 $L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

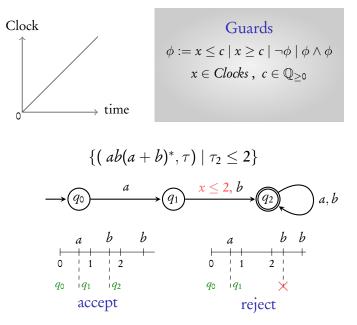
Timed automata

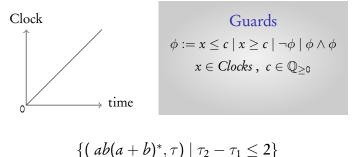












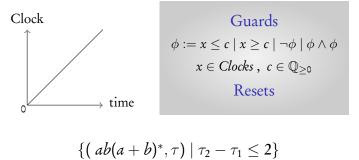
(q1)

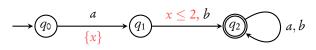
а

 q_0

 $x \leq 2, b$

a, b

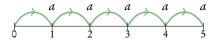






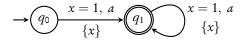
$$L_3 := \{ (a^k, \tau) \mid k > 0, \ \tau_i = i \text{ for all } i \le k \}$$

An "a" occurs in every integer from $1, \dots, k$



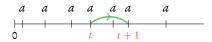
$$L_3 := \{ (a^k, \tau) | k > 0, \tau_i = i \text{ for all } i \le k \}$$

An "a" occurs in every integer from $1, \dots, k$



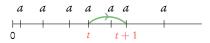
$$L_4 := \{ (a^k, \tau) | \text{ exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

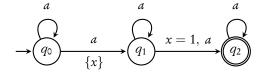
There are 2 "*a*"s which are at distance 1 apart



$$L_4 := \{ (a^k, \tau) | \text{ exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

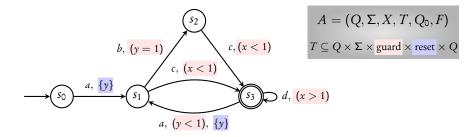
There are 2 "*a*"s which are at distance 1 apart

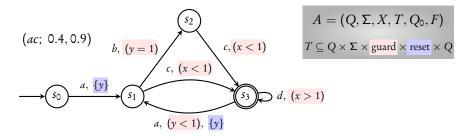


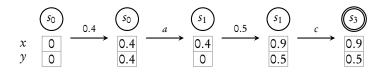


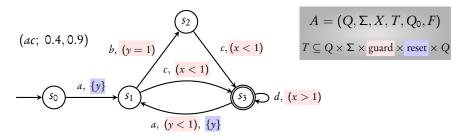
Three mechanisms to exploit:

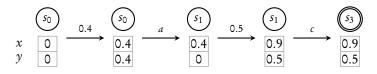
- Reset: to **start** measuring time
- Guard: to **impose** time constraint on action
- ► Non-determinism: for existential time constraints







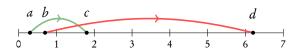




Run of A over $(a_1a_2...a_k; \tau_1\tau_2...\tau_k)$ $\delta_i := \tau_i - \tau_{i-1}; \tau_0 := 0$ $(q_0, v_0) \xrightarrow{\delta_1} (q_0, v_0 + \delta_1) \xrightarrow{a_1} (q_1, v_1) \xrightarrow{\delta_2} (q_1, v_1 + \delta_2) \cdots \xrightarrow{a_k} (q_k, v_k)$ $(w, \tau) \in \mathcal{L}(A)$ if A has an accepting run over (w, τ)

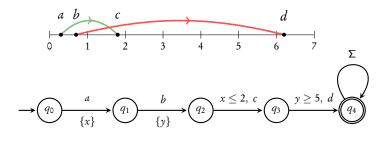
$$L_5 := \{ (abcd.\Sigma^*, \tau) \mid \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$$

Interleaving distances



$$L_5 := \{ (abcd. \Sigma^*, \tau) | \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$$

Interleaving distances



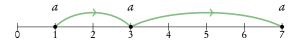
n interleavings \Rightarrow need *n* clocks

n + 1 clocks more expressive than n clocks

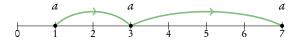
Timed automata

Runs 1 clock < 2 clocks < ...

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$



 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$



Claim: No timed automaton can accept L_6

Let c_{max} be the maximum constant appearing in a guard of A

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock x, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run $(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)$

Let c_{max} be the maximum constant appearing in a guard of A

Step 2: For a clock *x*, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3: $(a; \lceil c_{max} \rceil + 1) \in L_6$ and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run $(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v'_F)$ Hence $(a; \lceil c_{max} \rceil + 1.1) \in \mathcal{L}(A) \neq L_6$

Therefore **no timed automaton** can accept L_6 \Box

Timed automata

Runs

 $1 \text{ clock} < 2 \text{ clocks} < \dots$

Role of max constant

Timed automata

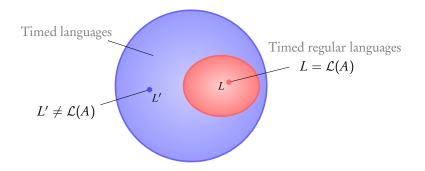
Runs

 $1 \text{ clock} < 2 \text{ clocks} < \dots$

Role of max constant

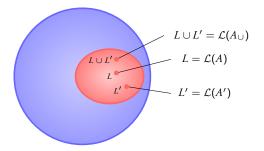
Timed regular lngs.

Timed regular languages



Definition

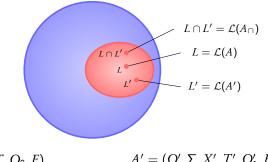
A timed language is called **timed regular** if it can be **accepted** by a timed automaton



 $A = (Q, \Sigma, X, T, Q_0, F)$ $A' = (Q', \Sigma, X', T', Q'_0, F')$

 $A_{\cup} = (Q \cup Q', \Sigma, X \cup X', T \cup T', Q_0 \cup Q'_0, F \cup F')$ $\mathcal{L}(A) \cup \mathcal{L}(A') = \mathcal{L}(A_{\cup})$

Timed regular languages are closed under union



 $A = (Q, \Sigma, X, T, Q_0, F) \qquad A' = (Q', \Sigma, X', T', Q'_0, F')$ $A_{\cap} = (Q \times Q', \Sigma, X \cup X', T_{\cap}, Q_0 \times Q'_0, F \times F')$ $T_{\cap} : \quad (q_1, q'_1) \xrightarrow[R \cup R']{} (q_2, q'_2) \text{ if }$ $q_1 \xrightarrow[R \cup R']{} q_2 \in T \text{ and } q'_1 \xrightarrow[R']{} q'_2 \in T'$

Timed regular languages are closed under intersection

L: a timed language over Σ

Untime(L) $\equiv \{w \in \Sigma^* \mid \exists \tau. (w, \tau) \in L\}$

Untiming construction

For every timed automaton A there is a finite automaton A_u s.t.

Untime($\mathcal{L}(A)$) = $\mathcal{L}(A_u)$

more about this later . . .

Complementation

 $\Sigma : \{a, b\}$

 $L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and} \\ \text{no action occurs at time } t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$$

Complementation

 $\Sigma : \{a, b\}$

 $L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and} \\ \text{no action occurs at time } t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} \\ a \text{ distance 1 from it } \}$$

Claim: No timed automaton can accept \overline{L}

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM'04: RT

Suppose \overline{L} is timed regular

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a's occur before time 1 and no two a's happen at same time \}$

Clearly L' is timed regular

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m \mid m \ge n$ }, not regular!

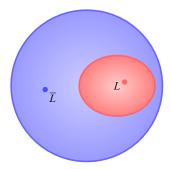
Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m | m \ge n$ }, not regular!

Therefore \overline{L} cannot be timed regular \Box



Timed regular languages are not closed under complementation

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

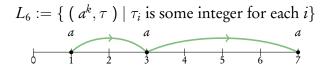
Role of max constant

Timed regular lngs.

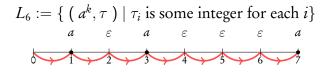
Closure under \cup , \cap

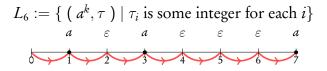
Non-closure under complement

ε -transitions



Claim: No timed automaton can accept L_6





 $x = 1, \varepsilon, \{x\}$ $\xrightarrow{q_0}$ $x = 1, a, \{x\}$

ε -transitions

 ε -transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

ε -transitions

 ε -transitions add expressive power to timed automata. However, they add power only when a clock is reset in an ε -transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

Timed automata

Runs

 $1 \operatorname{clock} < 2 \operatorname{clocks} < \dots$

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

ε -transitions

More expressive

 $\xrightarrow{\varepsilon}$ without reset \equiv TA