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Next few lectures… 
•  Today: 

−  Discrete-time Markov chains (continued) 

•  Mon 2pm: 
−  Probabilistic temporal logics 

•  Wed 3pm: 
−  PCTL model checking for DTMCs 

•  Thur 12pm: 
−  PRISM 
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Overview 

•  Transient state probabilities 

•  Long-run / steady-state probabilities 

•  Qualitative properties 
−  repeated reachability 
−  persistence 
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Transient state probabilities 

•  What is the probability, having started in state s, of being in 
state s’ at time k? 
−  i.e. after exactly k steps/transitions have occurred 
−  this is the transient state probability: πs,k(s’) 

•  Transient state distribution: πs,k 
−  vector πs,k i.e. πs,k(s’) for all states s’ 

•  Note: this is a discrete probability distribution 
−  so we have πs,k : S → [0,1] 
−  rather than e.g. Prs : ΣPath(s) → [0,1]  where  ΣPath(s) ⊆ 2Path(s) 
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Transient distributions 
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Computing transient probabilities 

•  Transient state probabilities: 
−  πs,k(s’) = Σs’’∈S P(s’’,s’) · πs,k-1(s’’) 
−  (i.e. look at incoming transitions) 

•  Computation of transient state distribution: 
−  πs,0 is the initial probability distribution 
−  e.g. in our case πs,0(s’) = 1 if s’=s and πs,0(s’) = 0 otherwise 
−  πs,k = πs,k-1· P 

•  i.e. successive vector-matrix multiplications 
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Computing transient probabilities 
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Computing transient probabilities 
•  πs,k  =  πs,k-1 · P  =  πs,0 · Pk

 

•  kth matrix power: Pk 
−  P gives one-step transition probabilities 
−  Pk gives probabilities of k-step transition probabilities 
−  i.e. Pk(s,s’) = πs,k(s’) 

•  A possible optimisation: iterative squaring 
−  e.g. P8 = ((P2)2)2 
−  only requires log k multiplications 
−  but potentially inefficient, e.g. if P is large and sparse  

−  in practice, successive vector-matrix multiplications preferred 
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Notion of time in DTMCs 
•  Two possible views on the timing aspects of a system 

modelled as a DTMC: 

•  Discrete time-steps model time accurately 
−  e.g. clock ticks in a model of an embedded device 
−  or like dice example: interested in number of steps (tosses) 

•  Time-abstract 
−  no information assumed about the time transitions take 
−  e.g. simple Zeroconf model 

•  In the latter case, transient probabilities are not very useful 
•  In both cases, often beneficial to study long-run behaviour 
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Long-run behaviour 

•  Consider the limit: πs = limk→∞ πs,k 
−  where πs,k is the transient state distribution at time k  

having starting in state s 
−  this limit, where it exists, is called the limiting distribution 

•  Intuitive idea 
−  the percentage of time, in the long run, spent in each state 
−  e.g. reliability: “in the long-run, what percentage of time is the 

system in an operational state” 
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Limiting distribution 
•  Example: 
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Long-run behaviour 
•  Questions: 

−  when does this limit exist? 
−  does it depend on the initial state/distribution? 

•  Need to consider underlying graph 
−  (V,E) where V are vertices and E ⊆ VxV are edges 
−  V = S and E = { (s,s’) s.t. P(s,s’) > 0 } 
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Graph terminology 
•  A state s’ is reachable from s if there is a finite path 

starting in s and ending in s’ 
•  A subset T of S is strongly connected if, for each pair of 

states s and s’ in T, s’ is reachable from s passing only 
through states in T 

•  A strongly connected component (SCC) is a maximally 
strongly connected set of states (i.e. no superset of it is 
also strongly connected) 

•  A bottom strongly connected component (BSCC) is an SCC 
T from which no state outside T is reachable from T 

•  Alternative terminology: “s communicates with s’”, 
“communicating class”, “closed communicating class” 
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Example - (B)SCCs 
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Graph terminology 
•  Markov chain is irreducible if all its states belong to a 

single BSCC; otherwise reducible 

•  A state s is periodic, with period d, if 
−  the greatest common divisor of the set { n | fs

(n)>0} equals d 
−  where fs

(n) is the probability of, when starting in state s, 
returning to state s in exactly n steps 

•  A Markov chain is aperiodic if its period is 1 
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Steady-state probabilities 
•  For a finite, irreducible, aperiodic DTMC… 

−  limiting distribution always exists 
−  and is independent of initial state/distribution 

•  These are known as steady-state probabilities 
−  (or equilibrium probabilities) 
−  effect of initial distribution has disappeared, denoted π  

•  These probabilities can be computed as the unique solution 
of the linear equation system: 
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Steady-state - Balance equations 

•  Known as balance equations 

•  That is: 

−  π(s’) = Σs∈S  π(s) · P(s,s’) 

−  Σs∈S π(s) = 1 
normalisation 

balance the 
probability of 
leaving and 

entering a state s’ 
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Steady-state - Example 
•  Let x = π 
•  Solve: x·P = x,  Σsx(s) = 1 
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x ≈ [ 0.332215, 0.335570, 
           0.003356, 0.328859 ] 
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Steady-state - Example 
•  Let x = π 
•  Solve: x·P = x,  Σsx(s) = 1 
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x ≈ [ 0.332215, 0.335570, 
           0.003356, 0.328859 ] 

Long-run percentage of time 
spent in the state “try” 
≈ 33.6% 

Long-run percentage of time 
spent in “fail”/”succ” 
≈ 0.003356 + 0.328859 
≈ 33.2% 
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Periodic DTMCs 
•  For (finite, irreducible) periodic DTMCs, this limit: 

•  does not exist, but this limit does: 

•  Steady-state probabilities for these DTMCs can be 
computed by solving the same set of linear equations: 

(and where both limits exist, 
e.g. for aperiodic DTMCs, 
these 2 limits coincide) 
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Steady-state - General case 
•  General case: reducible DTMC 

−  compute vector πs 
−  (note: distribution depends on initial state s) 

•  Compute BSCCs for DTMC; then two cases to consider: 
•  (1) s is in a BSCC T 

−  compute steady-state probabilities x in sub-DTMC for T 
−  πs(s’) = x(s’)  if s’ in T 
−  πs(s’) = 0  if s’ not in T 

•  (2) s is not in any BSCC 
−  compute steady-state probabilities xT for sub-DTMC of each 

BSCC T and combine with reachability probabilities to BSCCs 
−  πs(s’) = ProbReach(s, T) · xT(s’)  if s’ is in BSCC T 
−  πs(s’) = 0  if s’ is not in a BSCC 
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Steady-state - Example 2 
•  πs depends on initial state s 
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Qualitative properties 
•  Quantitative properties: 

−  “what is the probability of event A?” 

•  Qualititative properties: 
−  “the probability of event A is 1”   (“almost surely A”) 
−  or: “the probability of event A is > 0”    (“possibly A”) 

•  For finite DTMCs, qualititative properties do not depend on 
the transition probabilities - only need underlying graph 
−  e.g. to determine “is target set T reached with probability 1?” 

(see DTMC model checking lecture) 
−  computing BSCCs of a DTMCs yields information about 

long-run qualitative properties… 
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Fundamental property 
•  Fundamental property of (finite) DTMCs… 

•  With probability 1,  
a BSCC will be reached  
and all of its states 
visited infinitely often 

•  Formally: 
−  Prs0 ( s0s1s2… | ∃ i≥0, ∃ BSCC T such that 

                       ∀ j≥i sj ∈ T and  
                       ∀ s∈T sk = s for infinitely many k )  =  1 
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Zeroconf example 
•  2 BSCCs: {s6}, {s8} 
•  Probability of trying to acquire a new address infinitely 

often is 0 
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Aside: Infinite Markov chains 
•  Infinite-state random walk 

•  Value of probability p does affect qualitative properties 

−  ProbReach(s, {s0}) = 1 if p ≤ 0.5 

−  ProbReach(s, {s0}) < 1 if p > 0.5 
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Repeated reachability 
•  Repeated reachability: 

−  “always eventually…”, “infinitely often…” 
•  Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B ) 

−  where B ⊆ S is a set of states 

•  e.g. “what is the probability that the protocol successfully 
sends a message infinitely often?” 

•  Is this measurable? Yes… 
−  set of satisfying paths is:  

−  where Cm is the union of all cylinder sets Cyl(s0s1…sm) for 
finite paths s0s1…sm such that sm ∈ B 
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Qualitative repeated reachability 
•  Prs0 ( s0s1s2… | ∀ i≥0 ∃ j≥i sj ∈ B ) = 1 

Prs0 ( “always eventually B” ) = 1 

 if and only if  

•  T ∩ B ≠ ∅ for each BSCC T that is reachable from s0 
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B = { s3, s4, s5 } 
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Persistence 
•  Persistence properties: 

−  “eventually forever…” 
•  Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B ) 

−  where B ⊆ S is a set of states 

•  e.g. “what is the probability of the leader election algorithm 
reaching, and staying in, a stable state?” 

•  e.g. “what is the probability that an irrecoverable error 
occurs?” 

•  Is this measurable? Yes…   FG B = ¬ GF (S\B) 
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Qualitative persistence 
•  Prs0 ( s0s1s2… | ∃ i≥0 ∀ j≥i sj ∈ B ) = 1 

Prs0 ( “eventually forever B” ) = 1  

 if and only if  

•  T ⊆ B for each BSCC T that is reachable from s0 
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Summing up… 
•  Transient state probabilities 

−  successive vector-matrix multiplications 

•  Long-run/steady-state probabilities 
−  requires graph analysis 
−  irreducible case: solve linear equation system 
−  reducible case: steady-state for sub-DTMCs + reachability 

•  Qualitative properties 
−  repeated reachability 
−  persistence 


