
Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

1/41

L(A) ⊆ L(B)

System Specification

L(A) ∩ L(B) empty?Is

first determinize B

2/41

L(A) ⊆ L(B)

System Specification

L(A) ∩ L(B) empty?Is

first determinize B

2/41

Determinizing timed automata

3/41

q

a

a

q
a

q

R1

R2

a, g1

a, g2

g1 and g2 should be

mutually exclusive

For every (q, v) there is only one choice

4/41

q

a

a

q
a

q

R1

R2

a, g1

a, g2

g1 and g2 should be

mutually exclusive

For every (q, v) there is only one choice

4/41

q

a

a

q
a

q

R1

R2

a, g1

a, g2

g1 and g2 should be

mutually exclusive

For every (q, v) there is only one choice

4/41

q

a

a

q
a

q

R1

R2

a, g1

a, g2

g1 and g2 should be

mutually exclusive

For every (q, v) there is only one choice

4/41

Deterministic Timed Automata

q. . .

. . .

. . .

. . .

...

a, g1 R1

a, g2
R2

a, gk

Rk

gi ∧ gj is

unsatisfiable

complete if
g1 ∨ g2 ∨ . . . gk = >

+ single initial state

Unique run

A DTA has a unique run on every timed word

A theory of timed automata

R. Alur and D. Dill, TCS’94
5/41

Deterministic Timed Automata

q. . .

. . .

. . .

. . .

...

a, g1 R1

a, g2
R2

a, gk

Rk

gi ∧ gj is

unsatisfiable

complete if
g1 ∨ g2 ∨ . . . gk = >

+ single initial state

Unique run

A DTA has a unique run on every timed word

A theory of timed automata

R. Alur and D. Dill, TCS’94
5/41

Deterministic Timed Automata

q. . .

. . .

. . .

. . .

...

a, g1 R1

a, g2
R2

a, gk

Rk

gi ∧ gj is

unsatisfiable

complete if
g1 ∨ g2 ∨ . . . gk = >

+ single initial state

Unique run

A DTA has a unique run on every timed word

A theory of timed automata

R. Alur and D. Dill, TCS’94
5/41

q0 q1
x = 1, a

{x}
x = 1, a
{x} a DTA

q0 q1 q2
a

{x}
x = 1, a

a aa

not a DTA

6/41

q

s t

a, g1
R1

a, g2
R2

q′

s′ t′

a, g′1 R′
1

a, g′2R′
2

q, q′

s, s′ s, t′ t, s′ t, t′

g1 ∧ g′1
R1 ∪ R′

1 g1 ∧ g′2
R1 ∪ R′

2

g2 ∧ g′1
R2 ∪ R′

1

g2 ∧ g′2
R2 ∪ R′

2

Accepting states: (qF , ?) and (?, q′F) for union

(qF , q′F) for intersection

unique choice unique choice

⇒ unique choice

7/41

q

s t

a, g1
R1

a, g2
R2

q′

s′ t′

a, g′1 R′
1

a, g′2R′
2

q, q′

s, s′ s, t′ t, s′ t, t′

g1 ∧ g′1
R1 ∪ R′

1 g1 ∧ g′2
R1 ∪ R′

2

g2 ∧ g′1
R2 ∪ R′

1

g2 ∧ g′2
R2 ∪ R′

2

Accepting states: (qF , ?) and (?, q′F) for union

(qF , q′F) for intersection

unique choice unique choice

⇒ unique choice

7/41

Theorem

DTA are closed under union and intersection

8/41

Complementation

Unique run

A DTA has a unique run on every timed word

⇒ DTA are closed under complement
(interchange accepting and non-accepting states)

9/41

Every DTA is a TA: L(DTA) ⊆ L(TA)

But there is a TA that cannot be complemented (Previous
Lecture)

∴ L(DTA) ⊂ L(TA)

10/41

DTA
Unique run

Closed under ∪, ∩, comp.

L(DTA) ⊂ L(TA)

11/41

Given a TA, when do we know if we can determinize it?

Theorem [Finkel’06]

Given a TA, checking if it can be determinized is undecidable

Following next: some sufficient conditions for determinizing

12/41

Given a TA, when do we know if we can determinize it?

Theorem [Finkel’06]

Given a TA, checking if it can be determinized is undecidable

Following next: some sufficient conditions for determinizing

12/41

Given a TA, when do we know if we can determinize it?

Theorem [Finkel’06]

Given a TA, checking if it can be determinized is undecidable

Following next: some sufficient conditions for determinizing

12/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?
First solution:

Whenever a, reset xa

13/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?
First solution:

Whenever a, reset xa

13/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?
First solution:

Whenever a, reset xa

13/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?
First solution:

Whenever a, reset xa

13/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?

First solution:

Whenever a, reset xa

13/41

q

s t

a a

q

{s, t}

a

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?
First solution:

Whenever a, reset xa

13/41

Event-recording clocks: time since last occurence of event

a 7→ xa

0 1 2 4 5 6 70.5 2.8 6.5

a a ab b b

xa

xb

0 0 01.5: 2:0.8 1 2.5⊥
⊥ ⊥ ⊥ 0 01.20 2.2: 1.5:

Event-clock automata: a determinizable subclass of timed automata

Alur, Henzinger, Fix. TCS’99

14/41

Event-recording automata

q0 q1

q2q3

a

b

c

d

xa < 1

xb > 2

{ ((abcd)k, τ) | a− c distance is < 1 and b − d distance is > 2}

q0 q1 q2
a b

b

xa = 1

{ (ab∗b, τ) | distance between first and last letters is 1}

non-deterministic

15/41

Event-recording automata

q0 q1

q2q3

a

b

c

d

xa < 1

xb > 2

{ ((abcd)k, τ) | a− c distance is < 1 and b − d distance is > 2}

q0 q1 q2
a b

b

xa = 1

{ (ab∗b, τ) | distance between first and last letters is 1}

non-deterministic

15/41

Determinizing ERA: modified subset construction

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

exponential in the number of states

16/41

DTA
Unique run

Closed under ∪, ∩, comp.

L(DTA) ⊂ L(TA)

Determinizable
subclasses

ERA

17/41

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?

Coming next: slightly modified version of BBBB-09

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP’09

18/41

q

s t

a, g1 a, g2

q

{s, t} {s} {t} {}

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{x}

To reset or not to reset?

Coming next: slightly modified version of BBBB-09

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP’09

18/41

q

s t

{x}
a, g1 a, g2

a, x ≤ 5 a, x > 2

q

{(s,

x : z

), (t,

x : x

)} {(s,

x : z

)} {(t,

x : x

)} {}

z ≤ 5 ∧
x > 2 z ≤ 5 ∧

x ≤ 2
z > 5 ∧

x > 2

z > 5 ∧
x ≤ 2

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{z}
{z} {z}

{z}

19/41

q

s t

{x}
a, g1 a, g2

a, x ≤ 5 a, x > 2

q

{(s,

x : z

), (t,

x : x

)} {(s,

x : z

)} {(t,

x : x

)} {}

z ≤ 5 ∧
x > 2 z ≤ 5 ∧

x ≤ 2
z > 5 ∧

x > 2

z > 5 ∧
x ≤ 2

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{z}
{z} {z}

{z}

19/41

q

s t

{x}
a, g1 a, g2

a, x ≤ 5 a, x > 2

q

{(s, x : z), (t, x : x)} {(s, x : z)} {(t, x : x)} {}

z ≤ 5 ∧
x > 2 z ≤ 5 ∧

x ≤ 2
z > 5 ∧

x > 2

z > 5 ∧
x ≤ 2

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{z}
{z} {z}

{z}

19/41

q

s t

{x}
a, g1 a, g2

a, x ≤ 5 a, x > 2 q

{(s, x : z), (t, x : x)} {(s, x : z)} {(t, x : x)} {}

z ≤ 5 ∧
x > 2 z ≤ 5 ∧

x ≤ 2
z > 5 ∧

x > 2

z > 5 ∧
x ≤ 2

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{z}
{z} {z}

{z}

19/41

q

s t

{x}
a, g1 a, g2

a, x ≤ 5 a, x > 2 q

{(s, x : z), (t, x : x)} {(s, x : z)} {(t, x : x)} {}

z ≤ 5 ∧
x > 2 z ≤ 5 ∧

x ≤ 2
z > 5 ∧

x > 2

z > 5 ∧
x ≤ 2

g1 ∧ g2
g1 ∧ ¬g2 ¬g1 ∧ g2

¬g1 ∧ ¬g2

a
a a

a

{z}
{z} {z}

{z}

19/41

z0

z1

z2

zi

...

...

Reset a new clock zi at level i

20/41

Coming next: An example illustrating the construction

21/41

Timed automata. A timed automaton is a tuple A = (L, `0, Lacc, X,M,E)
such that: (i) L is a finite set of locations, (ii) `0 2 L is the initial location, (iii)
Lacc ✓ L is the set of final locations, (iv) X is a finite set of clocks, (v) M 2 ,
and (vi) E ✓ L ⇥ GM (X) ⇥ ⌃ ⇥ 2X ⇥ L is a finite set of edges. Constant M is
called the maximal constant of A.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, s0, Sacc, (+ ⇥ ⌃),!) with set of states S = L ⇥ X

M , initial state
s0 = (`0, 0̄), set of accepting states Sacc = Lacc ⇥ X

M , and transition relation

! ✓ S⇥(+⇥⌃)⇥S composed of moves of the form (`, v)
⌧,a��! (`0, v0) whenever

there exists an edge (`, g, a, Y, `0) 2 E such that v+⌧ |= g and v0 = [Y 0](v+⌧).

A run % of A is a finite sequence of moves, i.e., % = s0
⌧1,a1���! s1 . . .

⌧k,ak���! sk.
It is said initial whenever s0 = (`0, 0̄). An initial run is accepting if it ends in
an accepting location. The timed word u = (a1, t1)(a2, t2) . . . (ak, tk) is said to

be read on % whenever ti =
Pi

j=1 ⌧j for every 1  i  k. We write L(A) for the
set of timed words (or timed language) accepted by A, that is the set of timed
words u such that there exists an initial and accepting run % which reads u.

A timed automaton A is deterministic whenever for every timed word u, there
is at most one initial run which reads u. It is strongly non-Zeno whenever there

exists K 2 such that for every run % = s0
⌧1,a1���! s1 . . .

⌧k,ak���! sk in A, k � K
implies

Pk
i=1 ⌧i � 1. This condition is rather standard in timed automata [4].

Example 1. An example of timed automaton is depicted in Fig. 1. This automa-
ton will be used as a running example throughout the paper in order to illustrate
the di↵erent steps of our construction. This automaton is not deterministic and
accepts the timed language {(a, t1)(a, t2) · · · (a, t2n) | n � 1, 0 < t1 < t2 < · · · <
t2n�1 and t2n � t2n�2 = 1}, with the convention that t0 = 0. The timed word

(a, 0.5)(a, 1.6)(a, 2.9) can be read on the initial run (`0, 0)
0.5,a���! (`3, 0)

1.1,a���!
(`0, 0)

1.3,a���! (`1,?) but is not accepted. The last configuration of the above run
is (`1,?) because the value of clock x should be 1.3, but as it is larger than the
maximal constant 1, we abstract the precise value into ?.

`0 `1`3 `2
x>0,a x=1,a,{x}

x>0,a,{x}

x>0,a,{x}
Fig. 1. A timed automaton A

On timed bisimulations. A strong timed (resp. time-abstract) simulation re-
lation between two timed transition systems Ti = (Si, si,0, Si,acc, (⌃ [+),!i)

for i 2 {1, 2} is a relation R ✓ S1 ⇥ S2 such that if s1 R s2 and s1
t1,a��! s01 for

some t1 2 + and a 2 ⌃, then there exists s02 2 S2 (resp. t2 2 + and s02 2 S2)

such that s2
t1,a��! s02 (resp. s2

t2,a��! s02) and s01 R s02. A strong timed (resp. time-
abstract) bisimulation relation between two timed transition Ti for i 2 {1, 2}
is a relation R ✓ S1 ⇥ S2 such that both R and R�1 are strong timed (resp.
time-abstract) simulation relations. The above relations preserve initial (resp.

3

22/41

the timing constraints that have to be satisfied in A. Each node n of A1 is
labelled by a pair (`, �) 2 L ⇥ ZX where ` records the location of A that node
n simulates and � describes how the clocks of A are encoded using the clocks
of A1 (if �(x) = zi, the value clock x would have in A is the current value of
clock zi). The advantage of this infinite timed tree is that it enjoys some input-
determinacy property: when reading a finite timed word u in A1, there may be
several runs in the tree that read u, but the timing information stored in the
clocks is independent of the run in the tree (see Remark 4).

Example 2. Part of the infinite timed tree A1 associated with the timed au-
tomaton A of Fig. 1 is depicted in Fig. 2. Notice that a fresh clock is reset at
each level; for instance z2 is reset on all edges from level-1 to level-2 nodes (i.e.
n1 ! n3 and n2 ! n4). The timed tree A1 corresponds to the unfolding of A:
the two branches starting from the node n0 represent the possible choice in state
`0 of A; the same phenomenon also happens in n4. The label of n4 is (`0, z2); it
means that node n4 represents the location `0 of A and that the value of clock
x can be recovered from the current value of clock z2. It is important to observe
how the second component of the label evolves. First consider the edge n4 ! n5;
it represents the transition from `0 to `1 in A, which does not reset clock x; the
reference for clock x is the same in n5 as it is in n4, that is why the label of n5

is (`1, z2). Now consider the edge n4 ! n6; it represents the transition from `0
to `3 in A, which resets clock x; the reference for clock x thus becomes z3, the
clock which has just been reset, that is why the label of n6 is (`3, z3).

n0

(`0,z0)

n1 (`1,z0) n2 (`3,z1)

n3 (`2,z2) n4

(`0,z2)

n5 (`1,z2) n6 (`3,z3)

n7 (`2,z4) n8 (`0,z4)

...

level 0

level 1

level 2

level 3

level 4

z0>0,a,{z1} z0>0,a,{z1}

z0=1,a,{z2} z1>0,a,{z2}

z2>0,a,{z3} z2>0,a,{z3}

z2=1,a,{z4} z3>0,a,{z4}

Fig. 2. The infinite timed tree A1 associated with the timed automaton A of Fig. 1.

The correctness of this unfolding is stated in the follow lemma.

Lemma 3. The relation R1 between states of A and states of A1 defined by
(`, v � �) R1 (n, v) if label(n) = (`, �) is a strong timed bisimulation.

5

23/41

Remark 4. In A1, for every finite timed word u, there is a unique valuation
vu 2 Z such that for every initial run % in A1 that reads u, % ends in some
configuration (n, vu) with level(n) = |u|. Indeed, if the timed word u is of the
form (a1, t1)...(a|u|, t|u|), any initial run % reading u necessarily ends in a config-
uration (n, vu) where level(n) = |u| and vu(zj) = t|u| � tj for any j  |u|.

3.2 A region abstraction

In this second step, we extend in a natural way the classical region equivalence to
the above infinite timed tree: at level i of the tree, only clocks in Zi = {z0, · · · , zi}
are relevant (all other clocks have not been used yet), we thus consider regions
over that set of clocks. We use R(A1) to denote this region abstraction, and we
interpret it in a timed manner. We do not illustrate this transformation step on
our running example, since R(A1) is easily obtained from A1, but only depict
the transformation on an edge, see below:

n (`,�)

n0 (`0,�0)

level i

level i+1

g,a,{zi+1}

n,r (`,�)

n0,r0 (`0,�0)

r00,a,{zi+1}

r: region over Zi

r0: region over Zi+1
=r00^(zi+1=0)

r00: region over Zi
time successor of r
included in g

It is worth noting that, in R(A1), any state reached after a transition is of the
form ((n, r), v), where n is a node of A1 (of some level, say i), r is a region over
Zi, and v is a valuation over Zi which belongs to r. It is not di�cult to see that,
as in the standard region construction in timed automata, two states ((n, r), v1)
and ((n, r), v2) with v1, v2 2 r are time-abstract bisimilar. Furthermore, R(A1)
will satisfy the same input-determinacy property as A1 (see Remark 4). The
correctness of R(A1) can then be stated as follows.

Lemma 5. The relation R2 between states of A1 and states of R(A1) defined
by (n, v) R2 ((n, r), v) if v 2 r is a strong timed bisimulation.

3.3 Symbolic determinization

This third step is the crucial step of our construction. We will symbolically deter-
minize the infinite timed tree R(A1) using a rather standard subset construc-
tion, and we denote by SymbDet(R(A1)) the resulting infinite tree. However
there will be a subtlety in the subset construction: useless clocks will be forgot-
ten ‘on-the-fly’. More precisely, at each node, we only consider active clocks, i.e.
clocks that appear in the label of the node (other clocks record values that do
not impact on further behaviours of the system). The determinization is then
performed on the ‘symbolic’ alphabet composed of regions over active clocks
and actions, and thanks to the input-determinacy property of R(A1), this sym-
bolic determinization coincides with the determinization of the underlying timed
transition system. Let us explain this crucial step on our running example.

6

24/41

Example 6. The construction of SymbDet(R(A1)) is illustrated on Fig. 3. The
determinization is performed using a classical subset construction. For example
starting from node n0, both n1 and n2 can be reached via a transition with
guard 0 < z0 < 1. This is reflected in the leftmost {n1, n2}-node at the first
level. It is also important to understand the meaning of active clocks. In A1,
the only active clock in node n4 is z2. Therefore, guards on transitions leaving
the node ({n4}, z2 = 0) in SymbDet(R(A1)) are regions over this unique clock
z2. If we consider a node combining n5 and n6, active clocks will consist in the
union of active clocks in both nodes, hence z2 and z3. For sake of readability,
we have mostly omitted labels of nodes on Fig. 3, but they can be naturally
inferred from those in R(A1); for instance, the label of the top-rightmost node
is {(`1, z0), (`3, z1)}, the union of the labels of n1 and n2 in R(A1).

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<z0=?) ({n1,n2},0=z1<z0=1)

label
{(`1,z0),(`3,z1)}

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<z2=?) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0) ({n8},z4=0) ({n7},z4=0)

...

0<z0<1

z0>1

z0=1

0<z1<z0=1
0<z1 ,z0 6=1

z1>0

0<z1<1<z0 0=z1<z0=1

0<z2<1 z2>1

z2=1

0<z2<1

z2>1

z2=1

0<z3<z2=1 0<z3 ,z2 6=1

z3>1

0<z3<1<z2
0=z3<z2=1

Fig. 3. The DAG induced by the infinite timed tree SymbDet(R(A1))

The subset construction induces a DAG (as seen on Fig. 3). However the rest
of the construction will require a tree instead of a DAG; we thus add markers to
nodes, so that we can have several copies of a node, depending on the ancestors.
A node in SymbDet(R(A1)) is thus a tuple (?,K, r) where ? is a marker, K is
a subset of node names in R(A1) (they all have same level), and r is a region
over the set Act(K) =

S
n2K,label(n)=(`,�) �(X), the set of active clocks in K.

The correctness of SymbDet(R(A1)) is stated in the following proposition.

Proposition 7. SymbDet(R(A1)) is a deterministic timed tree, and for every
node N = (?,K, r) and for every valuation v 2 Act(K) with v 2 r,

L(SymbDet(R(A1)), (N, v)) =
[

n2K

L(R(A1), ((n, r), v))

7

25/41

({(`0,x1)},x1=0)

({(`1,x1),(`3,x2)},0=x2<x1<1) ({(`1,x1),(`3,x2)},0=x2<x1=?) ({(`1,x1),(`3,x2)},0=x2<x1=1)

({(`0,x1),(`2,x1)},x1=0) ({(`2,x1)},x1=0)

0<x1<1,a

{x2}

x1>1,a

{x2}
x2>0,a

{x1}

x1=1,a

{x2}

x1=1,a

{x1}

0<x2
,x1

6=1,a

{x1
}

0<x
2<1<x

1 ,ax
1 :=0

x1=1,a

{x1}

0<
x
1<

1,a{x
2 }

x1
>
1,

a

{x2
} x1=

1,a

{x2}

Fig. 4. The deterministic version of A: the timed automaton BA,�

Proposition 10. Assume that SymbDet(R(A1)) is �-clock-bounded. Then, BA,�

is a deterministic timed automaton, and L(BA,�) = L(A).

3.5 Algorithmic issues and complexity

In this subsection, we shortly discuss the size of the e↵ectiveness of its construc-
tion. If A = (L, `0, Lacc, X,M,E) is a timed automaton such that SymbDet(R(A1))
is �-clock-bounded (for some � 2), then the timed automaton BA,� has roughly

↵(A, �) = 2|L| · �|X| ·
⇣
(2M + 2)(�+1)2 · �!

⌘
locations because a location is char-

acterized by a finite set of pairs (`, �) with ` a location of A, � : X ! X� , and
a region over X� .

The procedure we have described goes through the construction of infinite
objects. However, if we abstract away the complete construction, we know pre-
cisely how locations and transitions are derived. Hence, BA,� can be computed
on-the-fly by guessing new transitions, and so can its complement (since BA,�

is deterministic). A location of the automaton BA,� can be stored in space log-
arithmic in ↵(A, �), and we will thus be able to check for universality (e.g.) in
nondeterministic space log(↵(A, �)).

4 Our results

We will now investigate several classes of timed automata for which the procedure
described in Section 3 applies.

4.1 Some classes of timed automata are determinizable

Automata satisfying the p-assumption (TAp). Given p 2 , we say that a
timed automaton A satisfies the p-assumption if for every n � p, for every run

% = (`0, v0)
⌧1,a1���! (`1, v1) . . .

⌧n,an���! (`n, vn) in A, for every clock x 2 X, either x
is reset along % or vn(x) = ?. This assumption will ensure that we can apply the
previous procedure, because if A satisfies the p-assumption, SymbDet(R(A1)) is
p-clock-bounded. Then we observe that any strongly non-Zeno timed automaton

9

26/41

z0

z1

z2

zi

...

...

Reset a new clock zi at level i

{(q1, σ1), (q2, σ2), . . . , (qk, σk),REG}

σj : X 7→ {z0, . . . , zi}

When do finitely many clocks suffice ?

27/41

Integer reset timed automata

q1 q2
a, g

R

Conditions:
I g has integer constants

I R is non-empty iff g has some constraint x = c

Implication:
I Along a timed word, a reset of an IRTA happens only at

integer timestamps

Timed automata with integer resets: Language inclusion and expressiveness

Suman, Pandya, Krishna, Manasa. FORMATS’08

28/41

q0 q1
x = 1, a

{x}
x = 1, a
{x} an IRTA

q0 q1 q2
a

{x}
x = 1, a

a aa

not an IRTA

Next: determinizing IRTA using the subset construction

29/41

q0 q1
x = 1, a

{x}
x = 1, a
{x} an IRTA

q0 q1 q2
a

{x}
x = 1, a

a aa

not an IRTA

Next: determinizing IRTA using the subset construction

29/41

M: max constant from among guards

zi1

zi2

zik

...

...

...

...
zi1 zi2 . . . zik active clocks

I If k ≥ M + 1, then zi1 > M (as reset is only in integers)

I Replace zi1 with ⊥ and reuse zi1 further

30/41

DTA
Unique run

Closed under ∪, ∩, comp.

L(DTA) ⊂ L(TA)

Determinizable
subclasses

ERA

IRTA

31/41

z0

z1

z2

zi

...

...

Reset a new clock zi at level i

{(q1, σ1), (q2, σ2), . . . , (qk, σk),REG}

σj : X 7→ {z0, . . . , zi}

When do finitely many clocks suffice ?

32/41

Strongly non-Zeno automata

A TA is strongly non-Zeno if there is K ∈ N :

every sequence of greater than K transitions elapses at least 1
time unit

q0 q1

x < 1, a

x = 1, a

not SNZ

q0 q1
x = 1, a

{x}
x = 1, a
{x}

SNZ

33/41

Theorem

Finitely many clocks suffice in the subset construction for
strongly non-Zeno automata

(The number of clocks depends on size of region automaton...)

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP’09

34/41

Complexity of subset construction

Doubly-exponential in the size of the automaton

35/41

DTA
Unique run

Closed under ∪, ∩, comp.

L(DTA) ⊂ L(TA)

Determinizable
subclasses

ERA

IRTA

SNZ

36/41

q0 q1 q2
a

{x}

b

x = 1, a

ERA IRTA SNZ

q0 q1 q2

{x}

a

x = 2, ax = 1, a

ERA IRTA SNZ

q0 q1 q2 q2
a

{x}

a x = 1, a

ERA IRTA SNZ
37/41

ERA IRTA

SNZ

DTA

TA

38/41

Closure properties of ERA, IRTA, SNZ

I Union: disjoint union
√

I Intersection: product construction
√

I Complement: determinize & interchange acc. states
√

39/41

DTA
Unique run

Closed under ∪, ∩, comp.

L(DTA) ⊂ L(TA)

Determinizable
subclasses

ERA

IRTA

SNZ

ERA, IRTA, SNZ

Incomparable

Closed under ∪, ∩, comp.

40/41

Perspectives

Other related work:

I Event-predicting clocks (Alur, Henzinger, Fix’99)

I Bounded two-way timed automata (Alur, Henzinger’92)

For the future:

I Infinite timed words: Safra?

I Efficient algorithms

41/41

