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Overview



Automata (Finite State Machines) are good abstractions of many real

systems

hardware circuits, communication protocols, biological processes, .
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Automata can model many properties of systems

request

00

response

every request is followed by a response
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In practice...

Huge system Property
Higher-level description Higher-level description
translation translation
Automaton A Automaton B

Model-Checker

L(A) C £(B)?

Some model-checkers: SMV, NuSMYV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli



Automata are good abstractions of many real systems



Automata are good abstractions of many real systems

Our course: Automata for real-time systems

e =
= of B
W " Approach/Exit

Lower/Raise

Picture credits: F. Herbretean

pacemaker, vehicle control systems, air traffic controllers, . ..
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Timed Automata

R. Alur and D. Dill in early 90s
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Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, ...
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Goals of our course

Study language theoretic and algorithmic properties of timed automata



Lecture 7:

Timed languages and timed
automata



Y calphabet {a,b}
Y * words {e,a,b,aa,ab,ba,bb,aab, ...}

L C Y*:language —— property over words

L, := {set of words starting with an “ 2 "}

{a,aa,ab,aaa,aab, ...}

L, := {set of words with a non-zero even length }

{aa, bb,ab, ba,abab, aaaa, . ..}
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Y calphabet {a,b}
Y *  words {e,a,b,aa,ab,ba,bb,aab, ...}

L C Y*:language —— property over words

L, := {set of words starting with an “ 2 "}

{a,aa,ab,aaa,aab, ...}

L, := {set of words with a non-zero even length }

{aa,bb,ab, ba,abab, aaaa, . ..}

Finite automata, pushdown automata, Turing machines, ...



Y calphabet {a,b}

T * : timed words

a a a b b
6 0.‘8 2‘5 6 71' 2(53 315.3
(aa; 0.8,2.5) (abb; m,203,312.3)



Y calphabet {a,b}

T * : timed words
a a . b b

0 0.8 25 0 m 203 3123

(aa; 0.8,2.5) (abb; 7,203,312.3)
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L C TX*:Timed language —— property over timed words

Ly ={(abla+b)*,7)|mn—1 =1}

a b ab b a b a b b
————+ e ———t—t—
o 1 2 0 10 11 0 10 11

L2 = { (fw”]‘) ’ Tiv1 — T; > 2foralli < |’ZU|}
a b a a b a

0 1235 6 0 10 12 0 100
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L C TY*:Timed language —— property over timed words

Ly ={(abla+b)*,7)|mn—1 =1}

a b ab b a b a b b
—————+ e ———t—t—
o 1 2 0 10 11 0 10 11

Ly ={(w,7)|7iy1 — 7, > 2forall 1 < |w|}

a b a a b a
— e ———— MEE—
0 1.2 35 6 0 10 12 0 100

Timed automata
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Timed automaton: Finite automaton + Finite no. of Clocks

Clock

time
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Timed automaton: Finite automaton + Finite no. of Clocks

Clock Guards
p=x<clx>c|=9|pAS
x € Clocks , ¢ € Q>

{(abla+Db),7)|mn <2}

_)@ a @ x<2,b @ b

a b b a b 19

0:1:2 0
I I

o @1 @ 90
accept reject
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Clock Guards
pi=x<clx=c|-d|dpA
x € Clocks , ¢ € Q>
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Timed automaton: Finite automaton + Finite no. of Clocks

Clock Guards
p=x<clx>c|9|pAd
x € Clocks , ¢ € Q>0

) Resets
time

{(abla+b)*,7)| n— 711 <2}

_)@ a} @ x<2,b @ b

a b b a bb

0 :1 2: 0 :.5 1 2 2.5:

9o 0 92 90 91 X
x:0 x<2 x:0 x> 2

accept reject
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Ly:={(a7)|k>0, 7=1i foralli <k}

An “a” occurs in every integer from 1,...,k
a a a a a
¥ } | | } 'l
0 1 2 3 4 5
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Ly:={(a7)|k>0, 7=1i foralli <k}

An “a” occurs in every integer from 1,...,k

O—
——e
Mo~
o
=
ur

x=1a

—’._{—1}’ {x)
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Ly:={(d"7)|existi,jst. 77— 7 =1}

There are 2 “a”s which are at distance 1 apart
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Ly:={(d"7)|existi,jst. 77— 7 =1}

There are 2 “a”s which are at distance 1 apart
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Three mechanisms to exploit:

» Reset: to start measuring time
» Guard: to impose time constraint on action

» Non-determinism: for existential time constraints



A= (QazaXa T?Qan)

T C QX X X guard X reset X Q

a, (y < 1), {9}



A= (QazaXa TonaF)

T C QX X X guard X reset X Q
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Ls:={(abdx*,7) |3 —7 <2and 7y — 1, > 5}

Interleaving distances
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Ls :={(abcdX*,7)|5—7<2and 7y — 1» > 5}

Interleaving distances

_)@ {z} @ {j} @xSZ,C@yZS,d@
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n interleavings = need 7 clocks

n + 1 clocks more expressive than 7 clocks
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Lo :={ (a*,7) |7 is some integer for each 7}

>
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Lo :={ (a*,7) |7 is some integer for each 7}

>

Claim: No timed automaton can accept L

/35



Step 1: Suppose Le = L(A)

Let ¢y0x be the maximum constant appearing in a guard of A
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Step 1: Suppose Le = L(A)

Let ¢y0x be the maximum constant appearing in a guard of A

Step 2: For a clock x,
X = [emax| + 1 and x = [cpax| + 1.1

satisfy the same guards

Step 3: (a; [cmax] + 1) € Lg and so A has an accepting run

6 = [Cmax.l‘f'l
—_—

(90, %0) (90,0 + 6) == (qF, vF)

Step 4: By Step 2, the following is an accepting run

8" = [emax ] +1.1
—

(90, o) (0,0 + ") = (gqr, VF)



Step 1: Suppose Le = L(A)

Let ¢y0x be the maximum constant appearing in a guard of A

Step 2: For a clock x,
X = [emax| + 1 and x = [cpax| + 1.1

satisfy the same guards

Step 3: (a; [cmax] + 1) € Lg and so A has an accepting run

6 = [Cmax.l‘f'l
—_—

(90, %0) (90,0 + 6) == (qF, vF)

Step 4: By Step 2, the following is an accepting run

8 = max | +1.1
(g0, 0) =1 (40 0y + 67) < (g, o))

Hence (2; [cpax] +1.1) € L(A) # Lg

Therefore no timed automaton can accept Lg

O
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Timed regular languages

Timed languages
Timed regular languages

L=L(A)

L' # L(A)

A timed language is called timed regular if it can be accepted by a
timed automaton
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LUL = L(Ay)
L= L(A)

L' = L(A")

A :(Qaz7Xa Ta QO)F) A= (Q’,Z,X’,T’,Qé,F’)

Au=(QUQ ., X, XUX , TUT , QUQy, FUF)

LAY U L(A") = L(AL)

1ed regular languages are closed under un
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LNl = l:(zarj)

L= L(A)
L' = L(A")
A=(Q L X, T,Q,F) A= (Q. L, X"\ T, F')

An=(QxQ , X, XUX , T, QxQy, FxF)

ar languages are closed unde
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L : atimed language over &
Untime(L) = {we X | 3I7. (w,7) € L}

For every timed automaton A there is a finite automaton A, s.t.

Untime( £(A) ) = L(A,)

more about this later . . .

719/35
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Complementation

{ (w,7) |

{ (w,7) |

Y :{a,b}

there is an a at some time t and

no action occurs at time ¢ + 1 }

every a has an action at

a distance 1 from it }



|

Complementation

Y :{a,b}

= {(w,7)| there is an a at some time ¢ and

no action occurs at time ¢ + 1 }

= {(w,7)| every a has an action at

a distance 1 from it }

Claim: No timed automaton can accept L

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM°04: RT
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Step 1: L

= {(w,7)| every a has an action at

a distance 1 from it }

Suppose L is timed regular



Step1: L = {(w,7)| every a has an action at

a distance 1 from it }

Suppose L is timed regular

Step 2: Let L' = { (a*b*,7) | all 4’s occur before time 1 and

no two a’s happen at same time }
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Step1: L = {(w,7)| every a has an action at

a distance 1 from it }

Suppose L is timed regular

Step 2: Let L' = { (a*b*,7) | all 4’s occur before time 1 and

no two a’s happen at same time }

Clearly L’ is timed regular
Step 3: Untime( L N L") should be a regular language
Step 4: But, Untime( LN L") = {a"V" | m > n}, not regular!

Therefore L cannot be timed regular [



: guages are not closed under comp]
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Lo :={ (4*,7) | 7; is some integer for each 7}
a a a

O
—-e

I .

Claim: No timed automaton can accept L
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3 a

3

3

3

a
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Le:={(a",
a

7 ) | 7; is some integer for each i}

€ a € 9 e a
k 7S | o | | | °
1 4 6
x=1, ¢, {x}
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e-transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae’98
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e-transitions add expressive power to timed automata. However,
they add power only when a clock is reset in an e-transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae’98
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