Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

Theorem

Deterministic timed automata are closed under complement

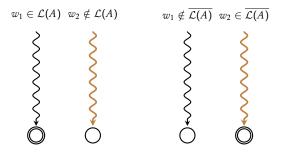
Deterministic timed automata are closed under complement

1. Unique run for every timed word

 $w_1 \in \mathcal{L}(A) \quad w_2 \notin \mathcal{L}(A)$

Deterministic timed automata are closed under complement

- 1. Unique run for every timed word
- 2. Complementation: Interchange acc. and non-acc. states

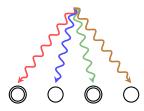


Theorem

Non-deterministic timed automata are not closed under complement

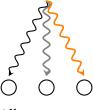
Many runs for a timed word

 $w_1 \in \mathcal{L}(A)$



Exists an acc. run

 $w_2 \notin \mathcal{L}(A)$



All runs non-acc.

Theorem

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

 $w_1 \in \mathcal{L}(A)$

Exists an acc. run

All runs non-acc.

 $w_2 \notin \mathcal{L}(A)$

Complementation: interchange acc/non-acc + ask are all runs acc. ?

A timed automaton model with **existential** and **universal** semantics for acceptance

Alternating timed automata

Lasota and Walukiewicz. FoSSaCS'05, ACM TOCL'2008

Section 1:

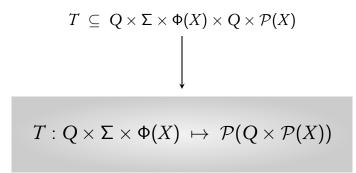
Introduction to ATA

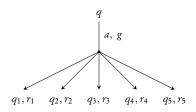
- ► X : set of clocks
- $\Phi(X)$: set of clock constraints σ (guards)

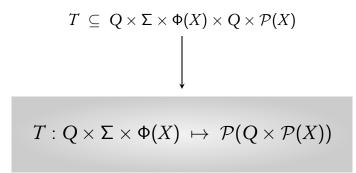
$$\sigma: x < c \mid x \le c \mid \sigma_1 \land \sigma_2 \mid \neg \sigma$$

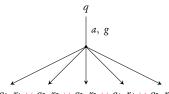
c is a non-negative integer

• Timed automaton A: $(Q, Q_0, \Sigma, X, T, F)$ $T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)$









 $q_1, r_1 \lor q_2, r_2 \lor q_3, r_3 \lor q_4, r_4 \lor q_5, r_5$

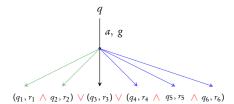
$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$
$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$$

 $T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$
$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$



Alternating Timed Automata

An ATA is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

Alternating Timed Automata

An ATA is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

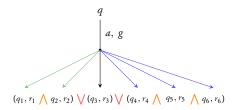
$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

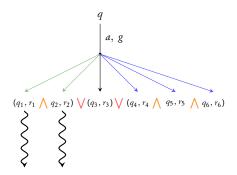
```
Partition: For every q, a the set

{ [\sigma] | T(q, a, \sigma) is defined }

gives a finite partition of \mathbb{R}_{>0}^X
```

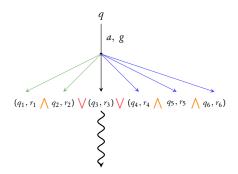


Accepting run from q iff:



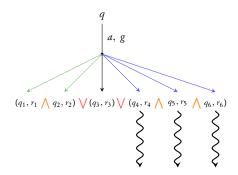
Accepting run from q iff:

accepting run from q₁ and q₂,



Accepting run from q iff:

- accepting run from q₁ and q₂,
- or accepting run from q_3 ,



Accepting run from q iff:

- accepting run from q₁ and q₂,
- or accepting run from q_3 ,
- or accepting run from q₄ and q₅ and q₆

L: timed words over $\{a\}$ containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

L: timed words over $\{a\}$ containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

ATA:

$$egin{array}{rcl} q_0,a,tt&\mapsto&(q_0,\emptyset)\wedge(q_1,\{x\})\ q_1,a,x=1&\mapsto&(q_2,\emptyset)\ q_1,a,x
eq1&\mapsto&(q_1,\emptyset)\ q_2,a,tt&\mapsto&(q_2,\emptyset) \end{array}$$

 q_0, q_1 are acc., q_2 is non-acc.

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange
 - 1. acc./non-acc.
 - 2. conjunction/disjunction

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange
 - 1. acc./non-acc.
 - 2. conjunction/disjunction

No change in the number of clocks!

Section 2:

The 1-clock restriction

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 9)

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 9)

Decidable for **one clock** (via Lecture 10)

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 9)

Decidable for **one clock** (via Lecture 10)

Restrict to one-clock ATA

Theorem

Languages recognizable by 1-clock ATA and (many clock) TA are incomparable

 \rightarrow proof on the board

Section 3: Complexity

Lower bound

Complexity of emptiness of **purely universal** 1-clock ATA is **not** bounded by a **primitive recursive** function

Lower bound

Complexity of emptiness of **purely universal** 1-clock ATA is **not** bounded by a **primitive recursive** function

\Rightarrow complexity of Ouaknine-Worrell algorithm for universality of 1-clock TA is non-primitive recursive

Primitive recursive functions

Functions $f : \mathbb{N} \mapsto \mathbb{N}$

Basic primitive recursive functions:

- Zero function: Z() = 0
- Successor function: Succ(n) = n + 1
- **Projection function:** $P_i(x_1, \ldots, x_n) = x_i$

Operations:

- Composition
- Primitive recursion: if f and g are p.r. of arity k and k + 2, there is a p.r. h of arity k + 1:

$$h(0, x_1, ..., x_k) = f(x_1, ..., x_k)$$

$$h(n+1, x_1, ..., x_k) = g(h(n, x_1, ..., x_k), n, x_1, ..., x_k)$$

Addition:

$$Add(0, y) = y$$

$$Add(n + 1, y) = Succ(Add(n, y))$$

Addition:

$$Add(0, y) = y$$

$$Add(n + 1, y) = Succ(Add(n, y))$$

Multiplication:

$$Mult(0, y) = Z()$$

$$Mult(n + 1, y) = Add(Mult(n, y), y)$$

Addition:

$$Add(0, y) = y$$

$$Add(n + 1, y) = Succ(Add(n, y))$$

Multiplication:

$$Mult(0, y) = Z()$$

$$Mult(n + 1, y) = Add(Mult(n, y), y)$$

Exponentiation 2^n :

$$Exp(0) = Succ(Z())$$
$$Exp(n+1) = Mult(Exp(n), 2)$$

Addition:

$$Add(0, y) = y$$

$$Add(n + 1, y) = Succ(Add(n, y))$$

Multiplication:

$$Mult(0, y) = Z()$$

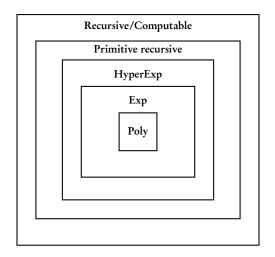
$$Mult(n + 1, y) = Add(Mult(n, y), y)$$

Exponentiation 2^n :

$$Exp(0) = Succ(Z())$$
$$Exp(n+1) = Mult(Exp(n), 2)$$

Hyper-exponentiation (tower of *n* two-s):

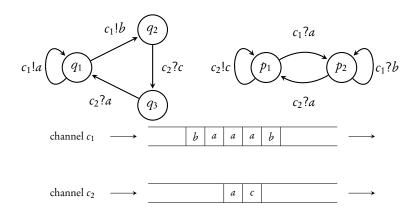
$$HyperExp(0) = Succ(Z())$$
$$HyperExp(n+1) = Exp(HyperExp(n))$$



Recursive but not primitive rec.: Ackermann function, Sudan function

Coming next: a problem that has complexity non-primitive recursive

Channel systems



Finite state description of communication protocols G. von Bochmann. 1978

> On communicating finite-state machines D. Brand and P. Zafiropulo. 1983

> > Example from Schnoebelen'2002

Theorem [BZ'83]

Reachability in channel systems is undecidable

Coming next: modifying the model for decidability

Lossy channel systems

Finkel'94, Abdulla and Jonsson'96

Messages stored in channel can be lost during transition

Lossy channel systems

Finkel'94, Abdulla and Jonsson'96

Messages stored in channel can be lost during transition

Theorem [Schnoebelen'2002]

Reachability for lossy one-channel systems is non-primitive recursive

Reachability problem for lossy one-channel systems can be reduced to emptiness problem for purely universal 1-clock ATA

1-clock ATA

- closed under boolean operations
- decidable emptiness problem
- expressivity **incomparable** to many clock TA
- non-primitive recursive complexity for emptiness

1-clock ATA

- closed under boolean operations
- decidable emptiness problem
- expressivity **incomparable** to many clock TA
- non-primitive recursive complexity for emptiness
- Other results: Undecidability of:
 - 1-clock ATA + ε -transitions
 - 1-clock ATA over infinite words