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Overview 

•  Nondeterminism 

•  Markov decision processes (MDPs) 

•  Paths, probabilities and adversaries 

•  End components 
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Recap: DTMCs 
•  Discrete-time Markov chains (DTMCs) 

−  discrete state space,  transitions are discrete time-steps 
−  from each state, choice of successor state (i.e. which 

transition) is determined by a discrete probability distribution 

•  DTMCs are fully probabilistic 
−  well suited to modelling, for example, simple random 

algorithms or synchronous probabilistic systems where 
components move in lock-step 
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Nondeterminism 
•  But, some aspects of a system may not be probabilistic and 

should not be modelled probabilistically; for example: 

•  Concurrency - scheduling of parallel components 
−  e.g. randomised distributed algorithms - multiple probabilistic 

processes operating asynchronously 
•  Unknown environments 

−  e.g. probabilistic security protocols - unknown adversary 
•  Underspecification - unknown model parameters 

−  e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax 

•  Abstraction 
−  e.g. partition DTMC into similar (but not identical) states 
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Probability vs. nondeterminism 

•  Labelled transition system 
−  (S,s0,R,L) where R ⊆ S×S 
−  choice is nondeterministic 

•  Discrete-time Markov chain 
−  (S,s0,P,L) where P : S×S→[0,1] 
−  choice is probabilistic 

•  How to combine? 
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Markov decision processes 
•  Markov decision processes (MDPs) 

−  extension of DTMCs which allow nondeterministic choice 

•  Like DTMCs: 
−  discrete set of states representing possible configurations of 

the system being modelled 
−  transitions between states occur in discrete time-steps 

•  Probabilities and nondeterminism 
−  in each state, a nondeterministic  

choice between several discrete  
probability distributions over  
successor states 
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Markov decision processes 
•  Formally, an MDP M is a tuple (S,sinit,Steps,L) where:  

−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  Steps : S → 2Act×Dist(S) is the transition probability function 

 where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S 

−  L : S → 2AP is a labelling with atomic propositions 

•  Notes: 
−  Steps(s) is always non-empty,  

i.e. no deadlocks 
−  the use of actions to label  

distributions is optional 
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Simple MDP example 
•  Modification of the simple DTMC communication protocol 

−  after one step, process starts trying to send a message 
−  then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message 
−  if the latter, with probability 0.99 send successfully and stop 
−  and with probability 0.01, message sending fails, restart 
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Simple MDP example 2 
•  Another simple MDP example with four states 

−  from state s0, move directly to s1 (action a) 
−  in state s1, nondeterministic choice between actions b and c 
−  action b gives a probabilistic choice: self-loop or return to s0 
−  action c gives a 0.5/0.5 random choice between heads/tails 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 

1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b 

c 

a 

a 



10 DP/Probabilistic Model Checking, Michaelmas 2011 

Simple MDP example 2 

M = (S,sinit,Steps,L) 

S = {s0, s1, s2, s3}  
sinit = s0 

Steps(s0) = { (a, [s1↦1]) } 
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) } 
Steps(s2) = { (a, [s2↦1]) } 
Steps(s3) = { (a, [s3↦1]) } 
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The transition probability function 
•  It is often useful to think of the function Steps as a matrix 

−  non-square matrix with |S| columns and Σs∈S |Steps(s)| rows 

•  Example (for clarity, we omit actions from the matrix) 

Steps(s0) = { (a, s1↦1) } 
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) } 
Steps(s2) = { (a, s2↦1) } 
Steps(s3) = { (a, s3↦1) } 
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Example - Parallel composition 
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Asynchronous parallel composition of two 3-state DTMCs 

PRISM code: 

module M1 
    s : [0..2] init 0; 
    [] s=0 -> (s’=1); 
    [] s=1 -> 0.5:(s’=0) + 0.5:(s’=2); 
    [] s=2 -> (s’=2); 

endmodule 

module M2 = M1 [ s=t ] endmodule 
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Example - Parallel composition 

t0 t1 t2 1 

1 

0.5 
0.5 

1 1 1 

s0   t0 s0   t1 s0   t2 

s1   t0 

s2   t0 

s1   t1 

s2   t1 

s1   t2 

s2   t2 

0.5 

1 

1 

1 

1 0.5 1 0.5 1 
1 

0.5 

1 

0.5 

1 

0.5 

0.5 

0.5 

0.5 

0.5 0.5 0.5 

s0 

s1 

s2 

0.5 1 

0.5 

1 

Asynchronous parallel  
composition of two  
3-state DTMCs 

Action labels 
omitted here 



14 DP/Probabilistic Model Checking, Michaelmas 2011 

Paths and probabilities 
•  A (finite or infinite) path through an MDP 

−  is a sequence of states and action/distribution pairs 
−  e.g. s0(a0,µ0)s1(a1,µ1)s2… 
−  such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0 
−  represents an execution (i.e. one possible behaviour) of the 

system which the MDP is modelling 

•  Path(s) = set of all paths through MDP starting in state s 
−  Pathfin(s) = set of all finite paths from s 

•  Paths resolve both nondeterministic  
 and probabilistic choices 
−  how to reason about probabilities? 
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Adversaries 
•  To consider the probability of some behaviour of the MDP 

−  first need to resolve the nondeterministic choices 
−  …which results in a DTMC 
−  …for which we can define a probability measure over paths 

•  An adversary resolves nondeterministic choice in an MDP 
−  also known as “schedulers”, “policies” or “strategies” 

•  Formally: 
−  an adversary σ of an MDP M is a function mapping every finite 

path ω = s0(a0,µ0)s1...sn to an element σ(ω) of Steps(sn) 
−  i.e. resolves nondeterminism based on execution history 

•  Adv (or AdvM) denotes the set of all adversaries 
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Adversaries - Examples 
•  Consider the previous example MDP 

−  note that s1 is the only state for which |Steps(s)| > 1 
−  i.e. s1 is the only state for which an adversary makes a choice 
−  let µb and µc denote the probability distributions associated 

with actions b and c in state s1 

•  Adversary σ1 
−  picks action c the first time 
−  σ1(s0s1)=(c,µc) 

•  Adversary σ2 
−  picks action b the first time, then c 

−  σ2(s0s1)=(b,µb), σ2(s0s1s1)=(c,µc),  
σ2(s0s1s0s1)=(c,µc) 
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Adversaries and paths 
•  Pathσ(s) ⊆ Path(s)  

−  (infinite) paths from s where nondeterminism resolved by σ 
−  i.e. paths s0(a0,µ0)s1(a1,µ1)s2… 
−  for which σ(s0(a0,µ0)s1…sn)) = (an,µn) 

•  Adversary σ1 
−  (picks action c the first time) 
−  Pathσ1(s0) = { s0s1s2

ω, s0s1s3
ω } 

•  Adversary σ2 
−  (picks action b the first time, then c) 
−  Pathσ2(s0) = { s0s1s0s1s2

ω, s0s1s0s1s3
ω, s0s1s1s2

ω, s0s1s1s3
ω } 
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Induced DTMCs 
•  Adversary σ for MDP induces an infinite-state DTMC Dσ 

•  Dσ = (Pathσfin(s),s,Pσs) where: 
−  states of the DTMC are the finite paths of σ starting in state s 
−  initial state is s (the path starting in s of length 0) 
−  Pσs(ω,ω’)=µ(s’) if ω’= ω(a, µ)s’ and σ(ω)=(a,µ) 
−  Pσs(ω,ω’)=0 otherwise 

•  1-to-1 correspondence between Pathσ(s) and paths of Dσ 

•  This gives us a probability measure Prσs over Pathσ(s) 
−  from probability measure over paths of Dσ 
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Adversaries - Examples 
•  Fragment of induced DTMC for adversary σ1 

−  σ1 picks action c the first time 
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Adversaries - Examples 
•  Fragment of induced DTMC for adversary σ2 

−  σ2 picks action b, then c 
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MDPs and probabilities 
•  Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ } 

−  for some path formula ψ 
−  e.g. Probσ(s, F tails) 

•  MDP provides best-/worst-case analysis 
−  based on lower/upper bounds on probabilities 
−  over all possible adversaries 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 

a 

  

€ 

pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

  

€ 

pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)



22 DP/Probabilistic Model Checking, Michaelmas 2011 

Examples 
•  Probσ1(s0, F tails) = 0.5 
•  Probσ2(s0, F tails) = 0.5 

−  (where σi picks b i-1 times then c) 
•  … 
•  pmax(s0, F tails) = 0.5 
•  pmin(s0, F tails) = 0 

•  Probσ1(s0, F tails) = 0.5 
•  Probσ2(s0, F tails)  

  = 0.3+0.7·0.5 = 0.65 
•  Probσ3(s0, F tails)  

  = 0.3+0.7·0.3+0.7·0.7·0.5 = 0.755 
•  … 
•  pmax(s0, F tails) = 1 
•  pmin(s0, F tails) = 0.5 
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Memoryless adversaries 
•  Memoryless adversaries always pick same choice in a state 

−  also known as: positional, Markov, simple 
−  formally, σ(s0(a0,µ0)s1...sn) depends only on sn 

−  can write as a mapping from states, i.e. σ(s) for each s ∈ S 
−  induced DTMC can be mapped to a |S|-state DTMC 

•  From previous example: 
−  adversary σ1 (picks c in s1) is memoryless; σ2 is not 
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Other classes of adversary 
•  Finite-memory adversary 

−  finite number of modes, which can govern choices made 
−  formally defined by a deterministic finite automaton 
−  induced DTMC (for finite MDP) again mapped to finite DTMC 

•  Randomised adversary 
−  maps finite paths s0(a1,µ1)s1...sn in MDP to a probability 

distribution over element of Steps(sn) 
−  generalises deterministic schedulers 
−  still induces a (possibly infinite state) DTMC 

•  Fair adversary 
−  fairness assumptions on resolution of nondeterminism 
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End components 
•  Consider an MDP M = (S,sinit,Steps,L) 

•  A sub-MDP of M is a pair (S’,Steps’) where: 
−  S’ ⊆ S is a (non-empty) subset of M’s states 
−  Steps’(s) ⊆ Steps(s) for each s ∈ S’ 
−  is closed under probabilistic branching, i.e.: 
−  { s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) } ⊆ S’  

•  An end component of M is a  
strongly connected sub-MDP 
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End components 
•  For finite MDPs… 

•  For every end component, there  
is an adversary which,  
with probability 1, forces the MDP 
to remain in the end component 
and visit all its states infinitely often 

•  Under every adversary σ,  
with probability 1 an end component 
will be reached and all of its states 
visited infinitely often 

−  (analogue of fundamental property of finite DTMCs) 
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Summing up… 
•  Nondeterminism 

−  concurrency, unknown environments/parameters, abstraction 
•  Markov decision processes (MDPs) 

−  discrete-time + probability and nondeterminism 
−  nondeterministic choice between multiple distributions 

•  Adversaries 
−  resolution of nondeterminism only 
−  induced set of paths and (infinite state DTMC) 
−  induces DTMC yields probability measure for adversary 
−  best-/worst-case analysis: minimum/maximum probabilities 
−  memoryless adversaries 

•  End components 
−  long-run behaviour: analogue of BSCCs for DTMCs 


