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Probabilistic Model Checking 

•  Formal verification and analysis of systems that exhibit 
probabilistic behaviour 
−  e.g. randomised algorithms/protocols 
−  e.g. systems with failures/unreliability 

•  Based on the construction and analysis of precise 
mathematical models 

•  This lecture: discrete-time Markov chains 
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Overview 
•  Probability basics 

•  Discrete-time Markov chains (DTMCs) 
−  definition, properties, examples 

•  Formalising path-based properties of DTMCs 
−  probability space over infinite paths 

•  Probabilistic reachability 
−  definition, computation 

•  Sources/further reading: Section 10.1 of [BK08] 
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Probability basics 
•  First, need an experiment 

−  The sample space  Ω is the set of possible outcomes 
−  An event is a subset of Ω, can form events A ∩ B, A ∪ B, Ω ∖ A 

•  Examples: 
−  toss a coin:     Ω = {H,T},  events: “H”, “T” 
−  toss two coins:    Ω = {(H,H),(H,T),(T,H),(T,T)}, 

        event: “at least one H” 
−  toss a coin ∞–often:  Ω is set of infinite sequences of H/T 

        event: “H in the first 3 throws” 
•  Probability is: 

−  Pr(“H”) = Pr(“T”) = 1/2,   Pr(“at least one H”) = 3/4 
−  Pr(“H in the first 3 throws”) = 1/2 + 1/4 + 1/8 = 7/8 
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Probability example 
•  Modelling a 6-sided die using a fair coin 

−  algorithm due to Knuth/Yao: 
−  start at 0, toss a coin 
−  upper branch when H 
−  lower branch when T 
−  repeat until value chosen 

•  Is this algorithm correct? 
−  e.g. probability of obtaining a 4? 
−  Obtain as disjoint union of events 
−  THH, TTTHH, TTTTTHH, … 
−  Pr(“eventually 4”) 
    = (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6 
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Example… 
•  Other properties? 

−  “what is the probability of termination?” 
•  e.g. efficiency? 

−  “what is the probability of needing 
more than 4 coin tosses?” 

−  “on average, how many  
coin tosses are needed?” 

•  Probabilistic model checking provides a framework for 
these kinds of properties… 
−  modelling languages 
−  property specification languages 
−  model checking algorithms, techniques and tools 
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Discrete-time Markov chains 
•  State-transition systems augmented with probabilities 

•  States 
−  set of states representing possible configurations of the 

system being modelled 
•  Transitions 

−  transitions between states model  
evolution of system’s state;  
occur in discrete time-steps 

•  Probabilities 
−  probabilities of making transitions 

between states are given by  
discrete probability distributions 
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Markov property 

•  If the current state is known, then the future states of the 
system are independent of its past states 

•  i.e. the current state of the model contains all information 
that can influence the future evolution of the system 

•  also known as “memorylessness” 
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Simple DTMC example 
•  Modelling a very simple communication protocol 

−  after one step, process starts trying to send a message 
−  with probability 0.01, channel unready so wait a step 
−  with probability 0.98, send message successfully and stop 
−  with probability 0.01, message sending fails, restart 
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Discrete-time Markov chains 
•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:  

−  S is a set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  P : S × S → [0,1] is the transition probability matrix 

 where Σs’∈S P(s,s’) = 1 for all s ∈ S  
−  L : S → 2AP is function labelling states with atomic propositions 

(taken from a set AP) 
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Simple DTMC example 
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D = (S,sinit,P,L) 

S = {s0, s1, s2, s3}  
sinit = s0 

AP = {try, fail, succ} 
L(s0)=∅, 
L(s1)={try}, 
L(s2)={fail}, 
L(s3)={succ} 

11 



DP/Probabilistic Model Checking, Michaelmas 2011 

Some more terminology 
•  P is a stochastic matrix, meaning it satisifes: 

−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S 

•  A sub-stochastic matrix satisfies: 
−  P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S 

•  An absorbing state is a state s for which: 
−  P(s,s) = 1 and P(s,s’) = 0 for all s≠s’ 
−  the transition from s to itself is sometimes called a self-loop 

•  Note: Since we assume P is stochastic… 
−  every state has at least one outgoing transition 
−  i.e. no deadlocks (in model checking terminology) 
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DTMCs: An alternative definition 
•  Alternative definition… a DTMC is: 

−  a family of random variables { X(k) | k=0,1,2,… } 
−  where X(k) are observations at discrete time-steps 
−  i.e. X(k) is the state of the system at time-step k 
−  which satisfies… 

•  The Markov property (“memorylessness”) 
−  Pr( X(k)=sk | X(k-1)=sk-1, … , X(0)=s0 ) 

 = Pr( X(k)=sk | X(k-1)=sk-1 ) 
−  for a given current state, future states are independent of past 

•  This allows us to adopt the “state-based” view presented so 
far (which is better suited to this context) 
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Other assumptions made here 
•  We consider time-homogenous DTMCs 

−  transition probabilities are independent of time 
−  P(sk-1,sk) = Pr( X(k)=sk | X(k-1)=sk-1 ) 
−  otherwise: time-inhomogenous 

•  We will (mostly) assume that the state space S is finite 
−  in general, S can be any countable set 

•  Initial state sinit ∈ S can be generalised… 
−  to an initial probability distribution sinit : S → [0,1] 

•  Transition probabilities are reals: P(s,s’) ∈ [0,1] 
−  but for algorithmic purposes, are assumed to be rationals 
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DTMC example 2 - Coins and dice 
•  Recall Knuth/Yao’s die algorithm from earlier: 

S = { s0, s1, …, s6, 1, 2, …, 6 } 

  sinit = s0 

  P(s0,s1)=0.5 
  P(s0,s2)=0.5 
  etc. 

  L(s0) = {init} 
  etc. 
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DTMC example 3 - Zeroconf 
•  Zeroconf = “Zero configuration networking” 

−  self-configuration for local, ad-hoc networks 
−  automatic configuration of unique IP for new devices 
−  simple; no DHCP, DNS, … 

•  Basic idea: 
−  65,024 available IP addresses (IANA-specified range) 
−  new node picks address U at random 
−  broadcasts “probe” messages: “Who is using U?” 
−  a node already using U replies to the probe 
−  in this case, protocol is restarted 
−  messages may not get sent (transmission fails, host busy, …) 
−  so: nodes send multiple (n) probes, waiting after each one 
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DTMC for Zeroconf 
−  n=4 probes, m existing nodes in network 
−  probability of message loss: p 
−  probability that new address is in use: q = m/65024 
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Properties of DTMCs 
•  Path-based properties 

−  what is the probability of observing a particular behaviour (or 
class of behaviours)? 

−  e.g. “what is the probability of throwing a 4?” 

•  Transient properties 
−  probability of being in state s after t steps? 

•  Steady-state 
−  long-run probability of being in each state 

•  Expectations 
−  e.g. “what is the average number of coin tosses required?” 
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DTMCs and paths 
•  A path in a DTMC represents an execution (i.e. one possible 

behaviour) of the system being modelled 
•  Formally: 

−  infinite sequence of states s0s1s2s3… 
such that P(si,si+1) > 0 ∀i≥0 

−  infinite unfolding of DTMC 
•  Examples: 

−  never succeeds: (s0s1s2)ω 

−  tries, waits, fails, retries, succeeds: s0s1s1s2s0s1(s3)ω 
•  Notation: 

−  Path(s) = set of all infinite paths starting in state s 
−  also sometimes use finite (length) paths 
−  Pathfin(s) = set of all finite paths starting in state s 
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Paths and probabilities 
•  To reason (quantitatively) about this system 

−  need to define a probability space over paths 

•  Intuitively: 
−  sample space: Path(s) = set of all  

infinite paths from a state s 
−  events: sets of infinite paths from s 
−  basic events: cylinder sets (or “cones”) 
−  cylinder set Cyl(ω), for a finite path ω 

= set of infinite paths with the common finite prefix ω 
−  for example: Cyl(ss1s2) 

s1 s2 s 
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Probability spaces 
•  Let Ω be an arbitrary non-empty set 

•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω 
closed under complementation and countable union, i.e.: 
−  if A ∈ Σ, the complement Ω ∖ A is in Σ 
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ 
−  the empty set ∅ is in Σ 

•  Elements of Σ are called measurable sets or events 

•  Theorem: For any family F of subsets of Ω, there exists a 
unique smallest σ-algebra on Ω containing F 
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Probability spaces 

•  Probability space (Ω, Σ, Pr) 

−  Ω is the sample space 

−  Σ is the set of events: σ-algebra on Ω 

−  Pr : Σ → [0,1] is the probability measure: 
 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai 
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Probability space - Simple example 
•  Sample space Ω 

−  Ω = {1,2,3} 

•  Event set Σ 
−  e.g. powerset of Ω 
−  Σ = { ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} } 
−  (closed under complement/countable union, contains ∅) 

•  Probability measure Pr 
−  e.g. Pr(1) = Pr(2) = Pr(3) = 1/3 
−  Pr({1,2}) = 1/3+1/3 = 2/3, etc. 
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Probability space - Simple example 2 
•  Sample space Ω 

−  Ω = ℕ = { 0,1,2,3,4,… } 

•  Event set Σ 
−  e.g. Σ = { ∅, “odd”, “even”, ℕ } 
−  (closed under complement/countable union, contains ∅) 

•  Probability measure Pr 
−  e.g. Pr(“odd”) = 0.5, Pr(“even”) = 0.5 
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Probability space over paths 
•  Sample space Ω = Path(s) 

set of infinite paths with initial state s 
•  Event set ΣPath(s) 

−  the cylinder set Cyl(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ } 
−  ΣPath(s) is the least σ-algebra on Path(s) containing Cyl(ω) for 

all finite paths ω starting in s 
•  Probability measure Prs 

−  define probability Ps(ω) for finite path ω = ss1…sn as: 
•  Ps(ω) = 1 if ω has length one (i.e. ω = s) 
•  Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise 
•  define Prs(Cyl(ω)) = Ps(ω) for all finite paths  ω 

−  Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1] 

•  See [KSK76] for further details 
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Paths and probabilities - Example 
•  Paths where sending fails immediately 

− ω = s0s1s2 
−  Cyl(ω) = all paths starting s0s1s2… 
−  Ps0(ω) = P(s0,s1) · P(s1,s2) 

   = 1 · 0.01 = 0.01 
−  Prs0(Cyl(ω)) = Ps0(ω) = 0.01 

•  Paths which are eventually successful and with no failures 
−  Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … 
−  Prs0( Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) 

 = Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + … 
 = 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + … 
 = 0.9898989898…  
 = 98/99 
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Reachability 
•  Key property: probabilistic reachability 

−  probability of a path reaching a state in some target set T ⊆ S 
−  e.g. “probability of the algorithm terminating successfully?” 
−  e.g. “probability that an error occurs during execution?” 

•  Dual of reachability: invariance 
−  probability of remaining within some class of states 
−  Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”) 
−  e.g. “probability that an error never occurs” 

•  We will also consider other variants of reachability 
−  time-bounded, constrained (“until”), … 
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Reachability probabilities 
•  Formally: ProbReach(s, T) = Prs(Reach(s, T)) 

−  where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i } 

•  Is Reach(s, T) measurable for any T ⊆ S ? Yes… 
−  Reach(s, T) is the union of all basic cylinders 

Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T)  
−  Reachfin(s, T) contains all finite paths s0s1…sn such that:  

s0=s, s0,…,sn-1 ∉ T, sn ∈ T 
−  set of such finite paths s0s1…sn is countable 

•  Probability 
−  in fact, the above is a disjoint union 
−  so probability obtained by simply summing… 
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Computing reachability probabilities 
•  Compute as (infinite) sum… 

•  Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))  

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn) 

•  Example: 
−  ProbReach(s0, {4})  
= Prs0(Reach(s0, {4})) 
−  Finite path fragments: 
−  s0(s2s6)ns2s54 for n ≥ 0 
−  Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + … 
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6 
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Computing reachability probabilities 
•  ProbReach(s0, {s6}) : compute as infinite sum? 

−  doesn’t scale… 
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Computing reachability probabilities 
•  Alternative: derive a linear equation system 

−  solve for all states simultaneously 
−  i.e. compute vector ProbReach(T) 

•  Let xs denote ProbReach(s, T)  

•  Solve: 

    

€ 

xs =  
1
0

P(s,s' ) ⋅ xs'
s'∈S

∑

if s ∈ T
if T is not reachable from s
otherwise
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& 

' 
' 

( 

' 
' 
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Example 
•  Compute ProbReach(s0, {4}) 
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Unique solutions 
•  Why the need to identify states that cannot reach T? 

•  Consider this simple DTMC: 
−  compute probability of reaching {s0} from s1 

−  linear equation system: xs0 = 1, xs1 = xs1 

−  multiple solutions: (xs0, xs1) = (1,p) for any p ∈ [0,1] 

s1 s0 
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Computing reachability probabilities 
•  Another alternative: least fixed point characterisation 

•  Consider functions of the form: 
−  F : [0,1]S → [0,1]S  

•  And define: 
−  y ≤ y’ iff y(s) ≤ y’(s) for all s 

•  y is a fixed point of F if F(y) = y 

•  A fixed point x of F is the least fixed point of F if x ≤ y for 
any other fixed point y 

vectors of 
probabilities 
for each state 
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Least fixed point 
•  ProbReach(T) is the least fixed point of the function F: 

•  This yields a simple iterative algorithm to approximate 
ProbReach(T): 

−  x(0) = 0   (i.e. x(0)(s) = 0 for all s) 
−  x(n+1) = F(x(n)) 

−  x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ … 
−  ProbReach(T) = limn→∞ x(n) 

  

€ 

F(y)(s)   =   
1

P(s,s' )⋅ y(s' )
s'∈S

∑
% 

& 
' 

( ' 

if s ∈ T
otherwise.

in practice, terminate 
when for example:  

maxs | x(n+1)(s) - x(n)(s)) | < ɛ 

for some user-defined 
tolerance value ɛ 
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Least fixed point 
•  Expressing ProbReach as a least fixed point… 

−  corresponds to solving the linear equation system 
using the power method 

•  other iterative methods exist (see later) 
•  power method is guaranteed to converge 

−  generalises non-probabilistic reachability 

−  can be generalised to: 
•  constrained reachability (see PCTL “until”) 
•  reachability for Markov decision processes 

−  also yields bounded reachability probabilities… 
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Bounded reachability probabilities 
•  Probability of reaching T from s within k steps 

•  Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where: 
−  Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k } 

•  ProbReach≤k(T) = x(k+1) from the previous fixed point 
−  which gives us… 

    

€ 

ProbReach≤k(s, T) =  
1
0

P(s,s' )⋅ ProbReach≤k-1(s',  T)
s'∈S

∑

if s ∈ T
if k = 0 & s ∉ T
if k > 0 & s ∉ T

' 

( 

) 
) 

* 

) 
) 
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(Bounded) reachability 
•  ProbReach(s0, {1,2,3,4,5,6}) = 1 

•  ProbReach≤k (s0, {1,2,3,4,5,6}) = … 

s3 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

s4 

s1 

s0 

s2 

s5 

s6 

38 



DP/Probabilistic Model Checking, Michaelmas 2011 

Summing up… 

•  Discrete-time Markov chains (DTMCs) 
−  state-transition systems augmented with probabilities 

•  Formalising path-based properties of DTMCs 
−  probability space over infinite paths 

•  Probabilistic reachability 
−  infinite sum 
−  linear equation system 
−  least fixed point characterisation 
−  bounded reachability 
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Next lecture 

•  Thur 12pm 

•  Discrete-time Markov chains… 
−  transient 
−  steady-state 
−  long-run behaviour 
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