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Hybrid automata model systems with both digital and analog com-
ponents, such as embedded control programs. Many verification tasks
for such programs can be expressed as reachability problems for hybrid
automata. By improving on previous decidability and undecidability
results, we identify a boundary between decidability and undecidability
for the reachability problem of hybrid automata. On the positive side,
we give an (optimal) PSPACE reachability algorithm for the case of
initialized rectangular automata, where all analog variables follow inde-
pendent trajectories within piecewise-linear envelopes and are reini-
tialized whenever the envelope changes. Our algorithm is based on the
construction of a timed automaton that contains all reachability infor-
mation about a given initialized rectangular automaton. The translation
has practical significance for verification, because it guarantees the
termination of symbolic procedures for the reachability analysis of
initialized rectangular automata. The translation also preserves the
|-languages of initialized rectangular automata with bounded non-
determinism. On the negative side, we show that several slight
generalizations of initialized rectangular automata lead to an
undecidable reachability problem. In particular, we prove that the
reachability problem is undecidable for timed automata augmented
with a single stopwatch. ] 1998 Academic Press

1. INTRODUCTION

A hybrid automaton [ACHH93, NOSY93] combines the
discrete dynamics of a finite automaton with the continuous
dynamics of a dynamical system. Hybrid automata thus
provide a mathematical model for digital computer systems
that interact with an analog environment in real time. Case
studies indicate that the model of hybrid automata is useful
for the analysis of embedded software and hardware, including
distributed processes with drifting clocks, real-time schedulers,
and protocols for the control of manufacturing plants, vehicles,

and robots (see, for example, [HRP94, ACH+95, HHWT95,
HW95, NS95, AHH96, Cor96, HWT96, SMF97]). Two
problems that are central to the analysis of hybrid auto-
mata are the reachability problem and the more general
|-language emptiness problem. The solution of the reacha-
bility problem for a given hybrid automaton allows us to
check if the trajectories of the automaton meet a given safety
requirement; the solution of the |-language emptiness
problem allows us to check if the trajectories of the automaton
meet a liveness requirement [VW86]. While a scattering
of previous results show that both problems are decidable
in certain special cases and undecidable in certain general
cases, this paper attempts a systematic characterization of
the boundary between decidability and undecidability.

Hybrid automata generalize timed automata. Timed
automata [AD94] equip finite automata with clocks which
are real-valued variables that follow continuous trajectories
with constant slope 1. Hybrid automata equip finite auto-
mata with real-valued variables whose trajectories follow
more general dynamical laws. For each class of dynamical
laws, we obtain a class of hybrid automata. A particularly
interesting class of dynamical laws confines the set of
possible trajectories to piecewise-linear envelopes. Suppose,
for example, that the variable x represents the water level in
a tank. Depending on the position of a control valve (i.e.,
the state of a finite control automaton), the water level
either falls nondeterministically at any rate between 2 and
4 cm s&1, or rises at any rate between 1 and 3 cm s&1.
We model these two situations by the dynamical laws
x* # [&4, &2] and x* # [1, 3]��so-called rectangular flow
constraints [PV94]��which enforce piecewise-linearenvelopes
on the water-level trajectories. Rectangular-flow automata
are interesting from a practical point of view, as they permit
the modeling of clocks with bounded drift and the conser-
vative approximation of arbitrary trajectory sets [OSY94,
PBV96, HHWT98], and from a theoretical point of view, as
they lie at the boundary of decidability.

Our results are threefold. First, we give an (optimal)
PSPACE algorithm for the reachability problem of rectan-
gular-flow automata with two restrictions: (1) the values of
two variables with different flow constraints are never
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compared; (2) whenever the flow constraint of a variable
changes, the value of the variable is reinitialized. Second,
under the additional assumption of bounded nondeterminism
(which requires that the successor of a bounded region be
bounded), we obtain a PSPACE algorithm for checking
|-language emptiness of rectangular-flow automata. Third,
we prove that the reachability problem becomes undecidable
if either one of the restrictions (1) and (2) is relaxed, or if
more general, triangular flow constraints are admitted.

The first two results are proven by translating rectangular-
flow automata of dimension n into timed automata of dimen-
sion 2n+1, where the dimension is the number of real-valued
variables. The translation preserves finitary languages, and in
the case of bounded nondeterminism, also |-languages. In
addition, the translation implies that, when applied to
rectangular-flow automata that meet restrictions (1) and (2),
existing semidecision procedures for the reachability problem
of hybrid automata terminate. Such procedures have been
implemented in the HyTech verification tool [AHH96,
HHWT97].

The third result is proven by reduction from the halting
problem for two-counter machines. In an attempt to charac-
terize the undecidability frontier, we sharpen the reduction
as much as possible. First, we prove that any relaxation of
restriction (1) leads to the undecidability of the reachability
problem for timed automata augmented with a single
constant-slope variable whose slope is different from 1.
Second, we prove that any relaxation of restriction (2) leads
to the undecidability of the reachability problem for timed
automata augmented with a single uninitialized two-slope
variable, such as a stopwatch, which is a variable whose
slope is always either 0 or 1.

Previous work. Over the past few years, there have been
many decidability and undecidability results about hybrid
systems; we list only those that led to the present work. The
first decidability result for hybrid automata was obtained
for timed automata, whose reachability and |-language
emptiness problems are PSPACE-complete [AD94]. Under
restrictions (1) and (2), that result was later generalized to
automata with variables that run at any constant positive
slopes [ACH+95], and to the reachability problem for
automata with nonstrict rectangular flow constraints [PV94].
In [BES93, KPSY93, BER94, MV94, BR95, ACH97], it
was shown that, under various strong side conditions,
reachability is decidable for timed automata with one stop-
watch, but the general problem of one-stopwatch automata
was left open.

As far as undecidability results are concerned, in [Cer92]
it was shown that reachability is undecidable for timed
automata with three stopwatches, as well as for timed
automata with one memory cell (a variable of constant
slope 0) and assignments between variables. It was also
known that reachability is undecidable for timed automata

with six memory cells and no assignments [AHV93], for
timed automata with two three-slope variables and restriction
(1) [KPSY93], for timed automata with two nonclock con-
stant-slope variables [ACH+95], and for timed automata
with additive clock constraints [AD94].

2. RECTANGULAR AUTOMATA

A hybrid automaton of dimension n is an infinite-state
machine whose state has a discrete part which ranges over
the vertices of a graph and a continuous part which ranges
over the n-dimensional euclidean space Rn [ACH+95].
A run of a hybrid automaton is a sequence of edge steps and
time steps. During an edge step (also called jump) the discrete
and continuous states are updated according to a guarded
command. During a time step (also called flow) the discrete
state remains unchanged, and the continuous state changes
according to a dynamical law, say, a differential equation. In
this paper, we are concerned with decidability questions
about hybrid automata and, therefore, consider restricted
classes of guarded commands and dynamical laws. This leads
us to the definition of rectangular automata.

Notation. We use the symbol R�0 to denote the set
[x # R | x�0] of the nonnegative reals. We use the boldface
characters x, y, and z for vectors in Rn, and subscripts on italic
characters such as xi , yj , and zk for components of vectors.

Rectangular Regions

Given a positive integer n>0, a subset of Rn is called a
region. A closed and bounded region is compact. A region
R/Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose finite endpoints are
rational. We write Ri for the projection of R on the i th coor-
dinate, so that R=>n

i=1 Ri . The set of all rectangular regions
in Rn is denoted Rn.

Definition of Rectangular Automata

An n-dimensional rectangular automaton A consists of a
finite directed multigraph (V, E), a finite observation alphabet
7, three vertex labeling functions init: V � Rn, inv: V � Rn,
and flow: V � Rn, and four edge labeling functions pre:
E � Rn, post: E � Rn, jump: E � 2[1, ..., n], and obs: E � 7. An
n-dimensional rectangular automaton with = moves differs in
that the function obs maps E into 7=, where 7==7 _ [=]
augments the observation alphabet with the null observation
= � 7. When we discuss more than one automaton, we use
the subscript A to identify the components of A. For example,
the vertex set of A may be denoted VA .

The initial function init specifies a set of initial automaton
states. When the discrete state begins at vertex v, the
continuous state must begin in the initial region init(v).
The preguard function pre, the postguard function post, and
the jump function jump constrain the behavior of the auto-
maton state during edge steps. The edge e=(v, w) may be
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traversed only if the discrete state resides at vertex v and the
continuous state lies in the preguard region pre(e). For each
i in the jump set jump(e), the i th coordinate of the conti-
nuous state is nondeterministically assigned a new value in
the postguard interval post(e) i . For each i � jump(e), the i th
coordinate of the continuous state is not changed and must
lie in post(e) i . The observation function obs identifies every
edge traversal with an observation from 7 or 7=. The
invariant function inv and the flow function flow constrain
the behavior of the automaton state during time steps.
While the discrete state resides at vertex v, the continuous
state nondeterministically follows a smooth (C�) trajectory
within the invariant region inv(v), whose first time derivative
remains within the flow region flow(v). A rectangular auto-
maton with = moves may traverse = edges during time steps.

Note that if we replace rectangular regions with arbitrary
linear regions in the definition of rectangular automata,
we obtain the linear hybrid automata of [AHH96]. Thus,
rectangular automata are the subclass of linear hybrid
automata in which all defining regions are rectangular.

Initialization and Bounded Nondeterminism
The rectangular automaton A is initialized if for every

edge e=(v, w) of A, and every coordinate i # [1, ..., n] with
flow(v) i { flow(w) i , we have i # jump(e). It follows that
whenever the i th continuous coordinate of an initialized
automaton changes its dynamics, as given by the flow
function, then its value is nondeterministically reinitialized
according to the postguard function.

The rectangular automaton A has bounded nondeterminism
if (1) for every vertex v # V, the regions init(v) and flow(v) are
bounded, and (2) for every edge e # E and every coordinate
i # [1, ..., n] with i # jump(e), the interval post(e)i is bounded.
Note that bounded nondeterminism does not imply finite
branching. It ensures that the edge and time successors of a
bounded region are bounded.

The Labeled Transition System of a Rectangular Automaton

The rectangular automaton A, possibly with = moves,
defines a labeled transition system with an infinite state
space Q, the infinite set 7 _ R�0 of labels, and the binary
transition relations w�

{
on Q, one for each label { # 7 _ R�0 .

Each transition with label _ # 7 corresponds to an edge step
whose observation is _. Each transition with label t # R�0

corresponds to a time step of duration t. The states and the
transitions of A are defined formally as follows.

States. A state (v, x) of A consists of a discrete part v # V
and a continuous part x # Rn such that x # inv(v). The state
space Q/V_Rn of A is the set of all states of A. A subset
of Q is called a zone of A. Each zone Z/Q can be uniquely
decomposed into a collection �v # V [v]_[Z]v of regions
[Z]v/Rn, one for each vertex v # V. The zone Z is rectangular
(resp. bounded; compact) if each region [Z]v is rectangular

(resp. bounded; compact). The state (v, x) is an initial state
of A if x # init(v). The initial zone of A, denoted Init, is the
set of all initial states of A. Notice that both the state space
Q and the initial zone Init are rectangular.

Jump transitions. For each edge e=(v, w) of A, we
define the binary relation w�

e
/Q2 by (v, x) w�

e
(w, y) iff

x # pre(e), and y # post(e), and for every coordinate
i # [1, ..., n] with i � jump(e), we have xi= yi . Hence x and
y differ only at coordinates in the jump set jump(e). For each
observation _ # 7=, we define the edge-step relation w�

_
/Q2

by q w�
_ r iff q w�

e r for some edge e # E with obs(e)=_.

Flow transitions. For each nonnegative real t # R�0 , we
define the binary relation w�

[t]
/Q2 by (v, x) w�

[t]
(w, y) iff

(1) v=w and (2) either t=0 and x=y, or t>0 and
(y&x)�t # flow(v). Notice that due to the convexity of
rectangular regions, (v, x) w�

[t]
(v, y) iff there is a smooth

function f : [0, t] � inv(v), with first derivative f $, such that
f (0)=x, and f (t)=y, and for all reals s # (0, t), we have
f $(s) # flow(v). Hence the continuous state may evolve from
x to y via any smooth trajectory satisfying the constraints
imposed by inv(v) and flow(v). If A does not have = moves,
then we define the time-step relation w�

t
to be w�

[t]
. If A has

= moves, then the time-step relation w�
t

/Q2 is defined by
q w�

t r iff there exists an integer m�1, nonnegative reals

t1 , ..., tm , and states q1 , ..., q2m&2 such that q w�
[t1]

q1 w�
= q2

w�
[t2]

q3 w�
=

} } } w�
= q2m&2 ww�

[tm]
r and t=�m

i=1 t i .

We write 6=7= _ R�0 _ E _ [R�0] for the set of labels
that arise in connection with the automaton A, where
[R�0]=[[t] | t # R�0]. Let Z be a zone of A, and let ? be
a label from 6. We define Post?(Z)=[q # Q | _r # Z .r w�

? q]
to be the zone of states that are reachable in one ? step from Z,
and we define Post(Z)=�? # 7 _ R�0

Post?(Z) to be the zone
of states that are reachable in one edge or time step from Z.
Similarly, we define Pre?(Z)=[q # Q | _r # Z .q w�

? r] to be
the zone of states from which Z is reachable in one ? step,
and we define Pre(Z)=�? # 7 _ R�0

Pre?(Z) to be the zone
of states from which Z is reachable in one edge or time step.
Notice that Post(Z)#Z and Pre(Z)#Z because of time
steps of the form w�0 .

The Reverse Automaton

For an n-dimensional rectangular automaton A, the reverse
automaton &A is an n-dimensional rectangular automaton
that defines the same state space as A, but with the transition
relations reversed. The vertex set, observation alphabet, initial
and invariant functions of &A are the same as for A. For each
vertex v, the flow region of &A is defined by flow&A(v)=
[x # Rn | &x # flowA(v)]. For each edge e=(v, w) of A,
the reverse automaton &A has the edge &e=(w, v) with
pre&A(&e)= postA(e), jump&A(&e)= jumpA(e), and
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post&A(&e)= preA(e). From these definitions, Proposition 2.1
follows immediately.

Proposition 2.1. For all states q and r of a rectangular
automaton A, and every label ? # 6, we have q w�

?
A r iff

r w�
?

&A q.

It follows that for every zone Z of A, and every label
? # 6, Post?

A(Z)=Pre?
&A(Z) and Pre?

A(Z)=Post?
&A(Z).

Multirectangular Zones

A zone Z is multirectangular if Z is a finite union of
rectangular zones. Multirectangularity is preserved by edge
and time steps.

Proposition 2.2. For every multirectangular zone Z of a
rectangular automaton A, and every label ? # 7= _ [R�0],
the zones Post?(Z) and Pre?(Z) are multirectangular.

Proof. We give the proof for Post; the result for Pre then
follows from Proposition 2.1. Since each relation w�_ with
_ # 7= is a finite union of relations w�e with e # E, it suffices
to prove the proposition for ? # E _ [R�0]. Call a zone
elementary if it is of the form [v]_R, where R is a rec-
tangular region. Then a zone is multirectangular iff it is a
finite union of elementary zones. We show that for every
elementary zone Z=[v]_R, the successor zone Post?(Z)
is elementary. If ?=(v, w) is an edge of A, then Post?(Z)=
[w]_S, where

Ri & pre(?) i & post(?) i & inv(w) i ,

if i � jump(?) i ,

Si={ post(?) i & inv(w) i ,

if i # jump(?) i and Ri & pre(?) i {<,

<, if Ri & pre(?) i=<.

If ?=[0], then Post?(Z)=Z. If ? # [R�0] and ?>0, then
Post?(Z)=[v]_S, where

Si=inv(v) i & [1 inf(R i)+? } inf( flow(v) i), �)

& (&�, sup(Ri)+? } sup( flow(v) i)]2.

Here, [1 stands for [ if R i and flow(v) i are left-closed,
[1 stands for ( if Ri or flow(v)i are left-open, ]2 stands for ]
if Ri and flow(v) i are right-closed, and ]2 stands for ) if Ri

or flow(v) i are right-open. K

Given a zone Z of the rectangular automaton A and a
finite sequence ?0?1 } } } ?m # 6* of labels, we define Post?0?1(Z)
=Post?1(Post?0(Z)), and we define Post?0?1 } } } ?m(Z) induc-
tively in the usual way. Also, we define Post*(Z)=
�i # N Posti (Z) to be the zone of states that are reachable
from Z in a finite number of edge and time steps (here Posti

denotes i applications of the function Post). Analogous

definitions are made for Pre. A state q is a reachable state of
A if q # Post*(Init). The reachable zone of A, denoted
Reach(A), is the set Post*(Init) of all reachable states of A.
The reachable zone Reach(A) is an infinite union of
rectangular zones and may not be multirectangular.

The |-Language of a Rectangular Automaton

Let A be a rectangular automaton, possibly with = moves.
A timed word for A is a finite or infinite sequence {� =
{0{1 {2 } } } of letters from 7 _ R�0 ; that is, each {i is either
an observation of A, or a nonnegative real that denotes a
duration of time between observations. The timed word {� is
divergent if {� is infinite and � [{i | i # N and {i # R�0]=�.
A run \ of A is a finite or infinite sequence of the form q0 w�

{0

q1 w�
{1 q2 w�

{2 } } } , where q0 # Init, and for all i�0, we have
qi # Q and {i # 7 _ R�0 . The run \ accepts the timed word
{� ={0 {1 {2 } } } , and \ is called divergent if {� is divergent. The
|-language of A, denoted Lang(A), is the set of all divergent
timed words that are accepted by runs of A.

Example
It is often convenient to refer to each coordinate of the

continuous state as a variable. We use letters from the begin-
ning of the alphabet, such as a, b, c, d, for variables. If
the variable a corresponds to the i th coordinate of the
continuous state, we write flow(v)(a) for flow(v) i , etc.
In pictorial descriptions of rectangular automata, we
annotate each vertex with its flow region, and sometimes
with its invariant region. For example, if flow(v)(a)=[3, 5],
flow(v)(b) = [4, 4], inv(v)(a) = (1, 7], and inv(v)(b) =
(&�, 0], we write ``a* # [3, 5],'' ``b4 =4,'' ``1<a�7,'' and
``b�0'' inside vertex v. Often, however, we give the invariant
function in the text and omit it from the figure. Edges are
annotated with observations and guarded commands. A
guarded command , defines two regions pre(,) and post(,),
and a jump set jump(,), in a natural manner. For example,
if , is the (nondeterministic) guarded command

a�5 7 b=4 � b :=7; c :# [0, 5]

then pre(,)(a)=(&�, 5], pre(,)(b)=[4, 4], pre(,)(c)=
(��, �), jump(,)=[b, c], post(,)(a)=(��, �), post(,)(b)
=[7, 7], and post(,)(c)=[0, 5]. As usual, when writing
guarded commands, the guard true is omitted, and so is the
empty list of assignments.

Consider, for instance, the 2D rectangular automaton A�
of Fig. 1. The observation alphabet of A� is [_1 , _2 , _3 , _4],
and the invariant function of A� is the constant function
*v .[&20, 20]2 (not shown in the figure). The automaton A�
is initialized, as the values of the two variables c and d are
reinitialized whenever their flow regions change. Figure 2
shows a sample trajectory of A� from the initial zone InitA� =
[(v1 , (0, 1))]. Each arc is labeled with a vertex giving the
discrete state, while the continuous state follows the arc.
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FIG. 1. The initialized rectangular automaton A� .

The discontinuity between the arcs labeled v2 and v3

correspond to the jump of variable d from &5 to &4 upon
traversal of the edge from v2 to v3 . The divergent timed
word (4_11_2 1_31_4)| is an example of a timed word that
is accepted by A� . This timed word is accepted by a run with
the state sequence

((v1 , (0, 1))(v1 , (5, &10))(v2 , (4, &10))(v2 , (0, &12.5))

(v3 , (0, &4))(v3 , (&3, &2))(v4 , (&1, &2))(v4 , (0, 0)))|.

CNF Edge Families

We sometimes annotate edges of rectangular automata
with positive boolean combinations of guarded commands.
Consider the two guarded commands ,1 and ,2 . First, the
edge annotation ,1 7 ,2 stands for a guarded command ,3

with pre(,3)=pre(,1)&pre(,2), post(,3)=post(,1)&post(,2),
and jump(,3)= jump(,1) _ jump(,2). Second, an edge with
the annotation ,1 6 ,2 stands for two edges that share
source vertex, target vertex, and observation, one annotated
with ,1 and the other with ,2 . These conventions generalize
to DNF expressions of guarded commands. An edge annotated
with a CNF expression of guarded commands is interpreted
by first converting the expression into DNF. A CNF edge
family ((v, w), _, �), then, consists of a pair (v, w) of vertices,
an observation _, and a CNF expression � of guarded

FIG. 2. A sample trajectory of A� .

commands. Consider, for example, the CNF edge family
with the vertex pair (v, w), the observation _, and the CNF
expression

((a<2 � a :=2) 6 (2�a�5))

7 ((b>7 � b :=7) 6 (4�b�7)).

This edge family corresponds to four edges from v to w, each
annotated with the observation _ and one of the following
guarded commands:

1. a<2 7 b>7 � a :=2; b :=7,

2. a<2 7 4�b�7 � a :=2,

3. 2�a�5 7 b>7 � b :=7,

4. 2�a�5 7 4�b�7.

In this way, an n-dimensional rectangular automaton may
be specified by a set of vertices, an observation alphabet,
initial, invariant, and flow functions, and a set of CNF
edge families. If Z is a zone of the rectangular automaton A,
and 9 is a CNF edge family, we define Post9 (Z) to be
�e Poste(Z), where the union is taken over all edges e of A
that correspond to the edge family 9.

Two Problems Concerning Rectangular Automata

We study the following two problems about rectangular
automata.

Reachability. Given a rectangular automaton A, and
a rectangular zone Zf of A, is Reach(A) & Zf nonempty?
That is, does Zf contain a reachable state of A? If so, we say
that the zone Zf is reachable for A. A solution to this
problem permits the verification of safety requirements for
systems that are modeled as rectangular automata. If we
equip rectangular automata with rectangular final zones,
then the reachability problem is equivalent to the finitary
language emptiness problem.

|-Language Emptiness. Given a rectangular auto-
maton A, is Lang(A) nonempty? That is, does A have a
divergent run? This problem is more general than the
reachability problem, and a solution permits the verification
of safety and liveness requirements for systems that are
modeled as rectangular automata.

For initialized rectangular automata, we provide a
PSPACE decision procedure for the reachability problem.
For initialized rectangular automata with bounded non-
determinism, we give a PSPACE decision procedure for the
|-language emptiness problem. We then show that the
reachability problem (and therefore |-language emptiness)
is undecidable for very restricted classes of uninitialized
rectangular automata and, also, for initialized automata
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with slightly generalized invariant, flow, preguard, postguard,
or jump functions.

3. DECIDABILITY

We translate a given initialized rectangular automaton A
into a timed automaton [AD94] that contains all reacha-
bility information about A. The translation proceeds in two
steps: from initialized rectangular automata to initialized
singular automata (Section 3.2), and from initialized singular
automata to timed automata (Section 3.1). For the subclass
of automata with bounded nondeterminism, the translation
also preserves |-languages (Section 3.3), and therefore
reduces the |-language emptiness problem for these auto-
mata to the corresponding problem for timed automata. In
Section 3.4, we explain our translations in terms of simula-
tions and bisimulations of the underlying labeled transition
systems. In Section 3.5, we supply a practical implication of
our translations, showing that symbolic execution [ACH+95]
terminates on initialized rectangular automata after a
linear-time preprocessing step.

3.1. From Initialized Singular Automata to
Timed Automata

We begin by defining several special cases of rectangular
automata for which, using known results about timed auto-
mata, the reachability and |-language emptiness problems
can be solved easily.

Finite-slope Variables

Consider a rectangular automaton A. The variable c is a
one-slope variable of A if there exists a rational number k
such that for each vertex v of A, we have flow(v)(c)=[k, k].
A one-slope variable with slope k=0 is called a memory
cell. A one-slope variable with slope k=1 is called a clock.
A one-slope variable with any other slope is called a skewed
clock. Notice that, if every variable of A is a one-slope
variable, then A is initialized. The variable c is a two-slope
variable of A if there exist two rational numbers k1 and k2 ,
with k1 {k2 , such that for each vertex v of A, either
flow(v)(c)=[k1 , k1] or flow(v)(c)=[k2 , k2]. A stopwatch
is a two-slope variable with k1=1 and k2=0. The variable
c is a finite-slope variable of A if for each vertex v of A, the
interval flow(v)(c) is a singleton.

An n-dimensional rectangular automaton A has deter-
ministic jumps if (1) for every vertex v of A, the region init(v)
is either empty or a singleton, and (2) for every edge e of
A and every coordinate i # [1, ..., n] with i # jump(e), the
interval post(e) i is a singleton. The first requirement ensures
that the number of initial states is finite. The second require-
ment says that along each edge step, each variable either
remains unchanged or is deterministically assigned a new

value. Notice that, if A has deterministic jumps and every
variable of A is a finite-slope variable, then A has bounded
nondeterminism.

Timed Automata

A timed automaton D is a rectangular automaton with
deterministic jumps such that every variable of D is a clock.

Theorem 3.1 [AD94]. The reachability and |-language
emptiness problems for timed a automata (with or without =
moves) are complete for PSPACE.

More precisely, the |-language emptiness problem for
an n-dimensional timed automaton D with = moves can
be solved in space O(log( |V| } n! } Kn))=O(log |V|+n }
(log n+log K)), where the integer constant K is determined
by the rational numbers that are used in the definition of D,
as finite endpoints of initial, invariant, preguard, and post-
guard intervals. If the definition of D uses only nonnegative
integer constants, then K is the largest of these constants. If
the definition of D uses only nonnegative rational constants,
let K be the set of these constants, and let l be their least
common denominator. Then K=max[k } l | k # K]. If the
definition of D uses negative rational constants, then sub-
tract the constant with the least value from all constants,
and compute K from the resulting set of nonnegative
numbers as in the nonnegative case. We assume that, in the
definition of D, all constants are written in binary notation.
It follows that the value of K is at most singly exponential
in the size of the definition of D, and hence, the above space
requirement is polynomial. The reachability problem for
a timed automaton D and a rectangular zone Zf can be
solved in the same amount of space, only that the constant
K must take into account also the finite endpoints of all
intervals in the definition of Zf .

We consider generalizations of timed automata. There-
fore, all of our PSPACE hardness results follow from the
corresponding hardness results for timed automata.

Stopwatch Automata

A stopwatch automaton C is a rectangular automaton
with deterministic jumps such that every variable of C is a
stopwatch. Unlike timed automata, not every stopwatch
automaton is initialized. We will see that for nonintialized
stopwatch automata, the reachability problem is undecidable
(Section 4.1). Initializedstopwatch automata, however, can be
polynomially encoded by timed automata.

Let C be an n-dimensional initialized stopwatch auto-
maton with = moves, let KC be the set of rational constants
used in the definition of C, and let K==KC _ [=]. We
define an n-dimensional timed automaton DC with the set
VDC

=VC_K[1, ..., n]
= of vertices. Thus, each vertex (v, f ) of

DC consists of a vertex v from C and a function f from
[1, ..., n] to K= . Each state q=((v, f ), x) of DC is intended
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to represent the state :(q)=(v, y) of C, where yi=xi if
f (i)==, and yi= f (i) if f (i){=. Intuitively, if the i th
stopwatch of C is running (slope 1), then its value is tracked
by the value of the ith clock of DC ; if the ith stopwatch is
halted (slope 0), at value k # KC , then this value is remem-
bered by the vertices of DC . Note that :: QDC

� QC is an
onto function from the states of DC to the states of C. It is
extended to zones Z/QDC

in the natural way, by :(Z)=
�q # Z :(q).

It is useful to define also an ``inverse'' of the function :. We
define &:: QC � QDC so that &:(v, y)=((v, f ), y), where
for every coordinate i # [1, ..., n], if flowC(v) i=[1, 1] then
f (i)==, and if flowC(v) i=[0, 0] then f (i)= yi . The func-
tion &: is a one-to-one function from the states of C to
the states of DC , so that for each state r of C, we have
:(&:(r))=r. The map &: is extended to zones Z/QC in
the natural way. Then, for each zone Z of C, we have
:(&:(Z))=Z.

The remaining components of the timed automaton DC

are defined as follows. The observation alphabet of DC is the
same as for C. The initial zone of DC is &:(InitC). For each
vertex (v, f ) of DC , invDC(v, f )=invC(v). For each edge
e=(v, w) of C, the timed automaton DC has all edges of
the form e$=((v, f ), (w, g)), where for every coordinate
i # [1, ..., n], either flowC(w) i=[1, 1] and g(i)==, or
flowC(v)i=[1, 1] and flowC(w)i=[0, 0] and g(i)=postC(e)i ,
(recall that C has deterministic jumps), or flowC(v) i=
[0, 0] and flowC(w) i=[0, 0] and g(i)= f (i). Furthermore,
e and e$ have the same preguard and postguard regions,
jump sets, and observations. From these definitions,
Lemma 3.2 follows immediately.

Lemma 3.2. Let C be an initialized stopwatch automaton
with = moves. First, InitC=:(InitDC). Second, for all states q
and r of DC , and every label { # 7= _ [R�0], if q w�

{
DC

r,
then :(q) w�

{
C :(r). Third, for all states q of DC , all states r$

of C, and every label { # 7= _ [R�0], if :(q) w�
{

C r$, then
there is a state r of DC such that q w�

{
DC

r and :(r)=r$;
similarly, if r$ w�

{
C :(q), then there is a state r of DC such that

r w�
{

DC
q and :(r)=r$.

From the second and third claims of Lemma 3.2, it follows
that for every zone Z of DC , and every label { # 7 _ R�0,
Post{

C(:(Z))=:(Post{
DC

(Z)) and Pre{
C(:(Z))=:(Pre{

DC
(Z)).

These relationships are illustrated in the commuting diagram

FIG. 3. Commuting diagram for zones Z of an initialized stopwatch automaton C.

of Fig. 3. From the first claim of Lemma 3.2 and the fact
that Post commutes with :, we conclude that Reach(C)=
:(Reach(DC)). From Lemma 3.2 it also follows that Lang(C)
=Lang(DC).

Theorem 3.3. The reachability and |-language empti-
ness problems for initialized stopwatch automata (with or
without = moves) are complete for PSPACE.

Proof. It suffices to show containment in PSPACE.
Define the constant KC as for timed automata. Notice that
|VDC

|� |VC | } (KC+1)n, and that the definition of DC uses
the same constants as the definition of C. It follows that the
space requirement O(log |VDC

|+n } (log n+log KDC
))=

O(log |VC |+n } (log n+log KC)) is polynomial in the size
of C. K

Singular Automata

A singular automaton B is a rectangular automaton with
deterministic jumps such that every variable of B is a finite-
slope variable. Initialized singular automata can be rescaled
to initialized stopwatch automata.

Let B be an n-dimensional initialized singular automaton
with = moves. We define an n-dimensional initialized stop-
watch automaton CB with the same vertex set, edge set, and
observation alphabet as B. Each state q=(v, x) of CB is
intended to represent the state ;(q)=(v, ;v(x)) of B, for the
following definition of the bijections ;v : Rn � Rn. For each
vertex v of B, if flowB(v)=>n

i=1 [ki , ki], then ;v(x1 , ..., xn)=
(l1 } x1 , ..., ln } xn), where li=ki if ki {0, and li=1 if ki=0.
Note that ;: QCB � QB is a bijection between the states of
CB and the states of B, and can be viewed as a rescaling of
the state space. Similar rescaling techniques for hybrid state
spaces can be found in [ACH+95]. The maps ;v are
extended to regions in the natural way, and the map ; is
extended to zones in the natural way.

The remaining components of the initialized stopwatch
automaton CB are defined as follows. For each vertex v
of CB , initCB

(v)=;&1
v (initB(v)), invCB

(v)=;&1
v (invB(v)), and

for every coordinate i # [1, ..., n], flowCB
(v) i=[0, 0] if

flowB(v) i=[0, 0], and flowCB
(v) i=[1, 1] if flowB(v)i{

[0, 0]. For each edge e=(v, w) of CB , preCB
(e)=;&1

v ( preB(e)),
postCB

(e)=;&1
w ( postB(e)), jumpCB

(e)= jumpB(e), and
obsCB

(e)=obsB(e). From these definitions, Lemma 3.4
follows immediately.
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Lemma 3.4. Let B be an initialized singular automaton
with = moves. First, InitB=;(InitCB). Second, for all states q
and r of CB , and every label { # 7= _ [R�0], we have
q w�

{
CB

r iff ;(q) w�
{

B ;(r).

From the second claim of Lemma 3.4, it follows that for
every zone Z of CB and every label { # 7 _ R�0, Post{

B(;(Z))
=;(Post{

CB
(Z)) and Pre{

B(;(Z))=;(Pre{
CB

(Z)). These rela-
tionships are illustrated in the commuting diagram of Fig. 4.
From the first claim of Lemma 3.4 and the fact that Post com-
mutes with ;, we conclude that Reach(B)=;(Reach(CB)).
From Lemma 3.4 it also follows that Lang(B)=Lang(CB).

Theorem 3.5. The reachability and |-language emptiness
problems for initialized singular automata (with or without =
moves) are complete for PSPACE.

Proof. It suffices to show containment in PSPACE.
Consider the case that the definition of B uses only non-
negative integer constants; the general case is similar to the
analysis of timed automata with rational and negative
constants. As for timed automata, define KB to be the maxi-
mum over all finite endpoints of initial, invariant, preguard,
and postguard intervals. Define LB to be the product of KB

and the least common multiple of all finite endpoints of flow
intervals. Then the value of LB is at most singly exponential
in the size of the definition of B, and KCB�LB . It follows that
the space requirement O(log |VCB

|+n } (log n+log KCB
))=

O(log |VB |+n } (log n+log LB)) is polynomial in the size
of B. K

3.2. From Initialized Rectangular Automata to
Initialized Singular Automata

Let A be an n-dimensional initialized rectangular auto-
maton. We translate A into a (2n+1)-dimensional initialized
singular automaton BA with = moves so that BA contains all
reachability information about A. (While we assume, for
simplicity, that the given automaton A has no = moves, the
translation and its results apply also to initialized rectan-
gular automata with = moves.) The translation is similar to
the subset construction for determinizing finite automata.
We first give a simplified construction for the compact case,
and then proceed to the general case. All of the main ideas
of the construction are already present in the compact case,
but the general case requires additional bookkeeping.

FIG. 4. Commuting diagram for zones Z of an initialized singular automaton B.

Preliminary assumptions. Without loss of generality, we
assume that for each vertex v of A, initA(v)/invA(v), and for
each edge e=(v, w) of A, preA(e)/invA(v), postA(e)/invA(w),
and for every coordinate i � jumpA(e), preA(e)i= postA(e)i . If
this is not the case, then first we replace each initial and
guard region by its intersection with the appropriate
invariant region, and second we replace each guard interval
preA(e) i and postA(e)i with i � jumpA(e) by their intersection
preA(e) i & postA(e) i . These replacements do not change the
labeled transition system of A.

The Compact Case

We first restrict our attention to the case where invA is
the trivial invariant function *v .Rn, and all initial, flow,
preguard, and postguard regions of A are compact. In this
case, we say that the automaton A is compact.

In the compact case, we translate A into a 2n-dimensional
initialized singular automaton denoted Bc

A . The idea is to
replace each variable c of A by two finite-slope variables cl and
cu such that when flowA(v)(c)=[kl , ku], then flowBc

A
(v)(cl)

=[kl , kl] and flowB c
A
(v)(cu)=[ku , ku]. Intuitively, the

variable cl tracks the least possible value of c, and cu tracks
the greatest possible value of c. Consider Fig. 5. With each
time step, the flow interval of c creates an envelope, whose
boundaries are tracked by cl and cu . With each edge step,
the values of cl and cu are updated so that the interval
[cl , cu] remains precisely the range of possible values of c.
In Fig. 5, at time t a jump transition is taken along an edge
e with preA(e)(c)=[ p, �) and c � jumpA(e). Since the value
of cl is below p at time t, the variable cl is updated to the
new value p.

In the following formal definition of the automaton Bc
A ,

we use [ai | 1�i�n] for the variables of A, and [bi | 1�
i�2n] for the variables of Bc

A . The l(i)th coordinate bl(i) of
Bc

A represents the lower bound on the i th coordinate ai of A,
and the u(i)th coordinate bu(i) of Bc

A represents the upper
bound on ai . For concreteness, put l(i)=2i&1 and u(i)=2i.

The 2n-dimensional automaton Bc
A has the same vertex

set and observation alphabet as A. The initial function initB c
A

is given by initB c
A
(v)l(i)=min(initA(v) i) and initB c

A
(v)u(i)=

max(initA(v) i). The invariant function invBc
A

is the trivial
invariant function. The flow function flowBc

A
is defined as
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FIG. 5. Envelope created by the flow interval flow(v)(c)=[kl , ku].

outlined above: if flowA(v) i=[kl , ku], then flowB c
A
(v)l(i)=

[kl , kl] and flowBc
A
(v)u(i)=[ku , ku]. We are left with defin-

ing a set of CNF edge families for Bc
A . For each edge

e=(v, w) of A, the automaton Bc
A has the CNF edge family

9e=(v, w, obsA(e), �e), which shares the observation of e.
The CNF expression �e is a conjunction �n

i=1 �i
e of n CNF

expressions �i
e . Suppose that preA(e)i=[ pl , pu] and

postA(e) i=[ p$l , p$u]. If i # jumpA(e), then the CNF expres-
sion �i

e is the guarded command

bl(i)�pu 7 bu(i)� pl � bl(i) := p$l ; bu(i) := p$u .

The values of bl(i) and bu(i) satisfy the guard iff [bl(i) , bu(i)]
intersects preA(e) i . Since i # jumpA(e), the range of values of
ai after traversing e is exactly postA(e) i , and hence bl(i) is set
to the minimum of this interval, and bu(i) is set to the maximum.
If i � jumpA(e), then by assumption [pl , pu]=[p$l , p$u], and
the CNF expression �i

e is

((bl(i)< pl � bl(i) := pl) 6 ( pl�bl(i)� pu))

7 ((bu(i)> pu � bu(i) := pu) 6 ( pl�bu(i)� pu)).

The idea is that when the edge e is traversed in A, new infor-
mation becomes available about the value of ai , namely,
that it lies within the interval [ pl , pu]. Therefore, if bl(i)< pl ,
it must be updated to pl , and if bu(i)> pu , it must be updated
to pu , in order to keep [bl(i) , bu(i)] the range of possible values
of ai .

This completes the definition of the automaton Bc
A . The

automaton Bc
A is an initialized singular automaton. Figure 6

shows the initialized singular automaton Bc
A� that corre-

sponds to the initialized rectangular automaton A� from Fig. 1.
Figure 7 shows the initialized stopwatch automaton CB c

A�

that corresponds to A� . Notice that CBc
A�

is a timed automaton.
The relationship between A and Bc

A is formalized through
the function #c: QB c

A
� 2QA, which maps each state of Bc

A to
a zone of A: define #c(v, x)=[v]_>n

i=1 [xl(i) , xu(i)]. The
map #c is extended to zones Z/QBc

A
by #c(Z)=�q # Z #c(q).

Not all states of Bc
A are of interest. The state (v, x) # QB c

A
is

an upper-half state of Bc
A if for every coordinate i # [1, ..., n],

we have xl(i)�xu(i) . Notice that q is an upper-half state of
Bc

A iff #c(q){<. The upper-half space of Bc
A , denoted UB c

A
,

is the set of all upper-half states of Bc
A . Lemma 3.6 shows

that, for reachability purposes, each upper-half state q of Bc
A

represents the set #c(q)/QA of states of A.
It is useful to define also an ``inverse'' of the function #c.

For a compact rectangular region R/Rn, define the vector
&#c(R) # R2n by &#c(R)l(i)=min(Ri) and &#c(R)u(i)=
max(Ri); that is, &#c(R) is the vector of all boundary points
of the intervals Ri . For a compact rectangular zone Z of A,
define &#c(Z) to be the zone �v # VA

[(v, &#c([Z]v))]
of Bc

A . Notice that &#(Z)/UBc
A
, and that InitBc

A
=&#c(InitA).

Lemma 3.6. Let A be a compact initialized rectangular
automaton. First, for every compact rectangular zone Z of A,
we have #c(&#c(Z))=Z; in particular, InitA=#c(InitB c

A
).

Second, for every upper-half state q of Bc
A , and every label

{ # 7 _ R�0 , Post{
A(#c(q))=#c(Post{

B c
A
(q)).

We delay a detailed proof of these claims to the general
case. From the second claim of Lemma 3.6, it follows that
for every upper-half zone Z/UBc

A
and every label { # 7 _ R�0,

Post{
A(#c(Z))=#c(Post{

BcA
(Z)) and, by Proposition 2.1,

Pre{
A(#c(Z))=#c(Pre{

&B c
&A

(Z)). These relationships are
illustrated in the commuting diagram of Fig. 8. From the
first claim of Lemma 3.6 and the fact that Post commutes
with #c, we conclude that Reach(A)=#c(Reach(Bc

A)).

Theorem 3.7. The reachability problem for compact
initialized rectangular automata is complete for PSPACE.

Indeed, since InitA=#c(InitBc
A
) and Post commutes with #c,

we also have the following. For every run of A we can, starting
from the beginning of the run, inductively construct a run of
Bc

A that accepts the same timed word. Therefore Lang(A)/
Lang(Bc

A). Furthermore, for every finite run of Bc
A we can,

starting from the end of the run, inductively construct a run
of A that accepts the same timed word. Therefore A and Bc

A

accept the same finite timed words.

The General Case

The extension from the compact to the general case is
mostly a matter of bookkeeping. In particular, for each
lower-bound variable bl(i) and upper-bound variable bu(i)

one bit is used to distinguish a weak from a strict bound,
and a second bit is used to distinguish a finite from an
infinite bound. The reader who is uninterested in the details
can skip ahead to Theorem 3.18 without loss of continuity
(in this case, the reader should know that BA is the generali-
zation of Bc

A , and # is the generalization #c).
We encounter the following difficulties when the rectan-

gular automaton A has noncompact components and a
nontrivial invariant function. (1) The lower-bound and
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FIG. 6. The initialized singular automaton Bc
A� .

upper-bound variables bl(i) and bu(i) may violate the invariant
region of a vertex, and the function # must be changed to
account for this. (2) The lower and upper bounds represented
by bl(i) and bu(i) may be weak (inclusive) or strict (exclusive).
To solve this problem, we introduce a bit called the weak�strict
bit for each variable of BA . (3) Lower and upper bounds may
be finite or infinite. For this, we introduce a bit called the
finite�infinite bit for each variable of BA . (4) Unbounded
flow regions cause discontinuous jumps in lower and upper
bounds. For example, suppose that the variable ai is
assigned the value 3 by traversal of the edge e=(v, w),
where flow(w) i=[1, �). Then in BA , both bl(i) and bu(i) are
assigned the value 3 by traversal of e. But after any positive
amount of time passes, the upper bound on ai should be �.
For this, we introduce an = edge, which is taken before any
positive time step. The = edge sets the finite�infinite bit for

FIG. 7. The initialized stopwatch automaton (and timed automaton) CB c
A�
.

bu(i) to infinite. Since the result of the = edge presupposes
that some positive amount of time has passed, all edge steps
inherited from A are disabled in BA until time passes.
Implementing this restriction requires a new clock called the
synchronization clock and a bit called the time-passage bit.
(5) Strict flow regions may cause a weak bound to change
to strict after any positive amount of time passes. For example,
suppose in the above case that flow(w) i=[1, 5). Then after
the edge e is traversed, the upper bound on ai is a weak
bound of 3. But after t>0 time units pains, the upper bound
is a strict bound of 3+5t. Once again, we use the = edge to
solve this problem. When the = edge is traversed, the weak�
strict bit for bu(i) is set to strict.

We now proceed formally to define the (2n+1)-dimen-
sional initialized singular automaton BA with = moves. The
observation alphabet of BA is the same as for A. We define
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first the continuous state (variables) and discrete state
(vertices) of BA and then the flow and invariant functions.
Next we define the map #, which relates states of BA to zones
of A. Then come the edges of BA , which are classified into
= edges and edges inherited from A. Last, we define the
initial function. We provide lemmas about BA as soon as
enough definitions have been made to give the proofs.

Variables and vertices of BA . For each variable ai of A,
the automaton BA has two variables, bl(i) and bu(i) . We add
a zeroth coordinate b0 to BA which represents the synchro-
nization clock. Hence the dimension of BA is 2n+1. The
finite�infinite and weak�strict bitvectors and the time-
passage bit are encoded in the vertex set of BA . Therefore,
VBA

=VA _([0, 1]2n)2_[0, 1]. A state ((v, +, &, tp), x) of
BA then consists of a vertex v of A, a vector + of 2n finite�
infinite bits ( fin=0, inf =1), a vector & of 2n weak�strict
bits (wk=0, str=1), a time-passage bit tp, and a vector
x # R2n+1 of values for the 2n+1 variables of BA .

Notation. For the remainder of Section 3.2, i ranges
over [1, ..., n], the symbol v ranges over VA , the vectors +
and & range over [0, 1]2n, and tp ranges over [0, 1]. So
when we implicitly or explicitly quantify these variables, as
in ``for all v, +, &, tp, i,'' the quantification is over the
domains just specified. Recall that for a zone Z of A, we
have the canonical decomposition Z=�v [Z]v. We lift
the functions [ } ]v to the zones Z$ of BA by defining
[Z$]v=[x # R2n+1 | _+, &, tp . ((v, +, &, tp), x) # Z$]. We say
that the vector x # R2n+1 satisfies a predicate . over the
variables b0 , b1 , ..., b2n iff . evaluates to true when each
variable bi is replaced by the ith component of x. Finally,
consider an interval I/R of the real line. We define the
lower strictness of I by strict a (I )=wk if inf(I ) # I, and
strict a (I )=str if inf(I ) � I. Similarly, we define the upper
strictness of I by strict A (I )=wk if sup(I ) # I and strict A (I )
=str if sup(I ) � I.

Flow regions of BA . The flow function flowBA is defined
by

[inf( flowA(v) i)],

flowBA
(v, +, &, tp)l(i )={ if inf ( flowA(v) i){&�,

[0], otherwise;

[sup( flowA(v) i)],

flowBA
(v, +, &, tp)u(i)={ if sup( flowA(v) i){�,

[0], otherwise.

The slope of bl(i) (resp. bu(i)) in BA is the infimum (resp.
supremum) of the allowable slopes for ai in A, unless that
infimum (resp. supremum) is infinite. The zeroth coordinate
b0 is a clock: define flowBA

(v, +, &, tp)0=[1].

Invariant regions of BA . The lower-bound components
of the invariant function invBA

are defined by

invBA
(v, +, &, tp)l(i)

={
(&�, �),
(&�, sup(invA(v) i )],

(&�, sup(invA(v) i )),

if +l(i)=inf,
if +l(i)= fin and &l(i)=

strict A (invA(v) i)=wk,
otherwise.

If the finite�infinite bit +l(i) is infinite, then the value of the
lower-bound variable bl(i) is irrelevant, so we do not
constrain it. If the finite�infinite bit is finite, then the interval
of allowable values for bl(i) is right-open unless both the
weak�strict bit &l(i) is weak and the invariant interval
invA(v) i is right-closed. The motivation for this is that if I
and J are intervals, and inf(I )=sup(J), then I & J{< iff
strict a (I)=strict A (J)=wk. Here I is meant to represent
the range of possible values for ai in A, as determined by the
state of BA , and J is meant to represent the invariant interval
invA(v)i . The corresponding definition for the upper-bound
components of invBA

is given by

invBA
(v, +, &, tp)u(i)

={
(&�, �),
[inf (invA(v) i ), �),

(inf (invA(v) i ), �),

if +u(i)=inf,
if +u(i)=fin and &u(i)=

strict a (invA(v) i)=wk,
otherwise.

The invariant intervals for the synchronization clock b0 let
time pass iff the time-passage bit tp is 1: define invBA

(v, +, &, 0)0

=[0, 0] and invBA(v, +, &, 1)0=[0, �).

Relating the state spaces of BA and A. The function
#$: QBA

� 2VA_Rn
specifies how each state of BA indicates a

range of possible values for each variable of A. Consider a
state q=((v, +, &, tp), x) of BA . We define #$(q)=[v]_#$2(q),
where the function #$2 : QBA � 2Rn

maps q to a rectangular
region in Rn. For every coordinate i # [1, ..., n], the interval
#$2(q) i is completely specified by its infimum, supremum, and
which, if any, of the two it contains:

v If +l(i)=inf, then inf (#$2(q) i)=&�; if +l(i)= fin, then
inf(#$2(q) i)=xl(i) .

v If +u(i)=inf, then sup(#$2(q) i)=�; if +u(i)= fin, then
sup(#$2(q) i)=xu(i) .

v If +l(i)= fin, then inf (#$2(q)i) # #$2(q) i iff &l(i)=wk.

v If +u(i)= fin, then sup(#$2(q) i) # #$2(q) i iff &u(i)=wk.

Since we have not taken into account the invariant func-
tion of A, we may have #$(q)/3 QA for some states q of BA .
We remedy this deficiency by defining #: QBA � 2QA by
#(q)=#$(q) & QA if tp=0 or x0>0, and #(q)=< if tp=1
and x0=0. The latter adjustment is necessary because the
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states of BA in which the time-passage bit is 1 and the
synchronization clock is 0 are visited only transiently
between an = edge and a positive time step, and they do not
correspond to any states of A. The function #2 : QBA

� 2R n

strips off the vertex; it is defined by the equation #(q)=
[v]_#2(q). The functions #, #$, #2 , and #$2 are extended to
zones Z/QB c

A
by #(Z)=�q # Z #(q), etc. The state q is an

upper-half state of BA if #(q){<. The upper-half space UBA

is the set of all upper-half states of BA . The truncation of #$
to # is justified by the following fact, which follows from the
assumption that the preguard region of each edge of A is
contained in the invariant region of the source vertex.

Fact 3.8. For every edge e of an initialized rectangular
automaton A, and every upper-half state q of BA , we have
#$2(q) & preA(e){< iff #2(q) & preA(e){<.

Edges of BA . As in the compact case, the automaton BA

has an edge family for each edge of A. We say that the edges
defined by these edge families are inherited from A. In
addition, BA has a set of = edges. The = edges provide
changes to the finite�infinite and weak�strict bitvectors that
are caused by the passage of any positive amount of time,
however small. Such changes can be carried out only
through edge steps.

Epsilon edges. We first define the = edges of BA . For all
v, +, &, there is an edge e from (v, +, &, 0) to (v, +$, &$, 1) with
observation =. The target vertex components +$ and &$ will
be defined presently. The preguard and postguard regions of
e are both [0, 0]_R2n, so this edge can be traversed only
when both the time-passage bit and the synchronization
clock have the value 0. The update set of e is empty. The
finite�infinite bitvector must be changed to account for finite
bounds that become infinite due to an unbounded flow
interval:

+$l(i)={inf,
+l(i) ,

if inf( flowA(v) i)=&�,
otherwise;

+$u(i)={inf,
+u(i) ,

if sup( flowA(v) i)=�,
otherwise.

The weak�strict bitvector must be changed to account for
weak bounds that become strict due to a strict flow interval:

&$l(i)={str,
&l(i) ,

if strict a ( flowA(v) i)=str,
otherwise;

&$u(i)={str,
&u(i) ,

if strict A ( flowA(v) i)=str,
otherwise.

The = edges, just defined, play the following role in BA .
Suppose that an edge inherited from A is traversed. Then
tp=0 and b0=0, and before any time may pass (since no

time may pass when tp=0), an = edge must be traversed,
setting tp to 1, and performing whatever bookkeeping is
required for the finite�infinite and weak�strict bitvectors.
The changes made by the = edge reflect the situation after
some infinitesimal positive amount of time has passed.
Therefore no edge inherited from A is allowed after an =
edge but before a positive time step: as long as tp=1 and
b0=0, no inherited edges are enabled. After the next
positive time step, tp=1 and b0>0, and another inherited
edge may be traversed, resetting both tp and b0 to 0. Then
the situation repeats.

Inherited edges. We now define the edges of BA that are
inherited from A. For this purpose, it is convenient to
extend the definition of CNF edge families to allow multiple
target vertices. For example, in a guarded command, we
may write +l(i) :=inf to change the l(i)th component of the
finite�infinite bitvector + to inf. In this way, a disjunction of
guarded commands can refer to several target vertices. An
extended CNF edge family for BA is completely specified by
a source vertex, an observation, the first component of the
target vertex (an element of VA), the time-passage bit of
the target vertex, and a CNF expression that includes
assignments to the bitvectors + and &. The translation of
such an extended CNF edge family into a set of edges for
BA is a straightforward extension of the translation for
standard CNF edge families and will not be detailed.

For each edge e=(v, w) of A, all bitvectors + and &,
and each bit tp, the automaton BA has the extended CNF
edge family 9e, +, &, tp=((v, +, &, tp), obsA(e), w, 0, �e, +, &, tp).
Every edge derived from the family 9e, +, &, tp shares the
observation label of e (which, by assumption, is different
from =), and leads to a target vertex of the form (w, +$, &$, 0).
The CNF expression �e, +, &, tp is a conjunction ,tp 7
�n

i=1 � i
e, +, & of n+1 CNF expressions.The guarded command

,0 is b0=0, and the guarded command ,1 is b0>0 � b0 :=0.
Hence an inherited edge from a state with the time-passage bit
tp=1 can be taken only if the synchronization clock has a
positive value. Upon traversal of the edge, both the time-
passage bit and the synchronization clock are reset to 0.

It remains to define the CNF expressions � i
e, +, & . We

define their guards so that an edge of BA derived from the
edge family 9e, +, &, tp can be taken from an upper-half state
q of BA iff the range of possible values for each variable a i

intersects the interval preA(e)i , that is, iff #2(q) & preA(e){<.
Recall that by Fact 3.8, we have #2(q) & preA(e){< iff
#$2(q) & preA(e){<. If all values are finite and all bounds
are weak, then this intersection is nonempty iff both bl(i)�
max( preA(e) i) and bu(i)�min( preA(e) i). These were the
lower-bound and upper-bound guards given in the construc-
tion of Bc

A for compact A. Taking strictness and infinite
bounds into account, we obtain the more complicated guards
lguard(i, preA(e)i) and uguard(i, preA(e)i), defined as follows.
For an interval I/R, and i # [1, ..., n], define
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lguard(i, I)={
true,
bl(i)�sup(I ),

bl(i)<sup(I ),

if +l(i)=inf,
if +l(i)= fin and &l(i)=

strict A (I )=wk,
otherwise;

uguard(i, I)={
true,
bu(i)�inf(I ),

bu(i)>inf(I ),

if +u(i)=inf,
if +u(i)= fin and &u(i)=

strict a (I )=wk,
otherwise.

These expressions are guarded commandswith no assignments.
To understand the definition, consider the conditions under
which an interval J intersects the interval I.

Fact 3.9. Let I and J be two nonempty intervals of the
real line, and let .l and .u be defined as in Table I. Then
I & J{< iff .l and .u are both true.

The guard lguard(i, I) on the lower-bound variable bl(i)

corresponds to the condition .l , and the guard uguard(i, I )
on the upper-bound variable bu(i) corresponds to .u . Notice
that .l is always true if inf(J)=&�. Hence, the first line of
the definition of lguard(i, I ). If strict a (J)=strict A (I )=wk,
then .l is inf(J)�sup(I ). Hence, the second line of the
definition of lguard(i, I ). Finally, if either strict a (J)=str or
strict A (I )=str, then .l is inf(J)<sup(I ). Hence, the third
line of the definition of lguard(i, I). Symmetrical remarks
apply to uguard(i, I ) and .u . Taking I= preA(e) i and
J=#$2(q) i , Lemma 3.10 follows.

Lemma 3.10. Let e=(v, w) be an edge of the n-dimensional
initialized rectangular automaton A, and let �e be the predicate
�n

i=1 (lguard(i, preA(e)i) 7 uguard(i, preA(e)i)). For every
upper-half state q=((v, +, &, tp), x) of BA , Poste

A(#(q)){< iff
the vector x # R2n+1 satisfies the predicate �e .

The reader may recall from the compact case that the
construction for coordinates i # jumpA(e) differs from the

TABLE I

I & J{< iff .l 7 .u

strict a (J ) strict A (I ) .l

wk wk inf (J )�sup(I )
wk str inf (J )<sup(I )
str wk inf (J )<sup(I )
str str inf (J )<sup(I )

strict A (J ) strict a (I ) .u

wk wk sup(J )�inf (I )
wk str sup(J )>inf (I )
str wk sup(J )>inf (I )
str str sup(J )>inf (I )

construction for coordinates i � jumpA(e). We first consider
the general construction for the case i # jumpA(e). In this
case, the lower-bound and upper-bound variables bl(i) and
bu(i) are assigned to the infimum and supremum, respec-
tively, of the interval postA(e) i , and the finite�infinite and
weak�strict bitvectors are updated appropriately. This is
done by the lists lassign(i, postA(e) i) and uassign(i, postA(e)i)
of assignments, defined as follows. For an interval I/R,
and i # [1, ..., n], define

lassign(i, I )

={
bl(i) :=inf(I ); +l(i) := fin; &l(i) :=strict a ( postA(e) i)

if inf (I){&�,
bl(i) :=0; +l(i) :=inf; &l(i) :=str

otherwise;

uassign(i, I )

={
bu(i) :=sup(I ); +u(i) := fin; &u(i) :=strict A ( postA(e) i)

if sup(I){�,
bu(i) :=0; +u(i) :=inf; &u(i) :=str

otherwise.

These expressions are guarded commands with the guards
true. The assignments to 0 are required for BA to be
initialized. After such an assignment, the value of the
variable is ignored due to the finite�infinite bit being inf.
Now, for i # jumpA(e), the extended CNF expression � i

e, +, &

is defined by

lguard(i, preA(e) i) 7 uguard(i, preA(e) i)

7 lassign(i, postA(e) i) 7 uassign(i, postA(e) i).

From these definitions and Lemma 3.10, we obtain
Lemma 3.11.

Lemma 3.11. Let e=(v, w) be an edge of the initialized
rectangular automaton A. For every upper-half state q=
((v, +, &, tp), x) of BA , and every coordinate i # jumpA(e),
we have [Poste

A(#(q))]w
i =[#(Post9e, +, &, tp

BA
(q))]w

i .

The case i � jump(e) is more complicated, because the
lower-bound (resp. upper-bound) variable is reset only if its
value is too small (resp. too large). Strictness considerations
also contribute some complications. Our definitions follow
once again from Fact 3.9. The necessary adjustments to bl(i)

and bu(i) , and to the finite�infinite and weak�strict bit-
vectors, are given by the extended CNF expressions
ladjust(i, preA(e) i) and uadjust(i, preA(e)i), defined as
follows. For an interval I/R, and i # [1, ..., n], define
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ladjust(i, I )

true, if inf (I)=&�,
(+l(i)=inf � +l(i) :=fin; bl(i) :=inf (I);

&l(i) :=strict a (I))
6 (+l(i)=fin 7 bl(i)<inf (I ) � bl(i) :=inf (I );

= &l(i) :=strict a (I ))
6 (+l(i)=fin 7 bl(i)=inf (I ) 7 &l(i)=wk �

&l(i) :=strict a (I))
6 (+l(i)=fin 7 bl(i)=inf (I ) 7 &l(i)=str)
6 (+l(i)=fin 7 bl(i)>inf (I )), otherwise;

uadjust(i, I )

true, if sup(I)=�,
(+u(i)=inf � +u(i) :=fin; bu(i) :=sup(I);

&u(i) :=strict A (I))
6 (+u(i)=fin 7 bu(i)>sup(I ) � bu(i) :=sup(I );

= &u(i) :=strict A (I ))
6 (+u(i)=fin 7 bu(i)=sup(I ) 7 &u(i)=wk �

&u(i) :=strict A (I))
6 (+u(i)=fin 7 bu(i)=sup(I ) 7 &u(i)=str)
6 (+u(i)=fin 7 bu(i)<sup(I )), otherwise.

Then, for i � jumpA(e) i , the extended CNF expression �i
e, +, &

is defined by

lguard(i, preA(e) i) 7 uguard(i, preA(e) i)

7 ladjust(i, preA(e) i) 7 uadjust(i, preA(e) i).

Let us examine the definition of ladjust(i, preA(e) i). When
the edge e is traversed in A, then new information about the
value of ai is obtained, namely, that it lies within the interval
preA(e) i (which, by assumption, is equal to postA(e) i). Let
p=inf( preA(e) i). If p=&�, then there is no new lower-
bound information, and so ladjust(i, preA(e) i)=true;
hence, the first case of the definition. If p{&�, then we
distinguish several cases. If +l(i)=inf, then the present lower
bound is infinite, and so +l(i) must be set to fin, and bl(i)

must be reassigned to p, and the weak�strict bit &l(i) must be
assigned to the lower strictness of preA(e) i (disjunct one of
case two). Now suppose that +l(i)= fin. If bl(i)< p, then
again bl(i) and &l(i) must be reset to p and its strictness
(disjunct two). If bl(i)= p and &l(i)=wk, then information
is gained if the lower strictness of preA(e) i is str. So in this
case (disjunct three) we perform the assignment &l(i) :=
strict a ( preA(e) i). But if bl(i)= p and &l(i)=str, then no
information is gained, and so no assignment is performed
(disjunct four). Finally, if bl(i)> p, then there is no new
lower-bound information, and so there is no assignment
(disjunct five). The definition of uadjust(i, preA(e) i) is sym-
metric. Using Lemma 3.10, we conclude Lemma 3.12.

Lemma 3.12. Let e=(v, w) be an edge of the initialized
rectangular automaton A. For every upper-half state q=

((v, +, &, tp), x) of BA , and every coordinate i � jumpA(e), we
have [Poste

A(#(q))]w
i =[#(Post9e, +, &, tp

BA
(q))]w

i .

Putting together Lemmas 3.11 and 3.12, we obtain the
following.

Lemma 3.13. Let A be an initialized rectangular auto-
maton. For every upper-half state q=((v, +, &, tp), x) of BA ,
and every edge e of A, Poste

A(#(q))=#(Post9e, +, &, tp
BA

(q)).
Moreover, the zone Post9e, +, &, tp

BA
(q) of BA is either empty or a

singleton.

Proof. To see that |Post9e, +, &, tp
BA

(q)|�1, notice that
all assignments made by the guarded commands com-
prising 9e, +, &, tp are deterministic, and the disjuncts of
ladjust(i, preA(e) i) are mutually exclusive, as are the
disjuncts of uadjust(i, preA(e) i). So from each state of BA , at
most one of the disjuncts of each of these CNF expressions
can be executed. K

Initial regions of BA . For a rectangular region R/Rn,
we define the bitvectors +R, &R # [0, 1]2n and the vector
xR # R2n+1 as follows. If inf(Ri)=&�, then +R

l(i)=inf, and
&R

l(i)=str, and xR
l(i)=0. If inf(Ri){&�, then +R

l(i)= fin,
and &R

l(i)=strict a (Ri), and xR
l(i)=inf(Ri). Similarly, if

sup(Ri)=�, then +R
u(i)=inf, and &R

u(i)=str, and xR
u(i)=0. If

sup(Ri){�, then +R
u(i)= fin, and &R

u(i)=strict A (Ri), and
xR

u(i)=sup(Ri). Finally, let xR
0 =0. For a rectangular zone Z

of A, define &#(Z) to be the zone �v # VA
[((v, +[Z] v

, &[Z] v
, 0),

x[Z] v
)] of BA . Notice that &#(Z)/UBA

and that &#(Z)
contains at most one state for each vertex of BA .

We put InitBA
=&#(InitA). It is a straightforward matter

to give the actual initial function of BA from this.
Lemma 3.14 follows immediately from the definitions.

Lemma 3.14. Let A be an initialized rectangular automaton.
For every rectangular zone Z of A, we have #(&#(Z))=Z. In
particular, InitA=#(InitBA

).

This completes the definition of the automaton BA .
Notice that BA is initialized and singular. The automaton
BA has exponentially more vertices and edges than A.
However, as in the translation from initialized stopwatch
automata to timed automata, this exponential blowup does
not adversely affect the space complexity of reachability
analysis. Before we establish this, we first prove the analog
of Lemma 3.13 for time steps.

Analysis of time steps. Lemma 3.13 relates the edge steps
of A to edge steps of BA . We must develop a similar corre-
spondence for time steps. For this purpose, the following
two facts about the reachable states of BA are useful.
Fact 3.15 says that every reachable state of BA that is the
target of a time step has its finite�infinite and weak�strict bits
set correctly. This is because reachability ensures that every
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sequence of consecutive time steps must have been preceded
by an = step.

Fact 3.15. Let ((v, +, &, tp), x) be a reachable state of
BA with tp=1 and x0>0, and let i # [1, ..., n]. First, if
inf( flowA(v)i)=&�, then +l(i)=inf, and if sup( flowA(v)i)
=�, then +u(i)=inf. Second, if stricta ( flowA(v)i)=str, then
&l(i)=str, and if strict A ( flowA(v) i)=str, then &u(i)=str.

We say that a state q of BA satisfies the invariant of A if
#(q)/QA . Fact 3.16 says that every reachable state of BA

that does not satisfy the invariant of A cannot move, by =
and time steps alone, to a state that does satisfy the
invariant. This is because all initial states of BA and all
target states of inherited edge steps satisfy the invariant of
A, and because the direction of a flow of BA can change only
after an inherited edge step. The latter follows from BA

being initialized. The former follows from the assumption
that the initial region of each vertex of A is contained in the
invariant region, and postguard region of each edge is
contained in the invariant region of the target vertex.

Fact 3.16. Let ((v, +, &, tp), x) be a reachable state of BA ,
and let i # [1, ..., n]. If xl(i) � invA(v)i , then inf( flowA(v)i)<0,
and if xu(i) � invA(v) i , then sup( flowA(v) i)>0.

Lemma 3.17 relates the time steps of A to time steps
of BA .

Lemma 3.17. Let A be an initialized rectangular auto-
maton. For every reachable upper-half state q of BA , and every
duration t # R�0 , Postt

A(#(q))=#(Postt
BA

(q)). Moreover, the
zone Postt

BA
(q) & UBA

of BA is either empty or a singleton.

Proof. Consider a reachable state q=((v, +, &, tp), x)
of BA , not necessarily upper-half. From the construction of
BA we observe the following. If tp=0, then there is a unique
state r such that q w�= BA

r; furthermore, #(r)=<, and the
time-passage bit of r is 1. If tp=1, then there is no state r
such that q w�= BA

r. If tp=0, then there is no state r such that

q w�
[t]

BA
r, for any t>0. If tp=1, since BA is a singular

automaton, for each t>0, there is a at most one state r such
that q w�

[t]
BA

r; furthermore, the time-passage bit of r is
still 1. This shows the second claim of the lemma, that
|Post t

BA
(q) & UBA

|�1. Moreover, since A has no = moves,
the first claim of the lemma is reduced to the following proof
obligation: for every reachable upper-half state q of BA , and
every positive duration t>0, show that Post[t]

A (#(q))=
#(Post?

BA
(q)), where ?== } [t] if the time-passage bit of q

is 0, and ?=[t] if the time passage bit of q is 1.
So suppose that q=((v, +, &, tp), x) is a reachable upper-

half state of BA , and consider a duration t>0. Then #(q) has
the form [v]_R, for a rectangular region R/Rn. Recall
from the proof of Proposition 2.2 that Post[t]

A (#(q)) has the
form [v]_S, where

inf(Si)=max[inf(invA(v) i), inf(R i)+t } inf( flowA(v) i)],

(1)

sup(Si)=min[sup(invA(v) i), sup(Ri)+t } sup( flowA(v) i)].

(2)

The strictness of the infimum of Si is given as follows. Put
Inv=invA(v) i , Flow= flowA(v)i , and Try=inf(Ri)+t }
inf (Flow). If inf (Inv)>Try, then strict a (Si)=strict a (Inv).
If inf(Inv)=Try, then strict a (Si)=wk iff strict a (Inv)=
strict a (Ri)=strict a (Flow)=wk. If inf (Inv)<Try, then
strict a (Si)=wk iff strict a (Ri)=strict a (Flow)=wk. The
strictness of the supremum of Si is given symmetrically. We
show that #(Post?

BA
(q))=[v]_S, for ?== } [t] if tp=0,

and ?=[t] if tp=1.

Case Post?
BA

(q){<. In this case, Post?
BA

(q) has the form
[r] for a reachable upper-half state r=((v, +$, &$, 1), y) of BA

with y0>0. Hence, Fact 3.15 applies to r. The set #(r) has the
form [v]_T, for a rectangular region T/Rn. We show that
T=S. For this purpose, we show that for each coordinate i,
the right endpoints of the intervals Ti and S i coincide in
value and in strictness. The argument for the left endpoints
is symmetric. In the following, put Isup=sup(Inv), I A =
strict A (Inv), Fsup=sup(Flow), and F A =strict A (Flow).

Subcase +$u(i)= fin. By Fact 3.15, the flow interval
flow(v) i is bounded from above. So the upper-bound
variable bu(i) moves at the supremum of the allowable
slopes for ai . Hence, yu(i)=xu(i)+t } Fsup and sup(Ti)=
min[ yu(i) , Isup]=min[xu(i)+t } Fsup, Isup]. From the
subcase assumption and q w�

?
BA r, we know that +u(i)= fin,

and therefore sup(Ri)=min[xu(i) , Isup]. By Fact 3.16, if
xu(i)>Isup, then Fsup>0. Thus Eq. (2) implies sup(S i)=
min[Isup, xu(i)+t } Fsup], which is the same as sup(Ti). The
question of strictness remains. If yu(i)>Isup, then strict A (Ti)
=I A =strict A (Si). If yu(i)�Isup and &$u(i)=str, then from
q w�? BA

r we know that either F A =str or &u(i)=str, and in
both cases strict A (Ti)=str=strict A (Si). If yu(i)�Isup and
&$u(i)=wk, then from q w�? BA

r we know that &u(i)=wk,
and Fact 3.15 implies F A =wk. Therefore, strict A (Ti)=wk
iff either yu(i)<Isup or I A =wk, and the same is true for
strict A (Si).

Subcase +$u(i)=inf. Then sup(Ti)=Isup and strict A (Ti)
=I A . From the subcase assumption and q w�? BA

r, we know
that either Fsup=�, or +u(i)=inf and therefore sup(R i)=
Isup and strict A (Ri)=I A . Either way, Eq. (2) implies
sup(S i)=Isup and strict A (Si)=I A .

Case Post?
BA

(q)=<. This means that for some coor-
dinate i, the lower-bound variable bl(i) rises above the
upper boundary of Inv within time t, or the upper-bound
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variable bu(i) drops below the lower boundary of Inv. In the
first case, either xl(i)+t } inf(Flow)>sup(Inv), or these two
expressions are equal and one of &l(i) or strict a (Flow) or
strict A (Inv) is str. The second case is symmetric and will not
be detailed. If xl(i)+t } inf (Flow)>sup(Inv), then Eqs. (1)
and (2) together imply inf(Si)>sup(Si). If xl(i)+t }
inf (Flow)=sup(Inv) and one of &l(i) or strict a (Flow) or
strict A (Inv) is str, then inf(Si)�sup(Si) and either
strict A (Si)=str or strict a (Si)=str. In all cases, Si=< and
therefore [v]_S=<. But from the assumption Post?

BA
(q)

=< it follows that also #(Post?
BA

(q))=<, which concludes
the proof. K

From Lemmas 3.13 and 3.17 it follows that for every
upper-half zone Z/UBA

, and every label { # 7 _ R�0 ,
Post{

A(#(Z))=#(Post{
BA

(Z)) and, by Proposition 2.1,
Pre{

A(#(Z))=#(Pre{
&B&A

(Z)). Hence we again have the
commuting diagram of Fig. 8, with all superscripts c and the
restriction that Z be compact removed. From Lemma 3.14
and the fact that Post commutes with #, we conclude, as in
the compact case, that Reach(A)=#(Reach(BA)), that
Lang(A)/Lang(BA), and that A and BA accept the same
finite timed words.

Theorem 3.18. The reachability problem for initialized
rectangular automata is complete for PSPACE.

Proof. For containment in PSPACE, notice that
|VBA

|=|VA | } 24n+1, and that the definition of BA uses
the same constants as the definition of A. The space
requirement O(log |VBA

|+(2n+1) } (log(2n+1)+log LBA
))

=O(log |VA |+n } (log n+log LA)), where LA is defined as
for singular automata (see proof of Theorem 3.5), is polyno-
mial in the size of A. K

3.3. |-Language Emptiness

While the initialized rectangular automaton A and the
initialized singular automaton BA accept the same finite
timed words, the automaton BA may accept infinite timed
words that are not accepted by A. To see this, consider the
1D initialized rectangular automaton A� from Fig. 9. The
only coordinate of A� is a clock, the only vertex of A� is v, and
the invariant region of v is R. Note that A� is not a timed
automaton, because the initial region initA� (v)=(&�, 0] is

FIG. 8. Commuting diagram for compact rectangular zones Z of a compact initialized rectangular automaton A.

unbounded from below. While every finite timed word of
the form (1_1)m is accepted by A� , the divergent timed word
(1_1)| is not accepted by A� . This is because, no matter what
the initial value of the clock c, in a divergent run it will even-
tually be positive. However, in BA� the finite�infinite bit for
the lower bound on c is initially inf, and remains inf during
time steps and _1 steps. Therefore (1_1)| is accepted by BA� .
A similar phenomenon is exhibited with unbounded post-
guard intervals. The definition of bounded nondeterminism
(Section 2) precludes both.

Closure under Divergent Limits

A set L of infinite timed words is limit-closed if for all
infinite timed words {� , if every finite prefix of {� is a prefix of
some word in L, then {� itself is in L. Since we are interested
only in infinite timed words that diverge, we relax the
requirement of limit closure as follows [HNSY94]. The set
L is closed under divergent limits if for all divergent timed
words {� , if every finite prefix of {� is a prefix of some word
in L, then {� itself is in L. A set of divergent timed words
that is closed under divergent limits is completely deter-
mined by its finite prefixes. So if we have two rectangular
automata A1 and A2 such that (1) every finite timed word
accepted by A1 is accepted also by A2 , and (2) the
|-language Lang(A2) is closed under divergent limits, then
Lang(A1)/Lang(A2). Specifically, if A is an initialized
rectangular automaton whose |-language Lang(A) is
closed under divergent limits, then Lang(A)=Lang(BA).

As we have seen, the |-language of the initialized
rectangular automaton A� is not closed under divergent
limits. The unbounded initial region of A� is to blame. We
will prove that for every initialized rectangular automaton
A with bounded nondeterminism, the |-language Lang(A)
is closed under divergent limits. Consequently, for initial-
ized rectangular automata A with bounded nondeterminism,
the translation from A to BA can be used to solve not only
reachability but also |-language emptiness.

For a rectangular automaton A, the |-language Langc(A)
with convergent words is the set of all infinite timed words,
divergent or not, that are accepted by runs of A. One way
of showing that Lang(A) is closed under divergent limits is
to prove that Langc(A) is limit-closed. While it is not true
for all initialized rectangular automata A with bounded
nondeterminism that Langc(A) is limit-closed, this is true in
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FIG. 9. The initialized rectangular automaton A� with Lang(A� )#3
Lang(BA� ).

the special case that A has compact nondeterminism. So we
first consider the special case of compact nondeterminism,
and then proceed to the more general case of bounded
nondeterminism.

Preliminary definitions. Let A be an n-dimensional
rectangular automaton (without = moves). In this section, it
is convenient to consider timed words over the alphabet
E _ R�0, where the edge set replaces the observation alphabet.
Formally, a timed edge word for A is a finite or infinite sequence
?� =?0?1?2 } } } of letters from E _ R�0. An edge run of A that
accepts?� is a sequenceof the formq0 w�

?0 q1 w�
?1 q2 w�

?2 } } } with
q0 # Init, and qi # Q for all i�0. Divergence for timed edge
words and edge runs is defined as for timed words and runs.
The edge |-language of A (with convergent words), denoted
LangE (A) (resp. Langc

E(A)), is the set of all divergent (resp.
all infinite) timed edge words that are accepted by runs of A.
Limit closure and closure under divergent limits for edge
|-languages is defined as for |-languages. The following
observation is due to the fact that the edge set of A is finite.

Proposition 3.19. Let A be a rectangular automaton.
First, if the edge |-language LangE (A) is closed under
divergent limits, then so is the |-language Lang(A). Second,
if the edge |-language Langc

E(A) with convergent words is
limit-closed, then so is Langc(A).

Proof. We say that a timed edge word ?0?1?2 } } }
matches the timed word {0{1{2 } } } if for all i�0, if ?i # E
then {i=obs(?i), and if ?i # R�0 then {i=?i . Assume that
Langc

E (A) is limit-closed, and consider all finite prefixes of
an infinite timed word {� # Langc(A). The finite timed edge
words that match these prefixes and are accepted by A form
the nodes of a finitely branching tree: the root of the tree is
the empty timed edge word, and the successors of a node w
are the (matching and accepted) timed edge words of the
form w } ?, for ? # E _ R�0 . By Ko� nig's lemma, the tree has
an infinite rooted path, and the nodes along this path are
the finite prefixes of an infinite timed edge word ?� . Since
Langc

E (A) is limit-closed, ?� # Langc
E (A). Since ?� matches {� ,

we conclude that {� # Langc(A). This proves the second claim
of the lemma. The first claim follows from the fact that if {�
is divergent, then ?� is also divergent. K

Notice that for every singular automaton A, the edge
|-language Langc

E(A) with convergent words (and there-
fore also Langc(A)) is limit-closed. This is because a singular
automaton A has a finite number of initial states, and all
edge steps as well as time steps are deterministic; that is, for
all states q of A, and every label ? # E _ R�0 , the zone
Post?(q) is either empty or a singleton. Next, we consider
a class of nonsingular, and therefore nondeterministic,
automata whose |-languages with convergent words are
limit-closed.

The Case of Compact Nondeterminism

The rectangular automaton A has compact nondeterminism
if it has bounded nondeterminism, and all rectangular regions
that appear in the definition of A are closed. More precisely,
A has compact nondeterminism if (1) for every vertex v of A,
the regions init(v) and flow(v) are compact, and inv(v) is
closed, and (2) for every edge e of A, the regions pre(e) and
post(e) are closed, and for every coordinate i # [1, ..., n]
with i # jump(e), the interval post(e) i is bounded. We show
that if A has compact nondeterminism, then the |-language
Langc(A) with convergent words is limit-closed. This result
is a consequence of the following basic property of compact
zones, which is inherited from Rn.

Proposition 3.20. Let A be a rectangular automaton,
and let (Zi) i # N be an infinite decreasing sequence of non-
empty compact zones of A; that is, Zi #Zi+1 for all i�0.
Then the intersection �i # N Zi is nonempty.

Proof. This follows from the corresponding statement
for regions (subsets of Rn), and the fact that the vertex set
of A is finite. K

The next fact points out the compactness of all zones that
will appear in the proof of the main theorem. It follows
immediately from the proof of Proposition 2.2.

Fact 3.21. Let A be a rectangular automaton with
compact nondeterminism, and let Z and Z$ be two compact
rectangular zones of A. For every label ? # E _ R�0, the zones
Post?(Z) and Pre?(Z$) & Z are compact and rectangular.

Note the asymmetry in Fact 3.21; the intersection of
Pre?(Z$) with the compact zone Z is required for compact-
ness, because the preguard regions of automata with
compact nondeterminism are not necessarily bounded. The
next lemma gives the heart of the limit-closure argument,
showing that if all finite prefixes of an infinite timed edge
word can be generated from a given zone Z, then there is a
single state in Z from which each prefix can be generated.

Lemma 3.22. Let A be a rectangular automaton with
compact nondeterminism, and let Z be a compact rectangular
zone of A. Suppose that ?� # (E _ R�0)| is a timed edge word
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such that for every m # N, Post?0?1 } } } ?m(Z){<. Then there is
a state q # Z such that for every m # N, Post?0?1 } } } ?m(q){<.

Proof. For each m # N, define Zm=[q # Z |
Post?0?1 } } } ?m (q){<]. Since each Post?0?1 } } } ?m (Z) is non-
empty, each Zm is nonempty. Also, Zm #Zm+1 for all
m�0. We show that each zone Zm is compact; then the
lemma follows from Proposition 3.20. By Fact 3.21 for each
m # N, the zone Post?0?1 } } } ?m (Z) is compact and rectangular.
Therefore, again by Fact 3.21, the zone Zm=Z & Pre?0?1 } } } ?m

(Post?0?1 } } } ?m(Z)) is compact as well. K

Now we are ready to prove the main theorem.

Theorem 3.23. If A is a rectangular automaton with
compact nondeterminism, then the |-language Langc(A) with
convergent words is limit-closed.

Proof. Let A be a rectangular automaton with compact
nondeterminism. By Proposition 3.19, it suffices to show
that the edge |-language Langc

E (A) with convergent words
is limit-closed. Suppose that ?� # (E _ R�0)| is an infinite
timed edge word such that for every m # N, the prefix
?0 ?1 } } } ?m is a finite prefix of a timed edge word in
Langc

E (A); that is, for each m�0, Post?0?1 } } } ?m(Init){<.
We need to show that ?� # Langc

E (A).
We define an infinite sequence of zones (Zi) i # N of A. Let

Z0=Init. Since Z0 is compact and rectangular, by
Lemma 3.22, there is a state q0 # Z0 such that for each
m�0, Post?0?1 } } } ?m(q0){<. Let Z1=Post?0(q0). Then Z1

is compact and rectangular, and for each m�1,
Post?1?2 } } } ?m(Z1){<. So by Lemma 3.22, there is a state
q1 # Z1 such that for each m�1, Post?1?2 } } } ?m (q1){<.
Proceed inductively in this manner, with Zi+1=Post?i (qi)
compact and rectangular, and qi+1 # Zi+1 given by
Lemma 3.22 such that for each m�i+1,
Post?i+1?i+2 } } } ?m (qi+1){<. Then q0 w�

?0 q1 w�
?1 q2 w�

?2 } } }
is an edge run of A that accepts ?� . K

Corollary 3.24. The |-language emptiness problem
for initialized rectangular automata with compact nondeter-
minism is complete for PSPACE.

The Case of Bounded Nondeterminism

For rectangular automata A with bounded, noncompact
nondeterminism, the |-language Langc(A) with convergent
words may not be limit-closed. To see this, consider the 1D
initialized rectangular automaton A� from Fig. 10 (with the
trivial invariant function *v .R). While every finite prefix of
the infinite timed word {� = 1

2_1
1
4_1

1
8_1 } } } is accepted by A� ,

the convergent word {� is not in Langc(A� ). However, we
show that the |-language Lang(A) is still closed under
divergent limits for all rectangular automata A that have
bounded nondeterminism and are initialized, like the
sample automaton A� . Bounded regions have no analogue to
Proposition 3.20, and this greatly complicates the proof,
which now relies on a detailed case analysis of the flow

FIG. 10. The initialized rectangular automaton A� for which Langc(A� )
is not limit-closed.

function. The following fact points out the boundedness of
all zones that will appear in the proof of the main theorem.

Fact 3.25. Let A be a rectangular automaton with
bounded nondeterminism, and let Z be a bounded rectangular
zone of A. For every label ? # E _ R�0, the zone Post?(Z) is
bounded and rectangular.

The next lemma gives the heart of the argument. It shows
that for 1D rectangular automata A with constant, bounded
flow functions, Lang(A) is closed under those divergent
limits that are accepted by runs without discontinuous
jumps in the continuous state.

Lemma 3.26. Let I be a finite set of intervals, and let
flow be a bounded interval. Let (ti) i # N be an infinite sequence
of positive reals with ��

i=0 ti=�, and let (Ii) i # N be an
infinite sequence of intervals such that I0 is bounded and each
Ii is the intersection of one or more members of I. Suppose
that for each m # N, there is a finite sequence x0 , x1 , ..., xm of
reals such that for all i # [0, ..., m], we have xi # Ii , and for all
i # [0, ..., m&1], we have (xi+1&xi)�ti # flow. Then there is
an infinite sequence (xi) i # N of reals such that for all i�0, we
have xi # Ii and (xi+1&xi)�ti # flow.

Proof. We call a finite sequence x0 , x1 , ..., xm m-admissible
if for all i # [0, ..., m], we have xi # Ii , and for all i #
[0, ..., m&1], we have (xi+1&xi)�ti # flow. We call an
infinite sequence (xi) i # N admissible if for all i�0, we have
xi # Ii and (xi+1&xi)�ti # flow. Think of these sequences as
values of a variable a, with a* # flow, in a run with time steps
of durations ti and without discontinuous jumps. Let J be
the set [J/R | J=Ii for infinitely many i] of intervals.

Case 0 � closure( flow). Suppose that flow/($, �) for
some $>0. The case of flow/(&�, $) is handled sym-
metrically. Let k # R be larger than all of the finite endpoints
of the intervals in I. The point here is that the slope of a is
bounded from below by $, so that once (k&inf(I0))�$ time
units have passed, no matter what the initial value of a, the
value of a will be greater than all of the finite endpoints
of intervals from I (note that inf(I0) is finite, because I0

is bounded). Let j be large enough so that � j&1
i=0 ti>

(k&inf (I0))�$; such a j exists because the sum ��
i=0 ti
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diverges. Then, for every m-admissible sequence x0 , x1 , ...,
xm , we have xi>k for all i # [ j+1, ..., m]. Since each Ii is an
intersection of intervals from I, it follows that for every
i> j, we have Ii #(k, �). Consider a j-admissible sequence
x0 , x1 , ..., xj and choose $$ # flow. Then x0 , x1 , ..., xj , xj+
$$ } tj , xj+$$ } (tj+tj+1) } } } , is an admissible sequence.

Case 0=inf( flow) or 0=sup( flow). We suppose that
0=inf( flow); the case 0=sup( flow) is handled symmetri-
cally. Among the intervals Ii are only finitely many distinct
intervals. Therefore, � J{<, because flow & (&�, 0)=<,
so a can never descend from an interval Ii to an interval Ij all
of whose elements are less than those of Ii . Let j1 be large
enough so that (1) for every i # N, we have Ij1+i # J, and (2)
for every J # J, there is an i< j1 with Ii=J; that is, j1 is large
enough so that all elements of J have been met in the past, and
only elements of J will be met in the future. Let j2> j1 be large
enough so that all elements of J are represented among
Ij1+1 , ..., Ij2&1 . Let x0 , x1 , ..., xj2

be a j2 -admissible sequence.
Then xj1

# � J, because a cannot decrease, each interval in J

contains at least one x i with i< j1 , and each interval in J

contains at least one xi with j1<i< j2 . If 0 # flow, then
x0 , x1 , ..., x|

j1
is an admissible sequence. If 0 � flow, then x j1

<sup(� J). Let $=sup(� J)&x j1 . For each i> j1 ,
choose $i so that 0<$i<$�(2i } ti). Then x0 , x1 , ..., xj1

, xj1
+

$j1+1 } tj1+1 , xj1
+$j1+1 } tj1+1+$j1+2 } tj1+2 , ... is admissible.

Case 0 # interior( flow) and � J{<. Since 0 is in the
interior of flow, every m-admissible sequence can be slowed
down to give another m-admissible sequence. Let j1 be as
in the previous case. Since 0 # flow, whenever a ( j1+i)-
admissible sequence, i�0, terminates in � J, then it can be
extended to an admissible sequence by repeating the last
value ad infinitum. Such a ( j1+i)-admissible sequence
terminating in � J exists, because there exist two intervals
J1 , J2 # J such that inf(J1)=inf(� J) with identical
strictness, and sup(J2)=sup(� J) with identical strictness.
Let j2 be large enough so that both J1 and J2 each appear
twice in Ij1+1 , ..., Ij2&1 . Let x0 , x1 , ..., x j2

be a j2-admissible
sequence. There must be two positions i1 and i2 with j1<i1

<i2< j2 such that xi1
# J1 and x i2

# J2 . By slowing down
the xi sequence, � J can be reached: if xi1

�sup(� J) and
xi2

�inf(� J), then for some j with i1� j<i2 , we have
xj�sup(� J) and x j+1<sup(� J). Choose y # � J so
that y>xj+1 . Then x0 , x1 , ..., xj , y| is an admissible
sequence.

Case 0 # interior( flow) and � J=<. Let J1 , J2 # J be
such that every element of J1 is greater than every element
of J2 . Let j1 be as in the previous two cases. Let j1< p1<q1

< p2 be so that Ip1
=Ip2

=J1 and Iq1
=J2 . Let x0 , x1 , ..., xp2

be a p2 -admissible sequence. We first show that for every
m # N, there is an m-admissible sequence starting from x0 .
This is obvious for m� p2 , so suppose that m> p2 . Let

y0 , y1 , ..., ym be an m-admissible sequence. We have three
subcases.

Subcase xp1
= yp1

. In this case x0 , x1 , ..., xp1
, yp1+1 ,

yp1+2 , ..., ym is m-admissible.

Subcase xp1
< yp1

. If xq1
< yq1

, then by slowing down,
the xi sequence can meet up with the yi sequence somewhere
along the descent from J1 to J2 . If xq1

> yq1
, then for some

j # [ p1+1, ..., q1], we have xj< yj and x j+1� yj+1 . Since
( yj+1& yj)�t j # flow and (xj+1&xj)�t j # flow, and yj+1& y j

< yj+1&xj<xj+1&xj , it must be that ( yj+1&xj)�tj # flow.
Hence, the sequence x0 , x1 , ..., xj , yj+1 , yj+2 , ..., ym is
m-admissible.

Subcase xp1
> yp1

. If xq1
< yq1

, then by slowing down,
the xi sequence can meet up with the yi sequence somewhere
along the descent from J1 to J2 . So suppose that xq1

> yq1
.

Now if xp2
> yp2

, then by slowing down, the xi sequence can
meet up with the yi sequence somewhere along the ascent
from J2 to J1 . If xp2

< yp2
, then the yi sequence must cross

the xi sequence as above, and the x0 , x1 , ..., x j , yj+1 ,
yj+2 , ..., ym construction from the previous subcase
provides an m-admissible sequence. This completes the case
analysis.

It remains to construct an infinite admissible sequence.
Let x0 # I0 be such that for every m # N, there is an
m-admissible sequence starting from x0 . Let R be the set of
t0 -successors of x0 ; that is, R=[ y # R | ( y&x0)�t0 # flow].
Since flow is bounded, R is bounded. Let (t$i) i # N be the
sequence of reals such that t$i=ti+1 for all i�0. Let (I$i) i # N

be the sequence of intervals such that I$0=I1 & R, and
I$i=Ii+1 for all i�1. If we apply what we have already
proven to the duration sequence (t$i)i # N and the interval
sequence (I$i) i # N , we conclude that there is an x1 # I$0 such
that for every m # N, there is an m-admissible (with respect
to (t$i) i # N and (I$i) i # N) sequence starting from x1 . Continu-
ing inductively, we form an admissible sequence starting
from x0 . K

Now the proof of the main theorem consists of reducing
to one dimension, eliminating discontinuous jumps, and
applying Lemma 3.26.

Theorem 3.27. If A is an initialized rectangular automaton
with bounded nondeterminism, then the |-language Lang(A)
closed under divergent limits.

Proof. Let A be an n-dimensional initialized rectangular
automaton with bounded nondeterminism. By Proposi-
tion 3.19, it suffices to show that the edge |-language
LangE (A) is closed under divergent limits. Suppose that
?� # (E _ R�0)| is a divergent timed edge word such that for
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every m # N, there is a finite edge run of A of the form
qm

0 w�
?0 qm

1 w�
?1 } } } w�

?m qm
m+1 . We need to show that there is

an infinite edge run \ of A of the form q0 w�
?0 q1 w�

?1 q2 w�
?2 } } } .

First, observe that each of the n coordinates of a rectangular
automaton is independent of the other coordinates. Hence, A
has an edge run \ iff each of the n 1D rectangular automata
defined by projecting the continuous state of A to one of the
coordinates has the corresponding projection of \ as an
edge run. Therefore, without loss of generality, we assume
that n=1.

Let %=[i # N | 1 # jump(?i)] be the set of positions with
discontinuous jumps in the first (and only) coordinate. If
i # %, then the value of the continuous state after the i th step
is independent of its previous value. So if % is infinite, then
we can string together \ from infinitely many segments that
lead from one discontinuous jump to the next: for all j�0,
choose qj=q f ( j)

j for f ( j)=min[i # % | i� j]. If % is finite,
then we can string together \ from |% | many segments that
lead, as in the previous case, from one discontinuous jump
to the next, followed by an application of Lemma 3.26. In
Lemma 3.26, let I be the set of all invariant, preguard, and
postguard intervals of A; let flow be the flow interval of the
vertex associated with the state qk

j for any k� j>max(%);
and let I0 be the interval associated with the zone
Post?0?1 } } } ?max(%)(Init). The initialization of A ensures that
after the first max(%) steps, the flow interval flow remains
constant. The bounded nondeterminism of A ensures, by
Fact 3.25, that the zone Post?0?1 } } } ?max(%)(Init) is bounded and
rectangular. K

Corollary 3.28. The |-language emptiness problem for
initialized rectangular automata with bounded nondeterminism
is complete for PSPACE.

3.4. Simulation Relations

We introduced several mappings between the state spaces
of rectangular automata. We were interested only that the
mappings preserve reachability and |-languages. Now we
study the mappings in greater detail and show that they are
timed (bi)simulations [LV96] on the underlying labeled
transition systems. In particular the map : from Section 3.1
specifies a timed bisimulation between an initialized stop-
watch automaton C and the timed automaton DC , the map
; from Section 3.1 specifies a timed bisimulation between an
initialized singular automaton B and the initialized stop-
watch automaton CB , and the map # from Section 3.2 specifies
a timed forward simulation of an initialized rectangular
automaton A by the initialized singular automaton BA , as
well as a timed backward simulation of BA by A.

Let A1 and A2 be two rectangular automata with = moves
and the same observation alphabet, 7. A binary relation
//Reach(A1)_Reach(A2) is a timed forward simulation of
A2 by A1 if the following two conditions are met:

1. For every initial state r of A2 , there is an initial state
q of A1 such that (q, r) # /.

2. For all states r, r$ # Reach(A2), every state q # Reach(A1)
with (q, r) # /, and every label { # 7 _ R�0 , if r w�

{
A2

r$, then
there exists a state q$ # Reach(A1) such that (q$, r$) # / and
q w�

{
A1

q$.

The relation / is a timed backward simulation of A2 by A1 if
the following three conditions are met:

1. For every state r # Reach(A2), there exists a state
q # Reach(A1) with (q, r) # /.

2. For every initial state r of A2 and every state q #
Reach(A1), if (q, r) # /, then q is an initial state of A1 .

3. For all states r, r$ # Reach(A2), every state q$ #
Reach(A1) with (q$, r$) # /, and every label { # 7 _ R�0 , if
r w�

{
A2

r$, then there exists a state q # Reach(A1) such that
(q, r) # / and q w�

{
A1

q$.

If / is a timed forward simulation of A2 by A1 , and /&1 is
a timed forward simulation of A1 by A2 , then / is a timed
bisimulation between A1 and A2 . Notice that, if there is a
timed forward simulation of A2 by A1 , then every timed
word accepted by A2 is accepted also by A1 ; if there is a
timed backward simulation of A2 by A1 , then every finite
timed word accepted by A2 is accepted also by A1 .

For a map }: QA1
� QA2

from the states of A1 to the states
of A2 , define the relation }̂/Reach(A1)_Reach(A2) such
that (q, r) # }̂ iff r=}(q). In this way, we obtain the relations
:̂ and ;� . For a map }: QA1

� 2QA2 from the states of A1 to
zones of A2 , define the relation }̂/Reach(A1)_Reach(A2)
such that (q, r) # }̂ iff r # }(q). In this way, we obtain the
relation #̂. The next proposition follows from Lemma 3.2 in
the case of :̂, from Lemma 3.4 in the case of ;� , and from
Lemmas 3.13, 3.14, and 3.17 in the case of #̂.

Proposition 3.29. For every initialized stopwatch auto-
maton C with = moves, the relation :̂ is a timed bisimulation
between C and the timed automaton DC . For every initialized
singular automaton B with = moves, the relation ;� is a timed
bisimulation between B and the initialized stopwatch auto-
maton DC . For every initialized rectangular automaton A, the
relation #̂ is a timed forward simulation of A by BA , and #̂&1

is a timed backward simulation of BA , restricted to its upper-
half space, by A.

Simulation relations compose, as summarized in Figs. 11
and 12. In particular, the timed automaton DCBA

timed
forward simulates the initialized rectangular automaton A
via the relation :̂ b ;� b #̂, and A timed backward simulates
DCBA

via #̂&1 b ;� b :̂. It is not difficult to check that A does not

timed forward simulate BA , and BA does not timed back-
ward simulate A [Kop96].
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FIG. 11. Chain of timed simulations from A to DCBA
.

3.5. Symbolic Reachability Analysis

Consider an n-dimensional rectangular automaton A,
and a rectangular zone Zf of A. To solve the reachability
problem for A and Zf symbolically, by computing with
multirectangular zones, we may attempt to compute the
sequence Init, Post(Init), Post2(Init), ... of zones, until either
the intersection with Zf is nonempty, or a fixpint of Post is
reached within a finite number of steps (that fixpoint, then,
is Reach(A)). This procedure, which we call the symbolic
execution of A [ACH+95], will terminate if the zone Zf is
reachable or if there is a natural number i # N such that
Reach(A)=Posti (Init), but it will not terminate if Zf is not
reachable and no such i exists. Symbolic execution therefore
constitutes a semidecision procedure for the reachability
problem of rectangular automata. The procedure has been
implemented in the automatic verification tool HyTech
[HHWT97], and successfully applied to examplesof practical
interest [HHWT95, HW95, NS95, Cor96, HWT96, SMF97].

While the reachability problem is decidable for all
initialized rectangular automata, even for timed automata
symbolic execution does not always terminate. To see this,
consider the 2D timed automaton B� from Fig. 13, with first
coordinate c and second coordinate d. The only vertex
of B� , called v, has the invariant region [0, �)_[0, 1]. For
each i�0, Post2i

B� (InitB� )=[(v, (x, y)) | 0�x�i, and either

FIG. 12. Putting together the commuting diagrams.

y=x&wxx or y=x # N]. Hence the fixpoint computation
does not converge. To blame is the unbounded invariant
region. This is because symbolic execution is known to ter-
minate for every timed automaton with bounded invariant
regions [HNSY94] (where A has bounded invariant
regions if for every vertex v of A, inv(v) if bounded). It
follows that symbolic execution terminates also for
initialized rectangular automata with bounded invariant
regions. This is the content of the next proposition.

Proposition 3.30. For every initialized rectangular auto-
maton A with = moves and bounded invariant regions, there is a
natural number i # N such that Reach(A)=Posti (Init).

Proof. Consider an initialized rectangular automaton A
with = moves and bounded invariant regions. The construc-
tion of the singular automaton BA from Section 3.2 can
be modified in two respects. First, it is a simple matter
to accommodate inherited = edges from A. Second, BA is
equipped with bounded invariant regions as follows, by
introducing additional = edges. Whenever a lower-bound
variable bl(i) falls to 1 below the lower boundary of the
bounded invariant interval for ai , the slope of bl(i) is
changed to 0 via an = edge. Upper-bound variables are
treated symmetrically. These modifications do not affect the
mapping # and its properties. Now the proposition follows
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FIG. 13. The timed automaton B� for which Reach(B� )�Posti (Init) for
all i�0.

immediately from the relationships shown in Fig. 12 and the
statement of the proposition for timed automata. K

In this section, we remedy the problems arising from
unbounded invariant regions by preprocessing the given
automaton A. For initialized A, we construct in linear time
an initialized rectangular automaton Abd with = moves such
that (1) Reach(A) & Zf {< iff Reach(Abd) & Zf {<, and
(2) there is a natural number i # N such that Reach(Abd)=
Posti

Abd
(InitAbd

). The second condition implies that the
symbolic execution of Abd terminates, and the first condition
implies that it gives the correct answer to the reachability
problem for A. Consequently, the reachability problem for
A can be solved, rather than by translating A into a timed
automaton, by direct symbolic execution of Abd . While
translation doubles the dimension, the dimension of Abd

remains n, which alleviates a major practical bottleneck in
the verification of hybrid systems [HHWT97].

To facilitate the proof of condition (2), we first introduce
a third automaton A$bd , which ratifies both (1) and (2) but
is exponentially larger than A. The automaton A$bd will have
bounded invariant regions, and therefore satisfy condition
(2) by Proposition 3.30. For the remainder of this section,
assume that the given automaton A is initialized, and that
its variables are a1 , ..., an .

An Exponential Preprocessing Step

We define an n-dimensional initialized rectangular auto-
maton A$bd with = moves and bounded invariant regions, and
a rectangular zone Z$f of A$bd , such that Reach(A) & Zf {<
iff Reach(A$bd) & Z$f {<. Let h be 1 more than the largest
rational constant that appears in the definitions of A and Zf

as a finite endpoint of an interval. Let g be 1 less than the
smallest such constant. The idea is to truncate all invariant,
preguard, and postguard regions of A by intersection with
[ g, h]n. When a variable reaches the upper or lower boundary
of the rectangular region [ g, h]n, we change its slope to 0. The
automaton A$bd has the vertex set VA$bd

=VA_[0, 1, 2]n. Put

low=0, ok=1, and high=2, and let okn be the n-vector
(ok, ok, ..., ok). Each state ((v, *), x) of A$bd is intended to
represent all states of A of the form (v, y) with yi� g if *i=low,

and yi=xi # [ g, h] if *i=ok, and yi�h if *i=high. All of
these states will be shown equivalent for reachability purposes.

The remaining components of A$bd are defined as follows.
The observation alphabet of A$bd is the same as for A. The
initial, invariant, and flow functions of A$bd are defined by

initA$bd
(v, *) i={initA(v) i & [ g, h],

<,
if *i=ok,
otherwise;

[h, h], if *i=high,

invA$bd
(v, *) i={invA(v) i & [ g, h], if *i=ok,

[ g, g], if *i=low;

flowA$bd
(v, *) i={ flowA(v) i ,

[0, 0],
if *i=ok,
otherwise.

For each edge e=(v, w) of A, the automaton A$bd has
an edge e$=((v, okn), (w, okn)) with obsA$bd

(e$)=obsA(e),
preA$bd

(e$) = preA(e) & [ g, h]n, postA$bd
(e$) = postA(e) &

[ g, h]n, and jumpA$bd
(e$)= jumpA(e). Define trunc: Rn �

[ g, h]n by trunc(x) i= g if xi<g, trunc(x)i=xi if g�xi�h,
and trunc(x)i=h if xi>h. A rectangular region R/Rn is
gh-limited if for every coordinate i # [1, ..., n], (1) either inf(Ri)
=&� or g+1�inf(Ri)�h&1, and (2) either sup(Ri)=�
or g+1�sup(Ri)�h&1. By definition of g and h, all initial,
invariant, preguard, and postguard regions of A, as well as
[Zf ]v for all vertices v of A, are gh-limited regions. The
following fact ensures that the guards of A$bd have the same
effect as the guards of A.

Fact 3.31. Let x # Rn, and let R/Rn be a gh-limited
rectangular region. Then x # R iff trunc(x) # R & [ g, h]n.

In addition to the edges inherited from A, the automaton
A$bd has = edges for toggling the components of *. For every
vertex v of A, every coordinate i # [1, ..., n], and every
vector * with *i=ok, there is an = edge from (v, *) to
(v, *[*i :=low]), and another = edge in the reverse direc-
tion, from (v, *[*i :=low]) to (v, *), each annotated with
the guarded command ai= g � ai := g. Here *[*i :=low]
stands for the vector that agrees with * on all components
except for the i th component, which is low. The trivial
assignment is for initialization. Similarly, there are = edges
from (v, *) to (v, *[*i :=high]) and from (v, *[*i :=high])
to (v, *), each annotated with the guarded command
ai=h � ai :=h. This completes the definition of A$bd . Note
that the rectangular automaton A$bd is initialized and has
bounded invariant regions.

Define the function `: QA � QA$bd
by `(v, x)=((v, okn),

trunc(x)), and extend ` to zones in the natural way. Notice
that InitA$bd

=`(InitA). Define Z$f=`(Zf).

Lemma 3.32. Let A be an initialized rectangular auto-
maton, and let Zf be a rectangular zone of A. Then Reach(A)
& Zf {< iff Reach(A$bd) & Z$f {<.
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Proof. It suffices to prove the lemma for one-dimen-
sional A. For the ``only if '' direction, we show that for all
labels ? # EA _ R�0 , if q w�

?
A r then `(q) w�

?
A$bd

`(r). For
time steps, suppose that (v, x1) w�

t
A (v, x2) for t>0. Then

(x2&x1)�t # flowA(v). If g�x1, x2�h, then trunc(x1)=x1

and trunc(x2)=x2. Since flowA$bd
(v, ok)= flowA(v), we have

`(v, x1) w�
t

A$bd
`(v, x2). Now suppose that x1� g�h�x2.

Then there exist three durations t1 , t2 , t3 # R�0 such that
t=t1+t2+t3 and (v, x1) w�

t1
A (v, g) w�

t2
A (v, h) w�

t3
A (v, x2).

In this case, trunc(x1)= g and trunc(x2)=h. Since
flowA$bd

(v, ok)= flowA(v), we have

((v, ok), trunc(x1)) w�
=

A$bd
((v, low), g) w�

t1
A$bd

((v, low), g)

w�
=

A$bd
((v, ok), g) w�

t2
A$bd

((v, ok), h)

w�
=

A$bd
((v, high), h) w�

t3
A$bd

((v, high), h)

w�
=

A$bd
((v, ok), trunc(x2)).

Again `(v, x1) w�
t

A$bd
`(v, x2). Other positions of x1 and x2

relative to g and h are handled similarly. For edge steps, the
key fact is that all preguard and postguard regions are
gh-limited. Suppose that (v1, x1) w�

e
A (v2, x2) for e # EA .

Then x1 # preA(e) and x2 # postA(e), and so by Fact 3.31,
trunc(x1) # preA$bd

(e$) and trunc(x2) # postA$bd
(e$), where e$ is

the edge of A$bd inherited from e. In addition, jumpA$bd
(e$)=

jumpA(e), and so `(v1, x1) w�
e$

A$bd
`(v2, x2).

For the ``if '' direction we apply a more global argument.
Suppose that

((v0, ok), y0) w�
?1

A$bd
((v1, ok), y1) w�

?2
A$bd

} } }

w�
?m

A$bd
((vm, ok), ym),

where ((v0, ok), y0) # InitA$bd
and ((vm, ok), ym) # Z$f . We

find x0, ..., xm such that

(v0, x0) w�
?1

A (v1, x1) w�
?2

A } } } w�
?m

A (vm, xm)

and for each i # [0, ..., m], trunc(xi)= yi. Then, by Fact
3.31, (v0, x0) # InitA and (vm, xm) # Zf . First, since A is
initialized, it suffices to assume that each ?i # EA$bd

has
jump(?i)=< (otherwise we string together the solutions
obtained for the segments between discontinuous jumps);
consequently, flowA(vi)= flowA(v j) for all i, j # [0, ..., m].
Second, by Fact 3.31, it suffices to assume that ?i # R�0 for
all i; that is, all m steps are time steps. Let flow be the com-
mon value of the flow region flowA(vi), for i # [0, ..., m]. If
0 # flow, then

(v0, y0) w�
?1

A (v1, y1) w�
?2

A } } } w�
?m

A (vm, ym),

so putting xi= yi for each i, we are finished. Now suppose
that flow/(0, �). Here the most interesting case is given
by y0= g and ym=h for g<h. In this case, there exist
0� j1� j2<m such that yi= g for i� j1 , and g< yi<h for
j1<i� j2 , and yi=h for i> j2 . We put x i= yi for j1<i� j2 .
To set the xi for i> j2 , we need only determine a suitable
slope. Let k2 be such that for some h$�h, we have k2=
(h$& y j2)�? j2+1 # flow. Such a k2>0 exists because

((v j2, ok), y j2) ww�
?j2

+1

A$bd
((v j2+1, ok), h). Put xi= y j2+k2 }

(i& j2) for each i> j2 . Then (vi, xi) ww�
?i+1

A (vi+1, x i+1) for
all i # [ j2 , j2+1, ..., m&1]. It remains to set the xi for
i� j1 , which is done in the same way. Since ((v j1, ok), g)

ww�
?j1

+1

A ((v j1+1, ok), y j1+1), there exists a k1 # flow such
that for some g$� g, we have k1=( y j1+1& g$)�? j1+1 # flow.
For each i # [0, ..., j1], put xi= y j1+1&k1 } ( j1+1&i). Then
(vi, xi) ww�

?i+1
A (vi+1, xi+1) for all i # [0, ..., j1], and we are

finished. All other cases are handled in a similar fashion. K

A Linear Preprocessing Step

The automaton A$bd uses the discrete part of the state to
store information about variables whose values are too
small or too large to be relevant. This causes the vertex set
of A$bd to be exponentially larger than the vertex set of A. We
now define an initialized rectangular automaton Abd , with
the same dimension and vertex set as A, which uses the
continuous part of the state for the same purpose. Instead
of stopping a variable when it reaches g (resp. h), the
automaton Abd allows a nondeterministic jump to any value
below g (resp. above h). Formally, Abd is identical to A,
except for 2n } |VA | additional = edges. For every vertex v of
A, and every coordinate i # [1, ..., n], the automaton Abd

has two = edges from v to v, which are annotated respectively
with the two guarded commands ai� g � ai : # (&�, g]
and ai�h � ai : # [h, �).

The following two lemmas prove that the simple modifi-
cation Abd can be used to decide reachability on A by symbolic
execution. The connection between Abd and A is established
via the automaton A$bd . The first lemma implies that Abd

is timed bisimilar to A$bd .

Lemma 3.33. For all states q and r of the rectangular
automaton Abd , and every label { # 7 _ R�0 , we have
q w�

{
Abd

r iff `(q) w�
{

A$bd
`(r).

Proof. For { # 7, the statement of the lemma follows
from Fact 3.31. For { # R�0 , it suffices to prove the result
for one-dimensional A. Suppose that (v, x1) w�

{
Abd

(v, x2). If
g<x1, x2<h, then immediately `(v, x1)=((v, ok), x1)
w�

{
A$bd

((v, ok), x2)=`(v, x2), The most interesting case is
x1< g<h<x2. In this case, there exists a duration t�{
such that (h& g)�t # flowA(v). Therefore,
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`(v, x1)=((v, ok), g) w�
=

A$bd
((v, low), g)

ww�
{&t

A$bd
((v, low), g)

w�
=

A$bd
((v, ok), g)

w�
t

A$bd
((v, ok), h)=`(v, x2).

Similar arguments apply to all relative positions of x1, x2, g,
and h. The reverse implication follows from the = edges
of Abd . K

Let Qok /QA$bd
be the set of states of A$bd that have the

form ((v, okn), x). Then ` is an onto function from QAbd

to QA$bd
. From Lemma 3.33, it follows that for every

zone Z of Abd , PostA$bd
(`(Z)) & Qok=`(PostAbd

(Z)). Since
`(q) # InitA$bd

if q # InitAbd
(by Fact 3.31), we conclude that

Reach(A$bd) & Qok=`(Reach(Abd)). Another consequence
of Lemma 3.33 is the next lemma, which implies that the
symbolic execution of Abd must terminate within at most
one more step than the symbolic execution of A$bd (whose
bounded invariant regions guarantee termination).

Lemma 3.34. For all zones Z of the rectangular auto-
matonA, if PostA$bd

(`(Z))=`(Z), thenPost2
Abd

(Z)=PostAbd
(Z).

Proof. Consider a zone Z of A such that PostA$bd
(`(Z))

=`(Z). We assume that q w�
{

Abd
r for two states

q # PostAbd
(Z) and r � PostAbd

(Z), and show a contradiction.
From Lemma 3.33 it follows that for all states r$ with
`(r$)=`(r), also r$ � PostAbd

(Z). On the other hand, `(q) #
`(PostAbd

(Z))/PostA$bd
(`(Z))=`(Z), using Lemma 3.33 a

second time. Since r # PostAbd
(q), we have `(r) # PostA$bd

(`(Z))
& Qok=`(PostAbd

(Z)) by a third and fourth application of
Lemma 3.33. So there exists a state r$ # PostAbd

(Z) with
`(r$)=`(r), which gives a contradiction. K

From Lemmas 3.32 and 3.33 it follows that reachability in A
is equivalent to reachability in Abd : we have Reach(A) & Zf

{< iff Reach(A$bd) & Z$f {< iff `(Reach(Abd)) & `(Zf){<
iff Reach(Abd) & Zf {< (the final equivalence follows from
Fact 3.31, because all regions of Zf are gh-limited). From
Proposition 3.30, Lemma 3.33, and Lemma 3.34 it follows that
the symbolic execution of Abd terminates.

Theorem 3.35. Let A be an initialized rectangular
automaton, and let Zf be a rectangular zone of A. Then there
exists a rectangular automaton Abd , obtained from A by
adding = moves, such that (1) Reach(A) & Zf {< iff
Reach(Abd) & Zf {<, and (2) there is a natural number
i # N with Reach(Abd)=Post i

Abd
(InitAbd

).

4. UNDECIDABILITY

In Section 3, we showed that the initialized rectangular
automata form a decidable class of hybrid automata. In this
section, we show that they form a maximal such class.

We proceed in two steps. First, we show that without initial-
ization, even a single two-slope variable leads to an
undecidable reachability problem. Second, we show that the
rectangularity of the model must remain inviolate. Any
coupling between coordinates, such as comparisons between
variables, brings undecidability already with a single nonclock
variable. (Timed automata, which have only clock variables,
remain decidable in the presence of variable comparisons
[AD94].) A main consequence is the undecidability of
compact automata with clocks and one stopwatch, which
are of interest for the specification of duration properties
[KPSY93].

An n-dimensional rectangular automaton A is simple if it
meets the following restrictions:

1. Exactly one variable of A is not a clock.

2. The automaton A has only one initial state q0 , and q0

has the form (v, (0, 0, ..., 0)).

3. For every edge e of A, and every coordinate
i # [1, ..., n], if i # jump(e) then post(e) i=[0, 0], and if
i � jump(e) then post(e) i= pre(e) i .

4. For every vertex v of A, the invariant region inv(v)
and the flow region flow(v) are compact (by restriction (2),
the initial region init(v) is compact as well). For every edge
e of A, the preguard region pre(e) is compact (by restriction
(3), the postguard region post(e) is compact as well).

5. The observation alphabet of A is a one-letter alphabet,
and the invariant function inv of A is constant. (One can
require that A has the fixed invariant function *v . [0, 1]n or
*v .Rn, with only minor modifications of our proofs.)

The automaton A is m-simple if it meets restrictions (2)�(4),
and exactly m variables of A are not clocks.

We use simple automata for our undecidability results.
Restrictions (2) and (3) ensure that every simple automaton
has deterministic jumps, which eliminates the nondeter-
minism of jumps as a possible source of undecidability.
Many limited decidability results are based on a technique,
called digitization, which discretizes time steps with nonin-
teger durations [HMP92, BES93, BER94, PV94]. Since the
digitization technique requires closed guard and invariant
regions, restriction (4) implies that the technique does not
generalize beyond very special cases. Many limited decidability
results apply to automata with a single stopwatch [BES93,
KPSY93, BER94, MV94, BR95, ACH97]. Restriction (1)
implies that these results do not generalize either.

All of our undecidability proofs are reductions from the
halting problem for two-counter machines to the reachability
problem for simple rectangular automata. A two-counter
machine M consists of a finite control and two unbounded
nonnegative integer variables called counters. Initially both
counter values are 0. Three types of instructions are used:
branching based upon whether a specific counter has the
value 0, incrementing a counter, and decrementing a counter
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(which leaves unchanged a counter value of 0). When a
specified halting location is reached, the machine halts. In
our reductions, the finite control of M is encoded in the
finite control of a simple rectangular automaton AM ; in
particular, there is a vertex v such that that M halts iff the
zone [v]_inv(v) is reachable for AM . Each counter is
encoded by a clock of AM , and we supply widgets for per-
forming the operations that correspond to incrementing or
decrementing a counter. Typically, the counter value u
corresponds to the clock value k1 } (k2 �k1)u, where k1 and k2

are the slopes of a two-slope variable of AM , with k1 being
the larger. When k1=2k2 , decrementing (resp. increment-
ing) a counter corresponds to doubling (resp. halving) the
value of the corresponding clock. Notice that since k1>k2 ,
it is the density of the continuous domain, rather than
its infinite extent, that is used to encode the potentially
unbounded counter values.

4.1. Uninitialized Automata

We show that initialization is necessary for a decidable
reachability problem.

Theorem 4.1. For every two slopes k1 , k2 # Q with
k1 {k2 , the reachability problem is undecidable for simple
rectangular automata with a two-slope variable of slopes k1

and k2 .

We first prove three lemmas that are basic to all of our
undecidability proofs. Let W be a positive rational number.
A simple rectangular automaton A is W-wrapping if its
invariant function is defined as follows:

v For every variable a of A that is a clock, and every ver-
tex v of A, inv(v)(a)=[0, W].

v If b is the nonclock variable of A, and b takes only
nonnegative slopes (i.e., flow(v)(b)/[0, �) for all v),
then for each vertex v of A, inv(v)(b)=[0, W }
max[sup( flow(w)(b)) | w # V]].

v If b is the nonclock variable of A, and b takes only
nonpositive slopes, then for each vertex v of A, inv(v)(b)=
[W } min[inf( flow(w)(b)) | w # V], 0].

v If b is the nonclock variable of A, and b takes
both positive and negative slopes, then for each vertex
v of A, inv(v)(b)=[W } min[inf( flow(w)(b)) | w # V],
W } max[sup( flow(w)(b)) | w # V]].

A W-wrapping edge for a clock a and a vertex v is an edge
from v to itself that is annotated with the guarded command
a=W � a :=0. A W-wrapping edge for a nonclock variable
b and a vertex v with flow(v)(b)=[k, k] is an edge from v
to itself that is annotated with the guarded command
b=k } W � b :=0. The invariant of a wrapping automaton
forces wrapping edges to be taken when they are enabled.
We use wrapping to simulate discrete events by continuous

rounds taking W (or some multiple thereof) units of time.
The wrapping edges ensure that variables take the same
values at the beginning and end of a round, unless they are
explicitly reassigned by a nonwrapping edge. This is the
content of the wrapping lemma. A similar wrapping technique
can be found in [Cer92].

In figures of simple automata, we use the following
conventions. First, all variables whose slopes are not listed
are clocks, i.e., they have slope 1. Second, wrapping condi-
tions are left implicit; in particular, we omit invariants from
every figure after those regarding the three basic lemmas,
and we omit wrapping edges beginning with Fig. 20.

Wrapping Lemma. Let W be a positive rational number.
Let k1 # Q"[0], and consider the simple W-wrapping
automaton fragment of Fig. 14. (Figure 14 assumes that
k1>0. If k1<0, replace c�k1W by c�k1 W.) Suppose
that the value of c is x when the edge e1 is traversed, where
0<x<k1 } W if k1>0, and k1 } W<x<0 if k1<0. Then
the next time e3 is traversed, the value of c is again x.

Proof. Figure 15 contains a time portrait that illustrates
the proof for W=4 and k1=1. The markings e1 , e2 , and e3

along the time axis show at which points these edges are
traversed. We give the proof for k1>0. In order for e3 to be
traversed in the future, the following series of events must
occur: (1) e1 is traversed; (2) exactly (W } k1&x)�k1 time
units elapse, after which c has the value W } k1 , and a has the
value (W } k1&x)�k1 ; (3) the wrapping edge e2 is traversed,
after which c has the value 0, and a has the value (W } k1&x)�
k1 ; (4) exactly W&(W } k1&x)�k1=x�k1 time units elapse,
after which a has the value W and c has the value x. K

By allowing clocks c and d to wrap only simultaneously,
we can check if the two clocks have the same value.

Equality Lemma. Let W be a positive rational number.
Consider the simple W-wrapping automaton fragment of
Fig. 16, in which all variables are clocks. Suppose that the
value of c is x and the value of d is y when the edge e1

is traversed, where 0<x, y<W. Then the edge e3 can be
traversed later iff x= y. Furthermore, the next time e3 is
traversed, the value of both c and d is x (which is equal to y).

FIG. 14. Wrapping lemma: the skewed clock c retains its entry value
upon exit.
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FIG. 15. Proof of the wrapping lemma for slope 1.

Similarly, by assigning the skewed clock d to 0 at the
same time as wrapping the skewed clock c to 0, we perform
the assignment d :=(k2�k1) } c, where c* =k1 and d4 =k2 .

Assignment Lemma. Let W be a positive rational
number. Let k1 , k2 # Q with k1 {0, and consider the simple
W-wrapping automaton fragment of Fig. 17.3 Suppose that
the value of c is x when the edge e1 is traversed, where
0<x<k1 } W if k1>0, and k1 } W<x<0 if k1<0. Then
the next time e3 is traversed, the value of c is again x and the
value of d is (k2 �k1) } x.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We reduce the halting problem
for two-counter machines to the reachability problem for
simple wrapping automata with a two-slope variable taking
slopes k1 and k2 . Let M be a two-counter machine with
counters C and D. We describe the construction of a simple
wrapping automaton AM with the following six variables: a,
b, b$, c, and d are clocks, and z is a two-slope variable with
slopes k1 and k2 . The values of the counters C and D are
encoded in the values of the clocks c and d, respectively.

Case k1>k2>0 or k1<k2<0. The automaton AM is
W-wrapping, where W may be chosen to be any number
larger than |k1 |. We encode counter value u by clock value
|k1 | } (k2�k1)u. The relationships c=|k1 | } (k2�k1)C and
d=|k1 | } (k2�k1)D hold when a=0 or a=W, except when
more than one time interval of duration W is needed to
simulate one computation step of M. The initialization of C
and D is implemented by the initial vertex of AM and an
outgoing edge e with the preguard pre(e)(c)= pre(e)(d )=
[|k1 |, |k1 |]. The test C=0 is implemented by two edges e1

and e2 , where pre(e1)(c)=[|k1 | , |k1 |] (corresponding to
C=0) and pre(e2)(c)=[0, |k2 |] (corresponding to C{0).
Decrementing a counter corresponds to first checking if
its value is 0 as above, and if not, then multiplying the
corresponding clock value by k1 �k2. This is implemented
by concatenating two assignment-lemma constructions,
as shown in Fig. 18 for counter C. In the first, z* =k1 ; it
performs z :=k1 } c. In the second, z* =k2 ; it performs

FIG. 16. Equality lemma: testing if c=d.

c :=(1�k2) } z. The bottom portion of Fig. 18 shows a time
portrait of the decrementation fragment for W=4, k1=2,
and k2=1. Notice that the value of d, which represents the
unchanged counter D, is not affected by the decrementation
fragment. Incrementing a counter corresponds to multiply-
ing the corresponding clock value by k2�k1. This is done by
reversing the two assignments, as shown in Fig. 19 for coun-
ter C. First z :=k2 } c is performed, and then c :=(1�k1) } z.
The bottom portion of Fig. 19 shows a time portrait of the
incrementation fragment for W=4, k1=2, and k2=1.

Each instruction of M can be implemented as outlined
above, with the terminal edge of the widget for instruction
i coinciding with the initial edge of the widget for instruction
i+1 (with the obvious modifications for branch instruc-
tions). It follows that the vertex of AM that corresponds to
the halting location of M is reachable iff M halts.

Case k1 {0 and k2=0. The construction is insensitive
to the sign of k1 . We use the wrapping constant W=4 and
encode counter value u by clock value 21&u. Initialization
and test for zero are implemented easily. Decrementing a
counter corresponds to doubling the corresponding clock.
The doubling procedure is shown in Fig. 20 for the clock c;
in this and all remaining figures, we omit the wrapping
edges required to maintain the value of d. The idea is to
perform z :=k1 } c using the assignment lemma, then to put
z* =0 until c reaches W again, and then to put z* =k1 so that
when a reaches W, we have z=2k1 } x, where x is the
original value of c. Finally, we perform c :=(1�k1) } z with
the assignment lemma. The bottom portion of Fig. 20 shows
a time portrait for k1=2. Incrementing a counter corre-
sponds to halving the corresponding clock, which can be

FIG. 17. Assignment lemma: performing the assignment d :=(k2�k1) } c.
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FIG. 18. Counter decrement: multiplying c by k1 �k2 using the two-
slope variable z.

done with two auxiliary clocks b and b$. To halve the value
of c, first a value is nondeterministically guessed in b. Then
b$ :=2b is performed using the above doubling procedure.
Then c=b$ is checked by the equality lemma, and if this suc-
ceeds, then c :=b is performed using the assignment lemma.

Case k1>0>k2 . First suppose that |k2 |<k1 . The
wrapping constant W can be any number larger than k1 . We
encode counter value u by clock value k1 } ( |k2 |�k1)u. Now
we need two synchronization clocks, a and b. Clock c is
synchronized with a, and clock d is synchronized with b.

FIG. 19 Counter increment: multiplying c by k2 �k1 using the two-
slope variable z.

The relationship c=k1 } ( |k2 |�k1)C holds when a=0 or
a=W, and the relationship d=k1 } ( |k2 |�k1)D holds when
b=0 or b=W. To multiply c by k1 �|k2 | , we first perform
z :=k1 } c and reset c to 0. Then we put z* =k2 , and when z
reaches 0, we reset a to 0. At this point c=(k1�|k2 | ) } x,
where x is the original value of c. See Fig. 21. The bottom
portion of the figure shows a time portrait for W=4, k1=2,
and k2=&1. To multiply c by |k2 |�k1 , simply reverse the
slopes of z. Specifically, perform z :=k2 } c, reset c to 0, then
put z* =k1 , and when z reaches 0, reset a to 0.

If |k2 |>k1 , we use a wrapping constant larger than |k2 |
and encode counter value u by clock value |k2 | } (k1�|k2 | )u.
This simply switches the roles of multiplying by k1�|k2 | and
multiplying by |k2 |�k1 .

Finally, suppose that k2=&k1 . In this case we use the
wrapping constant 4 and encode counter value u by clock
value clock value 21&u. Again we use separate synchroniza-
tion clocks a and b for c and d. To double c, perform
z :=k1 } c, and then put z* =k2=&k1 , resetting a when z
reaches 0. See Fig. 22, which gives the construction, and also
a time portrait for k1=3. Halving c is done by nondeter-
ministically guessing the midpoint of the interval of time
between c=4 and a=4. The guess is checked by starting z
at value 0 when c reaches 4, keeping z at slope k1 for the first
half of the interval, and at slope &k1 for the second half. If
z returns to 0 at the same instant that a reaches 4, the guess
was correct. See Fig. 23, which gives the construction, and a
time portrait for k1=5. K

4.2. Generalized Automata

A slight generalization of the invariant, flow, preguard,
postguard, or jump function leads to the undecidability of
rectangular automata, even under the stringent restrictions
of simplicity and initialization. For the remainder of this
section, fix an n-dimensional rectangular automaton A.

Rectangular Automata with Assignments

The jump function of A can be generalized to allow,
during edge steps, the value of one variable to be assigned
to another variable. A jump function with assignments for A
assigns to each edge e of A both a jump set jump(e)/[1, ..., n]
and an assignment function assign(e): [1, ..., n] � [1, ..., n].
The edge-step relation w�_ , for _ # 7, is then redefined as
follows: (v, x) w�_ (w, y) iff there is an edge e=(v, w) of A
such that obs(e)=_, and x # pre(v), and y # post(w), and
for all i # [1, ..., n] with i � jump(e), we have yi=xassign(i) .
A rectangular automaton with assignments is a rectangular
automaton whose jump function is replaced by a jump
function with assignments.

Using a jump function with assignments, the proof of
Theorem 4.1 can be replicated even if the two-slope variable
is replaced by a memory cell (with slope 0) or by a skewed
clock (with any slope different from 0 and 1). The former
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FIG. 20. Doubling c using the two-slope variable z with the slopes 0 and k1 .

FIG. 21. Multiplying c by k1 �|k2 | when k1>0>k2 and |k2 |<k1 .

FIG. 22. Doubling c when k2=&k1 .
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FIG. 23. Halving c when k2=&k1 .

gives a new proof of a result from [Cer92]. In the following
theorem, notice that every simple rectangular automaton
whose nonclock variable is a one-slope variable is necessarily
initialized.

Theorem 4.2. For every slope k # Q"[1], the reachability
problem is undecidable for simple rectangular automata with
assignments and a one-slope variable of slope k.

Proof. Consider k # Q"[1]. We repeat the construction
given in the proof of Theorem 4.1 for the case k1=1 and
k2=k with the following modifications. The two-slope
variable z is replaced by a clock z1 and a one-slope variable
z2 with slope k. Each vertex of AM is augmented with a bit
slp # [1, 2] that indicates if the value of z corresponds to the
current value of z1 or to the current value of z2 . Assigments
are used to copy the value of z1 into z2 , or vice versa,
whenever the bit slp changes. More precisely, for each edge
e=(v, w) of AM , we have an edge e$ from (v, slp) to (w, slp$),
where slp=i iff the slope of z in v is ki , and slp$=i iff the
slope of z in w is ki . For all coordinates other than z, z1 , and
z2 , the preguard and postguard intervals and the jump sets
of e and e$ coincide. In addition, pre(e$)(zslp)= pre(e)(z),
post(e$)(zslp$)= post(e)(z), and zslp$ is in the jump set of e$ iff
z is in the jump set of e. Finally, the assignment function of
e$ assigns to zslp$ the value of zslp . K

Triangular Preguard, Postguard, and Invariant Constraints

The preguard, postguard, and invariant functions of A
can be generalized to allow comparisons between the values
of variables. We call preguard, postguard, and invariant
constraints of the form a�b, where a and b are variables,
triangular, because they define triangular regions of Rn.
A triangular restriction � for A is a reflexive and transitive
binary relation on [1, ..., n]. A triangular preguard (resp.
postguard) function for A assigns to each edge e of A both a
rectangular region pre(e) (resp. post(e)) and a triangular
restriction �e . The edge-step relation w�_ , for _ # 7, is then
redefined as follows: (v, x) w�_ (w, y) iff there is an edge
e=(v, w) of A such that obs(e)=_, x # pre(v), y # post(w),
for all i # [1, ..., n] with i � jump(e), we have xi= yi , and for

all i, j # [1, ..., n] with i�e j, we have xi�xj (resp. yi� yj).
A triangular invariant function for A assigns to each vertex
v of A both a rectangular region inv(v) and a triangular
restriction � v . The state space Q of A is then redefined
to contain a pair (v, x) # V_Rn iff x # inv(v) and for all
i, j # [1, ..., n] with i�v j, we have xi�xj . An automaton
with triangular preguards (resp. postguards; invariants) is a
rectangular automaton whose preguard (resp. postguard;
invariant) function is replaced by a triangular preguard
(resp. postguard; invariant) function.

Using any of the three types of triangular constraints, the
proof of Theorem 4.2 can be replicated without assignments.

Theorem 4.3. For every slope k # Q"[1], the reachability
problem is undecidable for simple automata with triangular
preguards or postguards or invariants, and a one-slope
variable of slope k.

Proof. Triangular preguards, postguards, or invariants
permit comparisons between variables of the form a=b.
This allows an assignment a :=b to be simulated by a reset
a :=0 at a nondeterministically chosen point in time,
followed later by the test a=b (assuming positive values
and slopes). As usual, wrapping ensures that all other variables,
as well as b, maintain their values while the assignment is
simulated. In this way, the construction outlined in the
proof of Theorem 4.2 can be modified appropriately. K

Triangular Flow Constraints

The flow functions of A can be generalized to impose an
ordering on the first derivatives of variables. For example,
the triangular flow constraint 1�a* �b4 �2 says that both a
and b may increase at any slopes between 1 and 2, but b
increases always as least as fast as a. A triangular flow func-
tion for A assigns to each vertex v of A both a rectangular
region flow(v) and a triangular restriction �v . For t>0,
the time-step relation w�

[t]
is then redefined as follows:

(v, x) w�
[t]

(w, y) iff v=w, and (y&x)�t # flow(v), and for all
i, j # [1, ..., n] with i�v j, we have yi&xi� yj&xj . The
triangular flow function is called constant if the functions
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flow and *v. �v are both constant functions on the set of
vertices. An automaton with constant triangular flow is a
rectangular automaton whose flow function is replaced by a
constant triangular flow function.

Using a constant triangular flow constraint, the proof of
Theorem 4.1 can be replicated. This is nontrivial, because
Theorem 4.1 permits a two-slope variable that is not governed
by a constant flow function. For the simulation of the two-
slope variable, we use three infinite-slope variables that do
follow a constant flow function, albeit a triangular one.

Theorem 4.4. The reachability problem is undecidable
for 3-simple automata with constant triangular flow.

Proof. We use three nonclock variables z, z1 , and z2

with the constant triangular flow constraint 1�z* 1�z* �
z* 2�2. The idea is to repeat the construction given in the
proof of Theorem 4.1 for the case k1=1 and k2=2 with two
additional variables, z1 and z2 , which enforce that the slope
of z is always either 1 or 2. The slope 1 of z is enforced by
resetting z2 to 0 whenever a wraps to 0, and later checking
that a=4 7z2=4. Similarly, the slope 2 of z is enforced by
resetting z1 to 0 whenever a wraps to 0, and later checking
that a=4 7z1=8. K

5. CONCLUSION

There are three uniform extensions of finite-state machines
with real-valued variables. Timed automata [AD94] equip
finite-state machines with perfect clocks, and the reachability
and |-language emptiness problems for timed automata are
decidable. Linear hybrid automata [AHH96] equip finite-
state machines with continuous variables whose behavior
satisfies linear constraints, and the reachability problem for
linear hybrid automata is undecidable. Yet, because the Pre
and Post operations of linear hybrid automata maintain the
linearity of zones, the reachability problem is semidecidable,
and thus the verification of many linear hybrid systems is
possible. This observation has been exploited in the model
checker HyTech [HHWT97]. Initialized rectangular auto-
mata equip finite-state machines with drifting clocks, that is,
continuous variables whose behavior satisfies rectangular
constraints. Initialized rectangular automata lie strictly
between timed automata and linear hybrid automata at the
boundary of decidability. On one hand, initialized rectangular
automata generalize timed automata without incurring a
complexity penalty. Their reachability problem is PSPACE-
complete and, under the natural restriction of bounded
nondeterminism, so is their |-language emptiness problem.
(We do not know the complexity of the |-language emptiness
problem without the restriction of bounded nondeterminism.)
On the other hand, initialized rectangular automata form a
maximal decidable class of hybrid systems, because even
the simplest uninitialized or nonrectangular systems have
undecidable reachability problems.

In summary, there are two factors for decidability:
(1) rectangularity, that is, the behavior of all variables is
decoupled, and (2) initialization, that is, a variable is reini-
tialized whenever its flow changes.

Initialized rectangular automata are also interesting from
a practical perspective. First, reachability analysis using
HyTech terminates on every initialized rectangular auto-
maton with bounded invariants, and on every initialized
rectangular automaton after a linear-time preprocessing
step. Second, many distributed communication protocols
assume that local clocks have bounded drift. Such protocols
are naturally modeled as initialized rectangular hybrid
automata. For example, HyTech has been applied success-
fully to verify one such protocol used in Philips audio com-
ponents [HW95]. Third, initialized rectangular automata
can be used to conservatively approximate, arbitrarily
closely, hybrid systems with general dynamical laws
[OSY94, PBV96, HHWT98].
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