

Lecture 12 Markov Decision Processes

Dr. Dave Parker

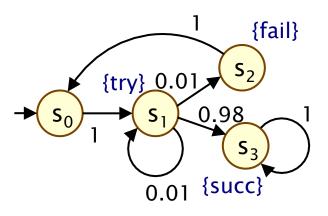
Department of Computer Science University of Oxford

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- Paths, probabilities and adversaries
- End components

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - discrete state space, transitions are discrete time-steps
 - from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution



- DTMCs are fully probabilistic
 - well suited to modelling, for example, simple random algorithms or synchronous probabilistic systems where components move in lock-step

Nondeterminism

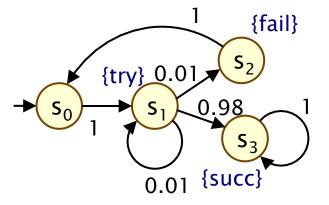
- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- **Concurrency** scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Abstraction
 - e.g. partition DTMC into similar (but not identical) states

Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where $R \subseteq S \times S$
 - choice is nondeterministic

 $\{try\} \\ s_0 \\ s_1 \\ s_3 \\ succ\} \\ succ\}$

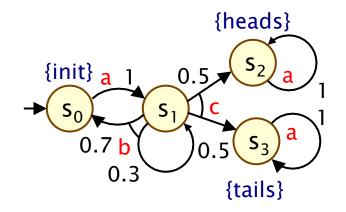
- Discrete-time Markov chain
 - (S,s₀,P,L) where P : S×S→[0,1]
 - choice is probabilistic



• How to combine?

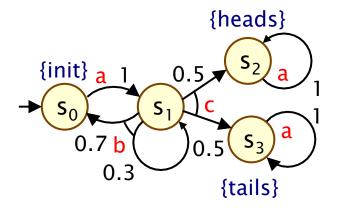
Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states



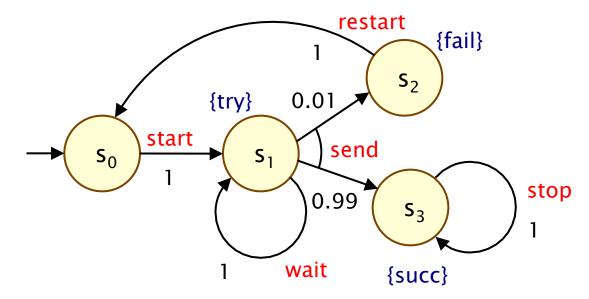
Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},**Steps**,L) where:
 - S is a finite set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - Steps : S \rightarrow 2^{Act×Dist(S)} is the transition probability function
 - where Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set S
 - L : S \rightarrow 2^{AP} is a labelling with atomic propositions
- Notes:
 - Steps(s) is always non-empty,
 i.e. no deadlocks
 - the use of actions to label distributions is optional



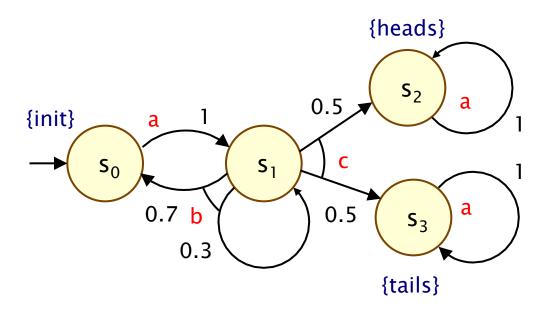
Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart



Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action **a**)
 - in state $s_1,$ nondeterministic choice between actions ${\color{black} b}$ and ${\color{black} c}$
 - action **b** gives a probabilistic choice: self-loop or return to s_0
 - action **c** gives a 0.5/0.5 random choice between heads/tails



Simple MDP example 2

$$M = (S, s_{init}, Steps, L)$$

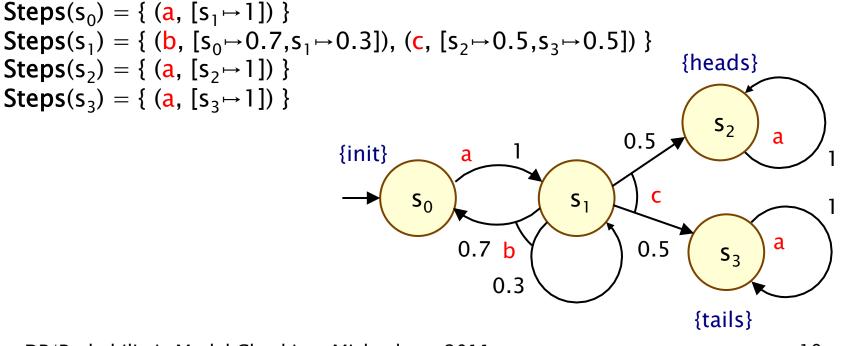
$$AP = \{init, heads, tails\}$$

$$L(s_0) = \{init\},$$

$$L(s_1) = \emptyset,$$

$$L(s_2) = \{heads\},$$

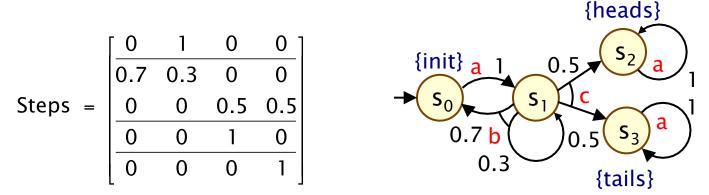
$$L(s_3) = \{tails\}$$



The transition probability function

- It is often useful to think of the function **Steps** as a matrix - non-square matrix with |S| columns and $\Sigma_{s \in S}$ |**Steps**(s)| rows
- Example (for clarity, we omit actions from the matrix)

Steps(
$$s_0$$
) = { (a, $s_1 \mapsto 1$) }
Steps(s_1) = { (b, [$s_0 \mapsto 0.7, s_1 \mapsto 0.3$]), (c, [$s_2 \mapsto 0.5, s_3 \mapsto 0.5$]) }
Steps(s_2) = { (a, $s_2 \mapsto 1$) }
Steps(s_3) = { (a, $s_3 \mapsto 1$) }



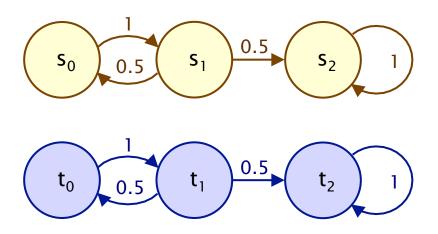
Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
s : [0..2] init 0;
[] s=0 -> (s'=1);
[] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);
[] s=2 -> (s'=2);
endmodule

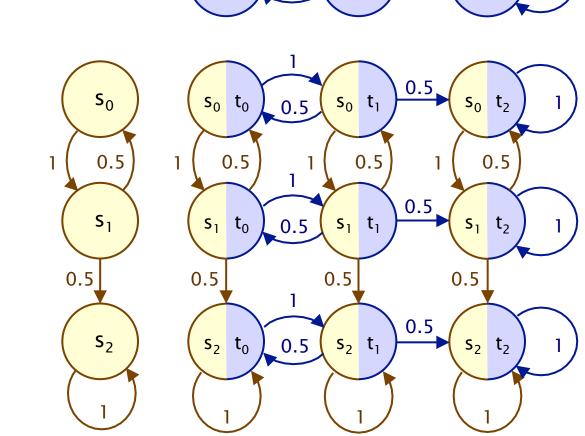
module M2 = M1 [s=t] endmodule



Example - Parallel composition

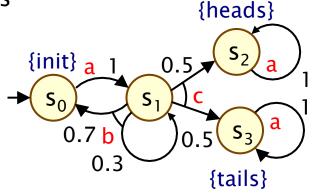
Asynchronous parallel composition of two 3-state DTMCs t_0 0.5 t_1 0.5 t_2 1

Action labels omitted here



Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i,\mu_i)\in \textbf{Steps}(s_i)$ and $\mu_i(s_{i+1})>0$ for all $i{\geq}0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- Path(s) = set of all paths through MDP starting in state s
 - $Path_{fin}(s) = set of all finite paths from s$
- Paths resolve both nondeterministic and probabilistic choices
 - how to reason about probabilities?

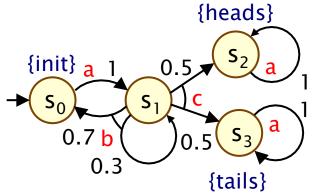


Adversaries

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ... for which we can define a probability measure over paths
- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "policies" or "strategies"
- Formally:
 - an adversary σ of an MDP M is a function mapping every finite path $\omega = s_0(a_0,\mu_0)s_1...s_n$ to an element $\sigma(\omega)$ of **Steps**(s_n)
 - i.e. resolves nondeterminism based on execution history
- Adv (or Adv_M) denotes the set of all adversaries

Adversaries – Examples

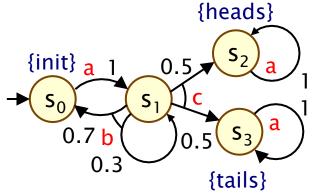
- Consider the previous example MDP
 - note that s_1 is the only state for which |Steps(s)| > 1
 - i.e. s_1 is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1
- Adversary σ_1
 - picks action c the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$
- Adversary σ_2
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1) = (b,\mu_b), \sigma_2(s_0s_1s_1) = (c,\mu_c), \sigma_2(s_0s_1s_0s_1) = (c,\mu_c)$



(Note: actions/distributions omitted from paths for clarity)

Adversaries and paths

- $Path^{\sigma}(s) \subseteq Path(s)$
 - (infinite) paths from s where nondeterminism resolved by $\boldsymbol{\sigma}$
 - i.e. paths $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - for which $\sigma(s_0(a_0,\mu_0)s_1...s_n)) = (a_n,\mu_n)$
- Adversary σ_1
 - (picks action c the first time)
 - $Path^{\sigma_1}(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$



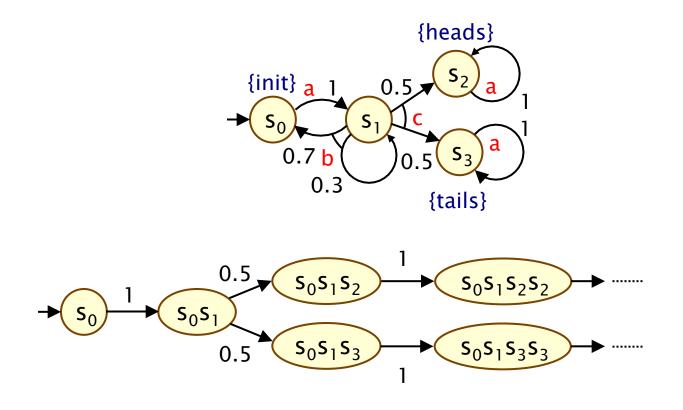
- Adversary σ_2
 - (picks action b the first time, then c)
 - $Path^{\sigma_{2}}(s_{0}) = \{ s_{0}s_{1}s_{0}s_{1}s_{2}^{\omega}, s_{0}s_{1}s_{0}s_{1}s_{3}^{\omega}, s_{0}s_{1}s_{1}s_{2}^{\omega}, s_{0}s_{1}s_{1}s_{3}^{\omega} \}$

Induced DTMCs

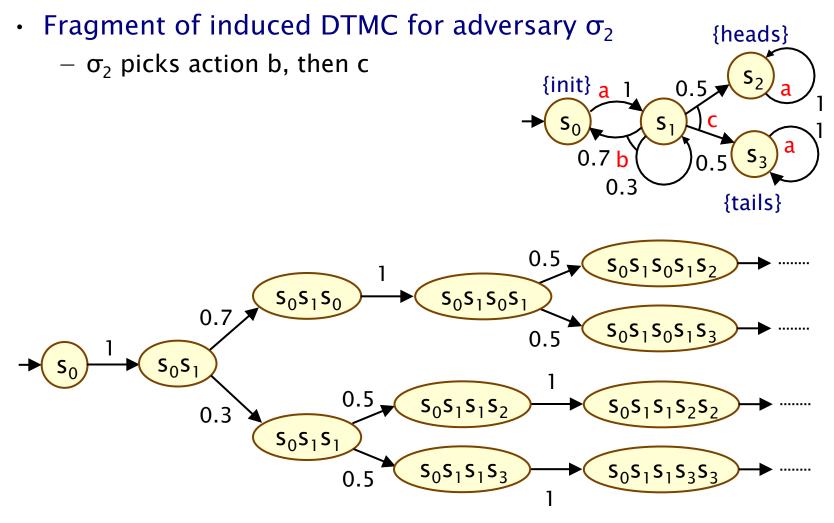
- Adversary σ for MDP induces an infinite-state DTMC D^{σ}
- $D^{\sigma} = (Path^{\sigma}_{fin}(s), s, P^{\sigma}_{s})$ where:
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $\mathbf{P}_{\sigma_s}(\omega, \omega') = \mu(s')$ if $\omega' = \omega(a, \mu)s'$ and $\sigma(\omega) = (a, \mu)$
 - $\mathbf{P}^{\sigma}_{s}(\omega,\omega')=0$ otherwise
- + 1-to-1 correspondence between Path^{σ}(s) and paths of D^{σ}
- This gives us a probability measure Pr^{σ}_{s} over $Path^{\sigma}\!(s)$
 - from probability measure over paths of D^σ

Adversaries – Examples

- Fragment of induced DTMC for adversary σ_1
 - σ_{1} picks action c the first time



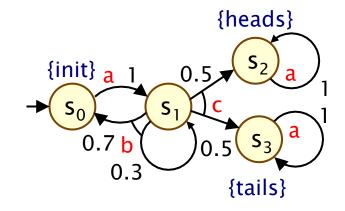
Adversaries – Examples



MDPs and probabilities

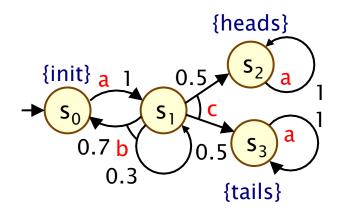
- $Prob^{\sigma}(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \vDash \psi \}$
 - for some path formula ψ
 - e.g. Prob^o(s, F tails)
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

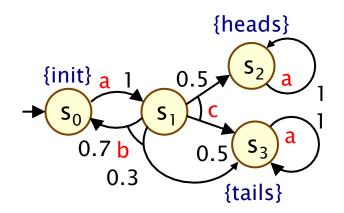
$$p_{\min}(s,\psi) = \inf_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s,\psi)$$
$$p_{\max}(s,\psi) = \sup_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s,\psi)$$



Examples

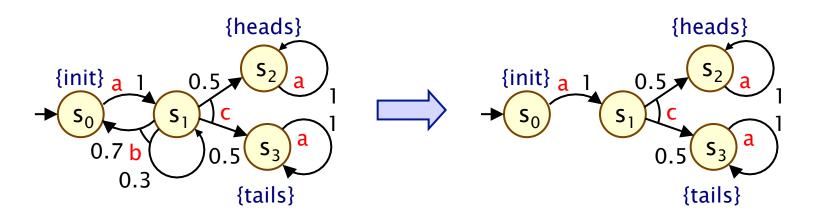
- $Prob^{\sigma_1}(s_0, F tails) = 0.5$
- $Prob^{\sigma_2}(s_0, F tails) = 0.5$
 - (where σ_i picks b i–1 times then c)
- ...
- $p_{max}(s_0, F \text{ tails}) = 0.5$
- $p_{min}(s_0, F \text{ tails}) = 0$
- $Prob^{\sigma_1}(s_0, F tails) = 0.5$
- $Prob^{\sigma_2}(s_0, F \text{ tails})$ = 0.3+0.7.0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7.0.3+0.7.0.7.0.5 = 0.755
- ...
- $p_{max}(s_0, F \text{ tails}) = 1$
- $p_{min}(s_0, F \text{ tails}) = 0.5$





Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: positional, Markov, simple
 - formally, $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s\in S$
 - induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not



Other classes of adversary

- Finite-memory adversary
 - finite number of modes, which can govern choices made
 - formally defined by a deterministic finite automaton
 - induced DTMC (for finite MDP) again mapped to finite DTMC
- Randomised adversary
 - maps finite paths $s_0(a_1,\mu_1)s_1...s_n$ in MDP to a probability distribution over element of Steps(s_n)
 - generalises deterministic schedulers
 - still induces a (possibly infinite state) DTMC
- Fair adversary
 - fairness assumptions on resolution of nondeterminism

End components

- Consider an MDP M = (S,s_{init},Steps,L)
- A sub-MDP of M is a pair (S', Steps') where:
 - S' \subseteq S is a (non-empty) subset of M's states
 - Steps'(s) \subseteq Steps(s) for each s \in S'
 - is closed under probabilistic branching, i.e.:
 - { s' | $\mu(s')>0$ for some (a, μ) \in Steps'(s) } \subseteq S'
- An end component of M is a strongly connected sub-MDP

S₂

0.6

0.3

S₆

0.3

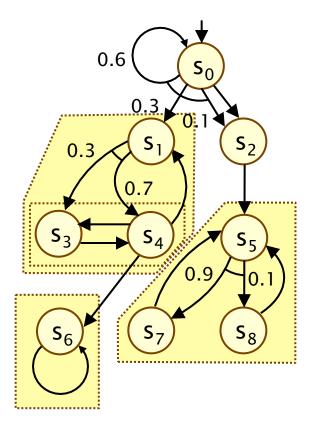
0.7

S₀

0.9

End components

- For finite MDPs...
- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component and visit all its states infinitely often
- Under every adversary σ, with probability 1 an end component will be reached and all of its states visited infinitely often



- (analogue of fundamental property of finite DTMCs)

Summing up...

- Nondeterminism
 - concurrency, unknown environments/parameters, abstraction
- Markov decision processes (MDPs)
 - discrete-time + probability and nondeterminism
 - nondeterministic choice between multiple distributions
- Adversaries
 - resolution of nondeterminism only
 - induced set of paths and (infinite state DTMC)
 - induces DTMC yields probability measure for adversary
 - best-/worst-case analysis: minimum/maximum probabilities
 - memoryless adversaries
- End components
 - long-run behaviour: analogue of BSCCs for DTMCs