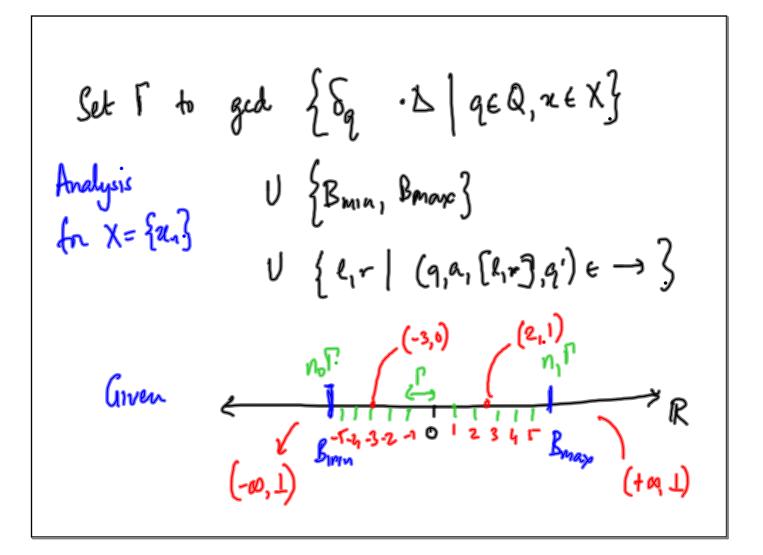


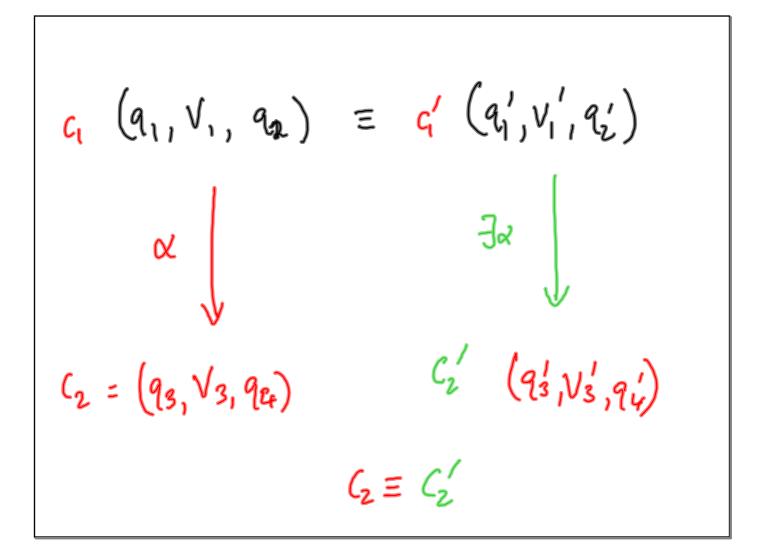
Start at
$$(q_{1n}, V_{1n}) \rightarrow \text{Initial config} (q_{1n}, V_{n}, q_{n})$$

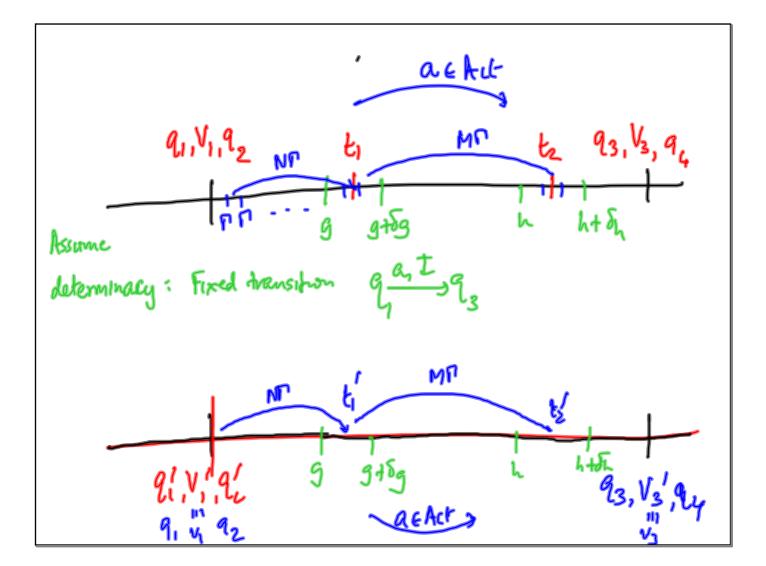
Assume δq_{1n} holds from $t=0$
 $(q_{1n}, V_{1n}, q_{1n}) \xrightarrow{\alpha_{2}} (q_{1}, V_{1}, q_{1n}) \xrightarrow{\alpha_{2}} (q_{2}, V_{2}, q_{1}) - ...$
 $\text{Ist}(A) : \text{state largnage } A \int \text{Regular over } A_{\text{CEV} ETS}$

Quotient space of configurations (i.e. space of ration)
into a finite number of equivalence dasses
Find
$$\Gamma$$
 s.t. all interesting values in evolution of to
are integral multiple of $\Gamma \in Q$
Start with $D = \{g, h, \delta g, \delta h\}$
A is largest rationed that divides all of these
 $\int_{\Gamma} \int_{\Omega} \int_{\Omega}$



$$V_{1} \equiv V_{2} \quad \text{if hey agree on this abstraction of} \\ \text{the real value of } x \\ \|V_{1}\| - \text{equivalence dass if } V_{1} \\ (q_{1}, V_{1}, q_{2}) \equiv (q_{1}', V_{1}', q_{2}') \quad \text{if } q_{1} = q_{1}' \\ q_{2} = q_{2}' \\ V_{1} \equiv V_{1}' \\ \end{array}$$





for n vanables Set up separete automata for each ri Synchronize them $(q, \{v_1, v_2, ..., v_n\}, q') \stackrel{\checkmark}{\to} (q, \{v_1', ..., v_n'\}, q')$ $(q, V_i, q') \xrightarrow{\boldsymbol{\kappa}} (q_i, V_i, q')$ for each i

laziness allous analysis of a lager dans Linear hybrid antomata