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Abstract. Weighted automata are classical finite automata in which the transitions carry weights.
7

These weights may model quantitative properties like the amount of resources needed for executing8

a transition or the probability or reliability of its successful execution. Using weighted automata,9

we may also count the number of successful paths labeled by a given word.10

As an introduction into this field, we present selected classical and recent results concentrating11

on the expressive power of weighted automata.12
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1 Introduction27

Classical automata provide acceptance mechanisms for words. The starting point of28

weighted automata is to determine the number of ways a word can be accepted or the29

amount of resources used for this. The behavior of weighted automata thus associates30

a quantity or weight to every word. The goal of this chapter is to study the possible31

behaviors.32

Historically, weighted automata were introduced in the seminal paper by Schützen-33

berger [97]. A close relationship to probabilistic automata was mutually influential in the34

beginning [87, 19, 109]. For the domain of weights and their computations, the algebraic35

structure of semirings proved to be very fruitful. This soon led to a rich mathematical36

theory including applications for purely language theoretic questions as well as practical37

applications in digital image compression and algorithms for natural language processing.38

Excellent treatments of this are provided by the books [43, 96, 109, 72, 10, 94] and the39

surveys in the recent handbook [31].40

In this chapter, we describe the behavior of weighted automata by equivalent for-41

malisms. These include rational expressions and series, algebraic means like linear pre-42

sentations and semimodules, decomposition into simple behaviors, and quantitative log-43

ics. We also touch on decidability questions (including a strengthening of a celebrated44

result by Krob) and languages naturally associated to the behaviors of weighted automata.45

We had to choose from the substantial amount of theory and applications of this topic46

and our choice is biased by our personal interests. We hope to wet the reader’s appetite47

for this exciting field and for consulting the abovementioned books.48

Acknowledgement The authors would like to thank Werner Kuich for valuable sugges-49

tions regarding this chapter and Ingmar Meinecke for some improvements in Section 6.50
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Figure 1. A nondeterministic finite automaton

2 Weighted automata and their behavior51

We start with a simple automaton exemplifying different possible interpretations of its52

behavior. We identify a common feature that will permit us to consider them as instances53

of the unified concept of a weighted automaton. So let Σ = {a, b} and Q = {p1, p2} and54

consider the automaton from Figure 1.55

Example 2.1. Classically (cf. [89]), the language accepted describes the behavior of a56

finite automaton. In our case, this is the language Σ∗bΣ∗.57

Now set in(p1) = out(p2) = true, out(p1) = in(p2) = false, and wt(p, c, q) = true58

if (p, c, q) is a transition of the automaton and false otherwise. Then a word a1a2 . . . an59

is accepted by the automaton if and only if60

∨

q0,q1,...,qn∈Q



in(q0) ∧
∧

16i6n

wt(qi−1, ai, qi) ∧ out(qn)





evaluates to true.61

Example 2.2. For any word w ∈ Σ∗, let f(w) denote the number of accepting paths62

labeled w. In our case, f(w) equals the number of occurrences of the letter b.63

Set in(p1) = out(p2) = 1, out(p1) = in(p2) = 0, and wt(p, c, q) = 1 if (p, c, q) is a64

transition of the automaton and 0 otherwise. Then f(a1 . . . an) equals65

∑

q0,q1,...,qn∈Q



in(q0) ·
∏

16i6n

wt(qi−1, ai, qi) · out(qn)



 . (2.1)

Note that the above two examples would in fact work correspondingly for any finite66

automaton. The following two examples are specific for the particular automaton from67

Fig. 1.68

Example 2.3. Define the functions in and out as in Example 2.2. But this time, set69

wt(p, c, q) = 1 if (p, c, q) is a transition of the automaton and p = p1, wt(p2, c, p2) = 270

for c ∈ Σ, and wt(p, c, q) = 0 otherwise. If we now evaluate the formula (2.1) for a word71

w ∈ Σ∗, we obtain the value of the word w if understood as a binary number where a72

stands for the digit 0 and b for the digit 1.73



4 M. Droste, D. Kuske

Example 2.4. Let the deficit of a word v ∈ Σ∗ be the number |v|b − |v|a where |v|a is74

the number of occurrences of a in v and |v|b is defined analogously. We want to compute75

using the automaton from Fig. 1 the maximal deficit of a prefix of a word w. To this76

aim, set in(p1) = out(p2) = 0 and out(p1) = in(p2) = −∞. Furthermore, we set77

wt(p1, b, pi) = 1 for i = 1, 2, wt(p1, a, p1) = −1, wt(p2, c, p2) = 0 for c ∈ Σ, and78

wt(p, c, q) = −∞ in the remaining cases. Then the maximal deficit of a prefix of the79

word w = a1a2 . . . an ∈ Σ∗bΣ∗ equals80

max
q0,q1,...,qn∈Q



in(q0) +
∑

16i6n

wt(qi−1, ai, qi) + out(qn)



 .

The similarities between the above examples naturally lead to the definition of a81

weighted automaton.82

Definition 2.1. Let S be a set and Σ an alphabet. A weighted automaton over S and Σ is83

a quadruple A = (Q, in,wt, out) where84

• Q is a finite set of states,85

• in, out : Q→ S are weight functions for entering and leaving a state, resp., and86

• wt: Q× Σ×Q→ S is a transition weight function.87

The rôle of S in the examples above is played by {true, false}, N, and Z ∪ {−∞},88

resp., i.e., we reformulated all the examples as weighted automata over some appropriate89

set S.90

Note also the similarity of the description of the behaviors in all the examples above.91

We now introduce semirings that formalize the similarities between the operations ∨, +,92

and max on the one hand, and ∧, ·, and + on the other:93

Definition 2.2. A semiring is a structure (S,+S , ·S , 0S , 1S) such that94

• (S,+S , 0S) is a commutative monoid,95

• (S, ·S , 1S) is a monoid,96

• multiplication distributes over addition from the left and from the right, and97

• 0S ·S s = s ·S 0S = 0S for all s ∈ S.98

If no confusion can occur, we often write S for the semiring (S,+S , ·S , 0S , 1S).99

It is easy to check that the structures B = ({0, 1},∨,∧, 0, 1), (N,+, ·, 0, 1), and (Z ∪100

{−∞},max,+,−∞, 0) are semirings (with 0 = false and 1 = true, B is the semiring101

underlying Example 2.1); many further examples are given in [29] and throughout this102

chapter. The theory of semirings is described in [54]. The notion of a semiring allows103

us to give a common definition of the behavior of weighted automata that subsumes all104

those from our examples and, with the language semiring (P(Γ∗),∪, ·, ∅, {ε}), we even105

capture the important notion of a transducer [8]; here P(Γ∗) denotes the powerset of Γ∗.106

Definition 2.3. Let S be a semiring and A a weighted automaton over S and Σ. A path107

in A is an alternating sequence P = q0a1q1 . . . anqn ∈ Q(ΣQ)∗. Its run weight is the108

product109

rweight(P ) =
∏

06i<n

wt(qi, ai+1, qi+1)
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(for n = 0, this is defined to be 1); the weight of P is then defined by110

weight(P ) = in(q0) · rweight(P ) · out(qn) .

Furthermore, the label of P is the word label(P ) = a1a2 . . . an. Then the behavior of111

the weighted automaton A is the function ||A|| : Σ∗ → S with112

||A||(w) =
∑

P path with
label(P )=w

weight(P ) . (2.2)

Whereas classical automata determine whether a word is accepted or not, weighted113

automata over the natural semiring N allow us to count the number of successful paths114

labeled by a word (cf. Example 2.2). Over the semiring (N ∪ {−∞},max,+,−∞, 0),115

weighted automata can be viewed as determining the maximal amount of resources needed116

for the execution of a given sequence of actions. Thus, weighted automata determine117

quantitative properties.118

Notational convention We write P : p
w
−→A q for “P is a path in the weighted automa-119

ton A from p to q with label w”. From now on, all weighted automata will be over some120

semiring (S,+, ·, 0, 1). We will call functions from Σ∗ into S series. For such a series r,121

it is customary to write (r, w) for r(w). The set of all series from Σ∗ into S will be de-122

noted by S 〈〈Σ∗〉〉. If A is a weighted automaton, then we get in particular ||A|| ∈ S 〈〈Σ∗〉〉123

and in the above definition, we could have written (||A||, w) instead of ||A||(w).124

Definition 2.4. A series r ∈ S 〈〈Σ∗〉〉 is recognizable if it is the behavior of some weighted125

automaton. The set of all recognizable series is denoted by Srec〈〈Σ∗〉〉.126

For a series r ∈ S 〈〈Σ∗〉〉, the support of r is the set supp(r) = {w ∈ Σ∗ | (r, w) 6= 0}.127

Also, for a language L ⊆ Σ∗, we write 1L for the series with (1L, w) = 1S if w ∈ L and128

(1L, w) = 0S otherwise; 1L is called the characteristic series of L. From Example 2.1,129

it should be clear that a series r in B 〈〈Σ∗〉〉 is recognizable if and only if the language130

supp(r) is regular. Later, we will see that many properties of regular languages transfer131

to recognizable series (sometimes with very similar proofs). But first, we want to point132

out some differences.133

Example 2.5. Let S = (P(Σ∗),∪, ·, ∅, {ε}) and consider the series r with (r, wa) =134

{aw} for all words w ∈ Σ∗ and letters a ∈ Σ, and (r, ε) = ∅. Then r ∈ Srec〈〈Σ∗〉〉, but,135

as is easily verified, there is no deterministic transducer whose behavior equals r. Hence136

deterministic weighted automata are in general weaker than general weighted automata,137

i.e., a fundamental property of finite automata (see [89, Prop. 2.3]) does not transfer to138

weighted automata.139

Example 2.6. Let S = (N,+, ·, 0, 1) and a ∈ Σ. We consider the series r with (r, aa) =140

2 and (r, w) = 0 forw 6= aa. Then there are 4 different (deterministic) weighted automata141

with three states and behavior r (and none with only two states). Hence, another funda-142

mental property of finite automata, namely the existence of unique minimal deterministic143

automata, does not transfer.144
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Recall that the existence of a unique minimal deterministic automaton for a regular145

language can be used to decide whether two finite automata accept the same language.146

Above, we saw that this approach cannot be used for weighted automata over the semiring147

(N,+, ·, 0, 1), but, since this semiring embeds into a field, other methods work in this case148

(cf. Section 8). However, there are no universal methods since the equivalence problem149

over the semiring (N ∪ {−∞},max,+,−∞, 0) is undecidable, see Section 8.150

3 Linear presentations151

Let S be a semiring andQ1 andQ2 sets. We will consider a function fromQ1×Q2 into S
as a matrix whose rows and columns are indexed by elements of Q1 and Q2, respectively.

Therefore, we will write Mp,q for M(p, q) where M ∈ SQ1×Q2 , p ∈ Q1, and q ∈ Q2.

For finite setsQ1, Q2, Q3, this allows us to define the sum and the product of two matrices

as usual:

(K +M)p,q = Kp,q +Mp,q (M ·N)p,r =
∑

q∈Q2

Mp,q ·Nq,r

for K,M ∈ SQ1×Q2 , N ∈ SQ2×Q3 , p ∈ Q1, q ∈ Q2, and r ∈ Q3. Since in semirings,152

multiplication distributes over addition from both sides, matrix multiplication is associa-153

tive. For a finite set Q, the unit matrix E ∈ SQ×Q with Ep,q = 1 for p = q and Ep,q = 0154

otherwise is the neutral element of the multiplication of matrices. Hence (SQ×Q, ·, E)155

is a monoid. It is useful to note that the set SQ×Q with the above operations forms a156

semiring.157

Lemma 3.1. Let A = (Q, in,wt, out) be a weighted automaton and define a mapping158

µ : Σ∗ → SQ×Q by159

µ(w)p,q =
∑

P : p
w−→Aq

rweight(P ) . (3.1)

Then µ is a homomorphism from the free monoid Σ∗ to the multiplicative monoid of160

matrices (SQ×Q, ·, E).161

Proof. Let P = p0a1p1 . . . anpn be a path with label uv and let |u| = k. Then P1 =162

p0a1 . . . akpk is a u-labeled path, P2 = pkak+1 . . . anpn is a v-labeled path, and we163

have rweight(P ) = rweight(P1) · rweight(P2). This simple observation, together with164

distributivity in the semiring S, allows us to prove the claim.165

Now let A = (Q, in,wt, out) be a weighted automaton. Define λ ∈ S{1}×Q and166

γ ∈ SQ×{1} by λ1,q = in(q) and γq,1 = out(q). With the homomorphism µ from167

Lemma 3.1, we obtain for any word w ∈ Σ∗ (where we identify a {1} × {1}-matrix with168

its entry):169

(||A||, w) =
∑

p,q∈Q

λ1,p · µ(w)p,q · γq,1 = λ · µ(w) · γ . (3.2)
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Subsequently, we consider λ (as usual) as a row vector and γ as a colum vector and we170

simply write λ, γ ∈ SQ.171

This motivates the following definition.172

Definition 3.1 (Schützenberger [97]). A linear presentation of dimension Q (where Q is173

some finite set) is a triple (λ, µ, γ) such that λ, γ ∈ SQ and µ : (Σ∗, ·, ε) → (SQ×Q, ·, E)174

is a monoid homomorphism. It defines the series r = ||(λ, µ, γ)|| with175

(r, w) = λ · µ(w) · γ (3.3)

for all w ∈ Σ∗.176

Above, we saw that any weighted automaton can be transformed into an equivalent177

linear presentation. Now we describe the converse transformation. So let (λ, µ, γ) be a178

linear presentation of dimension Q. For a ∈ Σ and p, q ∈ Q, set wt(p, a, q) = µ(a)p,q ,179

in(q) = λq , and out(q) = γq, and define A = (Q, in,wt, out). Since the morphism µ is180

uniquely determined by its restriction to Σ, the linear representation associated with A is181

precisely (λ, µ, γ), so by Equation (3.2) we obtain ||A|| = ||(λ, µ, γ)||. Hence we showed182

Theorem 3.2. Let S be a semiring, Σ an alphabet, and r ∈ S 〈〈Σ∗〉〉. Then r is recogniz-183

able if and only if there exists a linear presentation (λ, µ, γ) with r = ||(λ, µ, γ)||.184

This theorem explains why some authors (e.g. [76]) use linear presentations to define185

recognizable series or even weighted automata.186

4 The Kleene-Schützenberger theorem187

The goal of this section is to derive a generalization of Kleene’s classical result on the co-188

incidence of rational and regular languages in the realm of series over semirings. There-189

fore, first we introduce operations in S 〈〈Σ∗〉〉 that correspond to the language-theoretic190

operations union, intersection, concatenation, and Kleene iteration (cf. [89]).191

Let r1 and r2 be series. Pointwise addition is defined by192

(r1 + r2, w) = (r1, w) + (r2, w) .

Clearly, this operation is associative and has the constant series with value 0 as neutral193

element. Furthermore, it generalizes the union of languages since, in the Boolean semi-194

ring B, we have supp(r1 + r2) = supp(r1) ∪ supp(r2) and 1K∪L = 1K +1L.195

Any family of languages has a union, so one is tempted to also define the sum of196

arbitrary sets of series. But this fails in general since it would require the sum of infinitely197

many elements of the semiring S (which, e.g. in (N,+, ·, 0, 1), does not exist). But certain198

families can be summed: a family (ri)i∈I of series is locally finite if, for any word w ∈199

Σ∗, there are only finitely many i ∈ I with (ri, w) 6= 0. For such families, we can define200

(

∑

i∈I

ri, w

)

=
∑

i∈I with
(ri,w) 6=0

(ri, w) .
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Let r1, r2 ∈ S 〈〈Σ∗〉〉. Pointwise multiplication is defined by201

(r1 ⊙ r2, w) = (r1, w) · (r2, w) .

This operation is called Hadamard product, is clearly associative, has the constant se-202

ries with value 1 as neutral element, and distributes over addition. If S is the Boolean203

semiring B, then the Hadamard product corresponds to intersection:204

supp(r1 ⊙ r2) = supp(r1) ∩ supp(r2) and 1K ⊙1L = 1K∩L

Other simple and natural operations are the left and right scalar multiplication that are205

defined by206

(s · r, w) = s · (r, w) and (r · s, w) = (r, w) · s

for s ∈ S and r ∈ S 〈〈Σ∗〉〉. If S is the Boolean semiring B, then s ∈ {0, 1} and we have207

1 · r = r as well as (0 · r, w) = 0 for all words w and series r.208

The counterpart of singleton languages in the realm of series are monomials: a mono-209

mial is a series r with |supp(r)| 6 1. With w ∈ Σ∗ and s ∈ S, we will write sw for the210

monomial r with (r, w) = s. Let r be an arbitrary series. Then the family of monomials211

((r, w)w)w∈Σ∗ is locally finite and can therefore be summed. Then one obtains212

r =
∑

w∈Σ∗

(r, w)w =
∑

w∈supp(r)

(r, w)w .

If the support of r is finite, then the second sum has only finitely many summands which213

is the reason to call r a polynomial in this case; the set of polynomials is denoted S 〈Σ∗〉,214

so S 〈Σ∗〉 ⊆ S 〈〈Σ∗〉〉. The similarity with polynomials makes it natural to define another215

product of the series r1 and r2 by216

(r1 · r2, w) =
∑

w=uv

(r1, u) · (r2, v) .

Since the word w has only finitely many factorizations into u and v, the right-hand side217

has only finitely many summands and is therefore well-defined. This important product218

is called Cauchy-product of the series r1 and r2. If r1 and r2 are polynomials, then r1 · r2219

is precisely the usual product of polynomials. For the Boolean semiring, we get220

supp(r1 · r2) = supp(r1) · supp(r2) and 1K ·1L = 1K·L ,

i.e., the Cauchy-product is the counterpart of concatenation of languages. For any semi-221

ring S, the monomial 1ε is the neutral element of the Cauchy-product. It requires a short222

calculation to show that the Cauchy-product is associative and distributes over the addi-223

tion of series. As a very useful consequence, (S 〈〈Σ∗〉〉,+, ·, 0, 1ε) is a semiring (note that224

the set of polynomials S 〈Σ∗〉 forms a subsemiring of this semiring). For the Boolean225

semiring B, this semiring is isomorphic to (P(Σ∗),∪, ·, ∅, {ε}), an isomorphism is given226

by r 7→ supp(r) with inverse L 7→ 1L.227

In the theory of recognizable languages, the Kleene-iteration L∗ of a language L is of228

central importance. It is defined as the union of all the powers Ln of L (for n > 0). To229

also define the iteration r∗ of a series, one would therefore try to sum all finite powers rn230

(defined by r0 = 1ε and rn+1 = rn · r). In general, the family (rn)n>0 is not locally231

finite, so it cannot be summed. We therefore define the iteration r∗ only for r proper: a232
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series r is proper if (r, ε) = 0. Then, for n > |w|, one has (rn, w) = 0, so the family233

(rn)n>0 is locally finite and we can set234

r∗ =
∑

n>0

rn or equivalently (r∗, w) =
∑

06n6|w|

(rn, w) .

For the Boolean semiring and L ⊆ Σ+, we get235

supp(r∗) = (supp(r))∗ and (1L)
∗ = 1L∗ .

Recall from [89, Sect. 2.1] that a language is rational if it can be constructed from the finite236

languages by union, concatenation, and Kleene-iteration. Here, we give the analogous237

definition for series:238

Definition 4.1. A series from S 〈〈Σ∗〉〉 is rational if it can be constructed from the mono-239

mials sa for s ∈ S and a ∈ Σ ∪ {ε} by addition, Cauchy-product, and iteration (applied240

to proper series, only). The set of all rational series is denoted by Srat〈〈Σ∗〉〉.241

Observe that the class of rational series is closed under scalar multiplication since sε242

is a monomial, s · r = sε · r and r · s = r · sε for r ∈ S 〈〈Σ∗〉〉 and s ∈ S.243

Example 4.1. Consider the Boolean semiring B and r ∈ B 〈〈Σ∗〉〉. If r is a rational series,244

then the above formulas show that supp(r) is a rational language since supp commutes245

with the rational operations +, ·, and ∗ for series and ∪, ·, and ∗ for languages. Now246

suppose that, conversely, supp(r) is a rational lanuage. To show that also r is a ratio-247

nal series, one needs that any rational language can be constructed in such a way that248

Kleene-iteration is only applied to languages in Σ+. Having ensured this, the remaining249

calculations are again straightforward. Thus, indeed, our notion of rational series is the250

counterpart of the notion of a rational language.251

Hence, rational languages are precisely the supports of series in B
rat〈〈Σ∗〉〉 and recog-252

nizable languages are the supports of series in B
rec〈〈Σ∗〉〉 (cf. Example 2.1). Now Kleene’s253

theorem [89, Theorem 4.11] implies Brec〈〈Σ∗〉〉 = B
rat〈〈Σ∗〉〉. It is the aim of this section254

to prove this equality for arbitrary semirings. This is achieved by first showing that every255

rational series is recognizable. The other inclusion will be shown in Section 4.2.256

4.1 Rational series are recognizable257

For this implication, we generalize the techniques from [89, Section 3.1-3.3] from classi-258

cal to weighted automata and prove that the set of recognizable series contains the mono-259

mials sa and sε and is closed under the necessary operations. To show this closure, we260

have two possibilities (a third one is sketched after the proof of Theorem 5.1): either the261

purely automata-theoretic approach that constructs weighted automata, or the more alge-262

braic approach that handles linear presentations. We chose to give the automata construc-263

tions for monomials and addition, and the linear presentations for the Cauchy-product and264

the iteration. The reader might decide which approach she prefers and translate some of265

the constructions from one to the other.266
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There is a weighted automaton with just one state q and behavior the monomial sε:267

just set in(q) = s, out(q) = 1 and wt(q, a, q) = 0 for all a ∈ Σ. For any a ∈ Σ, there268

is a two-states weighted automaton with the monomial sa as behavior. If A1 and A2 are269

two weighted automata, then the behavior of their disjoint union equals ||A1||+ ||A2||.270

We next show that also the Cauchy-product of two recognizable series is recognizable:271

Lemma 4.1. If r1 and r2 are recognizable series, then so is r1 · r2.272

Proof. By Theorem 3.2, the series ri has a linear presentation (λi, µi, γi) of dimensionQi

with Q1 ∩ Q2 = ∅. We define a row vector λ and a column vector γ of dimension

Q = Q1 ∪Q2 as well as a matrix µ(w) for w ∈ Σ∗ of dimension Q×Q:

λ =
(

λ1 0
)

µ(w) =





µ1(w)
∑

w=uv,v 6=ε

µ1(u)γ1λ2µ2(v)

0 µ2(w)



 γ =





γ1λ2γ2

γ2





The reader is invited to check that µ is actually a monoid homomorphism from (Σ∗, ·, ε)
into (SQ×Q, ·, E), i.e., that (λ, µ, γ) is a linear presentation. One then gets

λ · µ(w) · γ = λ1 µ1(w) γ1λ2γ2 + λ1
∑

w=uv
v 6=ε

µ1(u)γ1λ2µ2(v) γ2

= (r1, w) · (r2, ε) +
∑

w=uv
v 6=ε

(r1, u)(r2, v)

= (r1 · r2, w) .

By Theorem 3.2, the series ||(λ, µ, γ)|| = r1 · r2 is recognizable.273

Lemma 4.2. Let r be a proper and recognizable series. Then r∗ is recognizable.274

Proof. There exists a linear presentation (λ, µ, γ) of dimension Q with r = ||(λ, µ, γ)||.275

Consider the homomorphism µ′ : (Σ∗, ·, ε) → (SQ×Q, ·, E) defined, for a ∈ Σ, by276

µ′(a) = µ(a) + γ λµ(a) .

Let w = a1a2 . . . an ∈ Σ+. Using distributivity of matrix multiplication or, alterna-

tively, induction on n, it follows

µ′(w) =
∏

16i6n

(µ(ai) + γ λµ(ai))

=
∑

w=w1...wk

wi∈Σ+



(µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 .
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Note that λ γ = λµ(ε) γ = (r, ε) = 0. Hence we obtain

λµ′(w) γ =
∑

w=w1...wk

wi∈Σ+



λ (µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 γ

=
∑

w=w1...wk

wi∈Σ+

∏

16j6k

λµ(wj) γ

= (r∗, w)

as well as λµ′(ε) γ = 0. Hence r∗ = ||(λ, µ′, γ)||+ 1ε is recognizable.277

Recall that the Hadamard-product generalizes the intersection of languages and that278

the intersection of regular languages is regular. The following result extends this latter279

fact to the weighted setting (since the Boolean semiring is commutative). We say that two280

subsets S1, S2 ⊆ S commute, if s1 · s2 = s2 · s1 for all s1 ∈ S1, s2 ∈ S2.281

Lemma 4.3. Let S1 and S2 be two subsemirings of the semiring S such that S1 and S2282

commute. If r1 ∈ Srec
1 〈〈Σ∗〉〉 and r2 ∈ Srec

2 〈〈Σ∗〉〉, then r1 ⊙ r2 ∈ Srec〈〈Σ∗〉〉.283

Proof. For i = 1, 2, let Ai = (Qi, ini,wti, outi) be weighted automata over Si with

||Ai|| = ri. We define the product automaton A with states Q1 ×Q2 as follows:

in(p1, p2) = in1(p1) · in2(p2)

wt((p1, p2), a, (q1, q2)) = wt1(p1, a, q1) · wt2(p2, a, q2)

out(p1, p2) = out1(p1) · out2(p2)

Then, (||A||, w) = (||A1|| ⊙ ||A2||, w) follows for all words w. For example, for a letter

a ∈ Σ we calculate as follows using the commutativity assumption and distributivity:

(||A||, a) =
∑

(p1,p2),(q1,q2)∈Q

(

(in1(p1) · in2(p2)) · (wt1(p1, a, q1) · wt2(p2, a, q2))
· (out1(q1) · out2(q2))

)

=
∑

(p1,p2),(q1,q2)∈Q

(

in1(p1) · wt1(p1, a, q1) · out1(q1)
· in2(p2) · wt2(p2, a, q2) · out2(q2)

)

=





∑

p1,q1∈Q1

in1(p1) · wt1(p1, a, q1) · out1(q1)





·





∑

p2,q2∈Q2

in2(p2) · wt2(p2, a, q2) · out2(q2)





= (||A1||, a) · (||A2||, a) = (||A1|| ⊙ ||A2||, a)

284

We remark that the above lemma does not hold without the commutativity assumption:285
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Example 4.2. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and consider the recognizable286

series r given by (r, w) = {w} for w ∈ Σ∗. Then (r ⊙ r, w) = {ww} and pumping287

arguments show that r ⊙ r is not recognizable.288

Note that the Hadamard product r ⊙ 1L can be understood as the “restriction” of289

r : Σ∗ → S to L ⊆ Σ∗. As a consequence of Lemma 4.3, we obtain that these “restric-290

tions” of recognizable series to regular languages are again recognizable.291

Corollary 4.4. Let r ∈ S 〈〈Σ∗〉〉 be recognizable and let L ⊆ Σ∗ be a regular language.292

Then r ⊙ 1L is recognizable.293

Proof. Let A be a deterministic automaton accepting L with set of states Q. Then weight294

by 1 those triples (p, a, q) ∈ Q × Σ × Q that are transitions, the initial resp. final states295

with initial resp. final weight by 1, and all other triples resp. states with 0. This gives a296

weighted automaton with behavior 1L. Since S commutes with its subsemiring generated297

by 1, Lemma 4.3 implies the result.298

4.2 Recognizable series are rational299

For this implication, we will transform a weighted automaton into a system of equations300

and then show that any solution of such a system is rational. This generalizes the tech-301

niques from [89, Section 4.3]. The following lemma (that generalizes [89, Prop. 4.6] will302

be helpful and is also of independent interest (cf. [29, Section 5]).303

Lemma 4.5. Let r, r′, s ∈ S 〈〈Σ∗〉〉 with r proper and s = r · s+ r′. Then s = r∗r′.304

Proof. Let w ∈ Σ∗. First observe that

s = rs+ r′

= r(rs+ r′) + r′ = r2s+ rr′ + r′

...

= r|w|+1s+
∑

06i6|w|

rir′ .

Since r is proper, we have (ri, u) = 0 for all u ∈ Σ∗ and i > |u|. This implies

(r∗r′, w) =
∑

w=uv

(r∗, u) · (r′, v) =
∑

w=uv





∑

06i6|w|

(ri, u)



 · (r′, v) =
∑

06i6|w|

(rir′, w)

= (s, w) .

Now let A = (Q, in,wt, out) be a weighted automaton. For p ∈ Q, define a new

weighted automaton Ap = (Q, inp,wt, out) by inp(p
′) = 1 for p = p′ and inp(p

′) = 0



Weighted automata 13

otherwise. Since all the entry weights of these weighted automata are 0 or 1, we have

||A|| =
∑

(p,a,q)∈Q×Σ×Q

in(p)wt(p, a, q)a · ||Aq||+
∑

p∈Q

in(p)out(p)ε

and for all p ∈ Q

||Ap|| =
∑

(p,a,q)∈Q×Σ×Q

wt(p, a, q)a · ||Aq||+ out(p)ε .

This transformation proves305

Lemma 4.6. Let r be a recognizable series. Then there are rational series rij , ri ∈306

S 〈〈Σ∗〉〉 with rij proper and a solution (s1, . . . , sn) with s1 = r of a system of equations307



Xi =
∑

16j6n

rijXj + ri





16i6n

. (4.1)

A series s is rational over the series {s1, . . . , sn} if it can be constructed from the308

monomials and the series s1, . . . , sn by addition, Cauchy-product, and iteration (applied309

to proper series, only).310

We prove by induction on n that any solution of a system of the form (4.1) consists of311

rational series. For n = 1, the system is a single equation of the form X1 = r11X1 + r1312

with r11, r1 ∈ Srat〈〈Σ∗〉〉 and r11 proper. Hence, by Lemma 4.5, the solution s1 equals313

r∗11r1 and is therefore rational. Now assume that any system with n − 1 unknowns has314

only rational solutions and consider a solution (s1, . . . , sn) of (4.1). Then we have315

sn = rnnsn +
∑

16j<n

rnjsj + rn

and therefore by Lemma 4.5316

sn = r∗nn ·





∑

16j<n

rnjsj + rn



 .

In particular, sn is rational over {s1, s2, . . . , sn−1} since rnj and rn are all rational. Since317

(s1, . . . , sn) is a solution of the system (4.1), we obtain318

si =
∑

16j<n

(rij + rinr
∗
nnrnj)sj + rinr

∗
nnrn + ri

for all 1 6 i < n. Since rij and rin are proper and rational, so is rij + rinr
∗
nnrnj . Hence319

(s1, . . . , sn−1) is a solution of a system of equations of the form (4.1) with n−1 unknowns320

implying by the induction hypothesis that the series s1, . . . , sn−1 are all rational. Since321

sn is rational over s1, . . . , sn−1, it is therefore rational, too. This completes the inductive322

proof of the following lemma.323

Lemma 4.7. Let rij , ri ∈ Srat〈〈Σ∗〉〉 with rij proper and let (s1, . . . , sn) be a solution of324

the system of equations (4.1). Then all the series s1, . . . , sn are rational.325
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From Lemmas 4.6 and 4.7, we obtain that any recognizable series is rational. Together326

with Lemmas 4.1, 4.2, and the arguments from the beginning of Section 4.1, we obtain327

Theorem 4.8 (Schützenberger [97]). Let S be a semiring, Σ an alphabet, and r ∈328

S 〈〈Σ∗〉〉. Then r is recognizable if and only if it is rational, i.e., Srec〈〈Σ∗〉〉 = Srat〈〈Σ∗〉〉.329

5 Semimodules330

If, in the definition of a vector space, one replaces the underlying field by a semiring,

one obtains a semimodule. More formally, let S be a semiring. An S-semimodule is a

commutative monoid (M,+, 0M ) together with a left scalar multiplication S ×M →M
satisfying all the usual laws (with s, s′ ∈ S and r, r′ ∈M ):

(s+ s′) r = s r + s′ r (s · s′) r = s (s′ r)

s (r + r′) = s r + s r′ 1 r = r

0 r = 0M s 0M = 0M

In our context, the most interesting example is the S-semimodule S 〈〈Σ∗〉〉 of series331

over Σ. The additive structure of the semimodule is pointwise addition and the left scalar332

multiplication is as defined before.333

A subsemimodule of the S-semimodule (M,+, 0M ) is a set N ⊆ M that is closed334

under addition and left scalar multiplication. A set X ⊆ M generates the subsemimod-335

uleN = 〈X〉 ifN is the least subsemimodule containingX . Equivalently, all elements of336

N can be written as linear combinations of elements from X . The subsemimodule N is337

finitely generated if it is generated by a finite set. A simple example of a subsemimodule338

of S 〈〈Σ∗〉〉 is the set of polynomials S 〈Σ∗〉, i.e. of series with finite support. But this339

subsemimodule is not finitely generated. The set of constant series is a finitely generated340

subsemimodule.341

The following is specific for the semimodule of series. For r ∈ S 〈〈Σ∗〉〉 and u ∈ Σ∗,342

the series u−1r is defined by343

(u−1r, w) = (r, uw)

for all w ∈ Σ∗. A subsemimodule N of S 〈〈Σ∗〉〉 is stable if r ∈ N implies u−1r ∈ N for344

all u ∈ Σ∗.345

Theorem 5.1 (Fliess [51] and Jacob [61]). Let S be a semiring, Σ an alphabet, and346

r ∈ S 〈〈Σ∗〉〉. Then r is recognizable if and only if there exists a finitely generated and347

stable subsemimodule N of S 〈〈Σ∗〉〉 with r ∈ N .348

For the boolean semiring B, any finitely generated subsemimodule of B 〈〈Σ∗〉〉 is finite.349

Therefore the above equivalence extends the well-known result that a language is regular350

if and only if it has finitely many left-quotients (cf. [89, Prop. 3.10]).351

Proof. First, let A = (Q, in,wt, out) be a weighted automaton with r = ||A||. For352

q ∈ Q, define inq : Q → S by inq(q) = 1 and inq(p) = 0 for p 6= q, and let Aq =353



Weighted automata 15

(Q, inq,wt, out). Let N be the subsemimodule generated by {||Aq|| | q ∈ Q}. Since354

r = ||A|| =
∑

q∈Q in(q)||Aq||, we get r ∈ N . Note that, for a ∈ Σ and p ∈ Q, we have355

a−1||Ap|| =
∑

q∈Q

wt(p, a, q)||Aq||

which allows us to prove by simple calculations that N is stable.356

Conversely, let N be finitely generated by {r1, . . . , rn} and stable and let r ∈ N .

For all a ∈ Σ and 1 6 i 6 n, we have a−1ri =
∑

16j6n sijrj with suitable sij ∈ S.

Then there exists a unique morphism µ : Σ∗ → Sn×n with µ(a)ij = sij for a ∈ Σ. By

induction on the length of w ∈ Σ∗, we can show that w−1ri =
∑

16j6n µ(w)ijrj . Hence

(ri, w) = (w−1ri, ε) =
∑

16j6n

µ(w)ij(rj , ε) .

Since r ∈ N , we have r =
∑

16i6n λiri for some λi ∈ S. With γj = (rj , ε), we obtain357

(r, w) =
∑

16i,j6n

λi · µ(w)ij · γj = λ · µ(w) · γ

showing that (λ, µ, γ) is a linear presentation of r. Hence r is recognizable by Theo-358

rem 3.2.359

Inductively, one can show that every rational series belongs to a finitely generated and360

stable subsemimodule, cf. [10]. Together with the theorem above, this is an alternative361

proof of the fact that every rational series is recognizable (cf. Theorem 4.8).362

6 Nivat’s theorem363

Nivat’s theorem [85] (cf. [57, Theorem 3.5]) provides an insight into the concatenation of364

mappings and, as we will see, recognizability of certain simple series. More precisely, it365

asserts that every proper recognizable series r ∈ S 〈〈Σ∗〉〉 can be decomposed into three366

particular series, namely an inverse monoid homomorphism h−1 : Σ∗ → P(Γ∗) with367

h : Γ∗ → Σ∗, a recognizable “selection series” sel : Γ∗ → P(Γ∗) satisfying (sel, v) ⊆368

{v}, and a homomorphism c : (Γ∗, ·, ε) → (S, ·, 1). Conversely, assuming h(a) 6= ε for369

all a ∈ Γ, the composition of h−1, sel, and c is recognizable.370

A mapping sel : Γ∗ → P(Γ∗) is a selection series if (sel, v) ⊆ {v} for all v ∈ Γ∗.371

Let fin(Γ∗) denote the set of all finite subsets of Γ∗. Then (fin(Γ∗),∪, ·, ∅, {ε}) is a372

(computable) subsemiring of P(Γ∗). For brevity, this subsemiring is denoted by fin(Γ∗).373

Lemma 6.1. (1) A selection series sel ∈ fin(Γ∗) 〈〈Γ∗〉〉 is recognizable if and only if374

its support K = {v ∈ Γ∗ | v ∈ (sel, v)} is regular.375

(2) If c : (Γ∗, ·, ε) → (S, ·, 1) is a monoid homomorphism, then c is a recognizable376

series in S 〈〈Γ∗〉〉.377

Proof. (1) We first prove the implication “⇐”. So let K be regular. Then, in an arbi-378

trary finite automaton accepting K, weight any a-labeled transition with {a} (for379
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a ∈ Γ), and weight the initial and final states by {ε}. This gives a weighted au-380

tomaton with behavior sel.381

The other direction follows from Proposition 9.5 below since K = supp(sel).382

(2) This series is the behavior of a weighted automaton with just one state.383

By [89, Prop. 2.1 and 3.9] morphisms and inverse morphisms preserve the regularity384

of languages. Next we show the analogous fact for series which is also of independent385

interest.386

Lemma 6.2. Let r ∈ S 〈〈Γ∗〉〉 be recognizable.387

(1) If h : Σ∗ → Γ∗ is a homomorphism, then the series r◦h ∈ S 〈〈Σ∗〉〉 with (r◦h,w) =388

(r, h(w)) is recognizable.389

(2) If h : Γ∗ → Σ∗ is a homomorphism with h(a) 6= ε for all a ∈ Γ, then the series390

r ◦ h−1 ∈ S 〈〈Σ∗〉〉 with (r ◦ h−1, w) =
∑

v∈h−1(w)(r, v) is recognizable.391

Note that h(a) 6= ε in the second statement implies |h(v)| > |v|. Hence, for any392

w ∈ Σ∗, there are only finitely many words v with h(v) = w. Hence the series is well-393

defined.394

Proof. (1) If (λ, µ, γ) is a representation of r, then µ◦h is a morphism and (λ, µ◦h, γ)395

represents r ◦ h, as is easy to check.396

(2) By Theorem 4.8, r is rational, and an inductive proof shows that r ◦h−1 is rational,397

too. Hence it is recognizable by Theorem 4.8, again.398

Next, if c : Γ∗ → S is a mapping and sel : Γ∗ → fin(Γ∗) is a selection series, then we399

define the series c ◦ sel : Γ∗ → S by400

(c ◦ sel, v) =

{

c(v) if (sel, v) = {v}

0 otherwise.

Theorem 6.3 (cf. Nivat [85]). Let S be a semiring, Σ an alphabet, and r ∈ S 〈〈Σ∗〉〉401

with (r, ε) = 0. Then r is recognizable if and only if there exist an alphabet Γ, a402

homomorphism h : Γ∗ → Σ∗ with h(a) 6= ε for all a ∈ Γ, a recognizable selection403

series sel ∈ fin(Γ∗) 〈〈Γ∗〉〉, and a homomorphism c : (Γ∗, ·, ε) → (S, ·, 1) such that404

r = c ◦ sel ◦ h−1.405

Proof. We first prove the implication “⇐”. Let K = supp(sel). By Lemma 6.1(1), K is406

regular. Note that c ◦ sel = c ⊙ 1K . Hence c ◦ sel is recognizable by Lemma 6.1(2) and407

Corollary 4.4. Therefore, c ◦ sel ◦ h−1 is recognizable by Lemma 6.2(2).408
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Conversely, let A = (Q, in,wt, out) be a weighted automaton with r = ||A||. Set

Γ = (Q ⊎Q× {1})× Σ× (Q ⊎Q× {2}) ,

h(p′, a, q′) = a , and

c(p′, a, q′) =































wt(p′, a, q′) if p′, q′ ∈ Q

in(p) · wt(p, a, q′) if p′ = (p, 1), q′ ∈ Q

wt(p′, a, q) · out(q) if p′ ∈ Q, q′ = (q, 2)

in(p) · wt(p, a, q) · out(q) if p′ = (p, 1), q′ = (q, 2)

0 otherwise

for (p′, a, q′) ∈ Γ. Furthermore, let K be the set of words409

((p0, 1), a1, p1)(p1, a2, p2) . . . (pn−1, an, (pn, 2))

with pi ∈ Q for all 0 6 i 6 n. ThenK is regular and corresponds to the set of paths in A.410

This allows us to prove (r, w) = (||A||, w) =
∑

v∈h−1(w)∩K c(v), i.e., r = c◦selK ◦h−1
411

with selK(v) = {v} ∩K. But selK is recognizable by Lemma 6.1(1).412

A recent extension of Theorem 6.3 to weighted timed automata was given in [36].413

7 Weighted monadic second order logic414

Fundamental results by Büchi, by Elgot and by Trakhtenbrot [18, 44, 104] state that a415

language is regular if and only if it is definable in monadic second order (MSO) logic416

(see also [103, 63, 75]). Here, we wish to extend this result to a quantitative setting and417

thereby obtain a further characterization of the recognizability of a series r : Σ∗ → S,418

using a weighted version of monadic second order logic. We follow [26, 28].419

We will enrich MSO-logic by permitting all elements of S as atomic formulas. The420

semantics of a sentence from the weighted MSO-logic will be a series in S 〈〈Σ∗〉〉. In421

general, this weighted MSO-logic is more expressive than weighted automata. But a422

suitable, syntactically defined restriction of the logic, which contains classical MSO-logic,423

has the same expressive power as weighted automata.424

For the convenience of the reader we will recall basic background of classical MSO-425

logic, cf. [103, 63]. Let Σ be an alphabet. The syntax of formulas of MSO(Σ), the426

monadic second order logic over Σ, is usually given by the grammar427

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables, and X is a set variable. We let Free(ϕ) denote428

the set of all free variables of ϕ.429

As usual, a word w = a1 . . . an ∈ Σ∗ is represented by the relational structure430

(dom(w),6, (Ra)a∈Σ) where dom(w) = {1, . . . , n}, 6 is the usual order on dom(w)431

and Ra = {i ∈ dom(w) | ai = a} for a ∈ Σ.432

Let V be a finite set of first-order or second-order variables. A (V, w)-assignment433

σ is a function mapping first-order variables in V to elements of dom(w) and second-434
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order variables in V to subsets of dom(w). For a first-order variable x and i ∈ dom(w),435

σ[x 7→ i] denotes the (V ∪ {x}, w)-assignment which maps x to i and coincides with σ436

otherwise. Similarly, σ[X 7→ I] is defined for I ⊆ dom(w). For ϕ ∈ MSO(Σ) with437

Free(ϕ) ⊆ V , the satisfaction relation (w, σ) |= ϕ is defined as usual.438

Subsequently, we will encode a pair (w, σ) as above as a word over the extended439

alphabet ΣV = Σ × {0, 1}V (with Σ∅ = Σ). We write a word (a1, σ1) . . . (an, σn) over440

ΣV as (w, σ) where w = a1 . . . an and σ = σ1 . . . σn. We call (w, σ) valid, if it is empty441

or if for each first order variable x ∈ V , there is a unique position i with σi(x) = 1. In442

this case, we identify σ with the (V, w)-assignment that maps each first order variable x443

to the unique position i with σi(x) = 1 and each set variable X to the set of positions i444

with σi(X) = 1. Clearly the language445

NV = {(w, σ) ∈ Σ∗
V | (w, σ) is valid}

is recognizable (here and later we write Σ∗
V for (ΣV)

∗). If Free(ϕ) ⊆ V , we let446

LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ}.

We simply write Σϕ = ΣFree(ϕ), Nϕ = NFree(ϕ), and L(ϕ) = LFree(ϕ)(ϕ).447

By the Büchi-Elgot-Trakhtenbrot theorem [18, 44, 104], a language L ⊆ Σ∗ is regular448

if and only if it is definable by some MSO-sentence. In the proof of the implication ⇒,449

given an automaton, one constructs directly an MSO-sentence that defines the language450

of the automaton. For the other implication, one uses the closure properties of the class of451

regular languages (cf. [89]) and shows inductively the stronger fact that LV(ϕ) is regular452

for each formula ϕ (where Free(ϕ) ⊆ V). Our goal is to proceed similarly in the present453

weighted setting.454

We start by defining the syntax of our weighted MSO-logic as in [26, 28] but we455

include arbitrary negation here.456

Definition 7.1. The syntax of formulas of the weighted MSO-logic over S and Σ is given

by the grammar

ϕ ::= s | Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

| ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

where s ∈ S and a ∈ Σ. We let MSO(S,Σ) be the collection of all such weighted457

MSO-formulas ϕ.458

Next we define the V-semantics of formulas ϕ ∈ MSO(S,Σ) as a series [[ϕ]]V : Σ∗
V →459

S.460

Definition 7.2. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables with Free(ϕ) ⊆ V .461

The V-semantics of ϕ is the series [[ϕ]]V ∈ S 〈〈Σ∗
V〉〉 defined as follows. Let (w, σ) ∈ Σ∗

V .462

If (w, σ) is not valid, we put [[ϕ]]V(w, σ) = 0. If (w, σ) with w = a1 . . . an is valid, we463

define [[ϕ]]V(w, σ) ∈ S inductively as in Table 1. Note that the product
∏

i∈dom(w) is464

calculated following the natural order of the positions in w. For the product
∏

X⊆dom(w),465

we use the lexicographic order on the powerset of dom(w).466

For brevity, we write [[ϕ]] for [[ϕ]]Free(ϕ). Note that if ϕ is a sentence, i.e. Free(ϕ) = ∅,467

then [[ϕ]] ∈ S 〈〈Σ∗〉〉.468
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Table 1. MSO(S,Σ) semantics

ϕ [[ϕ]]V(w, σ)

s s

Pa(x)

{

1 if aσ(x) = a

0 otherwise

x 6 y

{

1 if σ(x) 6 σ(y)

0 otherwise

x ∈ X

{

1 if σ(x) ∈ σ(X)

0 otherwise

¬ψ

{

1 if [[ψ]]V(w, σ) = 0

0 otherwise

ϕ [[ϕ]]V(w, σ)

ψ ∨ ̺ [[ψ]]V(w, σ) + [[̺]]V(w, σ)

ψ ∧ ̺ [[ψ]]V(w, σ) · [[̺]]V(w, σ)

∃x.ψ
∑

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∀x.ψ
∏

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∃X.ψ
∑

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

∀X.ψ
∏

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

Similar definitions of the semantics occur in multivalued logic, cf. [56, 55]. In par-469

ticular, a similar definition of the semantics of negated formulas is also used for Gödel470

logics. We give several examples of possible interpretations of weighted formulas:471

(1) Let S be an arbitrary bounded distributive lattice (S,∨,∧, 0, 1) with smallest el-472

ement 0 and largest element 1. In this case, sums correspond to suprema, and473

products to infima. For instance, we have [[ϕ ∨ ψ]] = [[ϕ]] ∨ [[ψ]] for sentences ϕ,ψ.474

Thus our logic may be interpreted as a multi-valued logic. In particular, if S = B,475

the 2-valued Boolean algebra, our semantics coincides with the usual semantics of476

unweighted MSO-formulas, identifying characteristic series with their supports.477

(2) The formula ∃x.Pa(x) counts how often a occurs in the word. Here, how often478

depends on the semiring: e.g., natural numbers, Boolean semiring, integers modulo479

2, . . . .480

(3) Let S = (N,+, ·, 0, 1) and assume ϕ does not contain constants s ∈ N and negation481

is applied only to atomic formulas Pa(x), x 6 y, or x ∈ X . Then [[ϕ]](w, σ) gives482

the number of “arguments” a machine could present to show that (w, σ) |= ϕ.483

Indeed, the machine could proceed inductively over the structure of ϕ. For the484

atomic subformulas and their negations, the number should be 1 or 0 depending on485

whether the formula holds or not. Now, if [[ϕ]](w, σ) = m and [[ψ]](w, σ) = n, the486

number for [[ϕ ∨ ψ]](w, σ) should be m+ n (since any reason for ϕ or ψ suffices),487

and for [[ϕ ∧ ψ]](w, σ) it should be m · n (since the machine could pair the reasons488

for ϕ resp. ψ arbitrarily). Similarly, the machine could deal with existential and489

universal quantifications.490

(4) The semiring S = (N ∪ {−∞},max,+,−∞, 0) is often used for settings with491
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costs or rewards as weights. For the semantics of formulas, a choice like in a492

disjunction or existential quantification is resolved by maximum. Conjunction is493

resolved by a sum of the costs, and ∀x.ϕ can be interpreted by the sum of the costs494

of all positions x.495

(5) Consider the reliability semiring S = ([0, 1],max, ·, 0, 1) and Σ = {a1, . . . , an}.496

Assume that every letter ai has a reliability pi ∈ [0, 1]. Let ϕ = ∀x.
∨n

i=1(Pai
(x)∧497

pi). Then ([[ϕ]], w) can be considered as the reliability of the word w ∈ Σ∗.498

(6) PCTL is a well-studied probabilistic extension of computational tree logic CTL499

that is applied in verification. As shown recently in [11], PCTL can be considered500

as a fragment of weighted MSO logic.501

The following basic consistency property of the semantics definition can be shown by502

induction over the structure of the formula using also Lemma 6.2.503

Proposition 7.1. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables with Free(ϕ) ⊆504

V . Then505

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each valid (w, σ) ∈ Σ∗
V . Also, the series [[ϕ]] is recognizable iff [[ϕ]]V is recognizable.506

Our goal is to compare the expressive power of suitable fragments of MSO(S,Σ)507

with weighted automata. Crucial for this will be closure properties of recognizable series508

under the constructs of our weighted logic. In general, neither negation, conjunction, nor509

universal quantification preserves recognizability.510

Example 7.1. Let S = (Z,+, ·, 0, 1) be the ring of integers and consider the sentence511

ϕ = ∃x.Pa(x) ∨ ((−1) ∧ ∃x.Pb(x)) .

Then ([[ϕ]], w) is the difference of the numbers of occurrences of a and b inw and therefore512

[[ϕ]] is recognizable. Note that ([[¬ϕ]], w) = 1 if and only if these numbers are equal,513

so [[¬ϕ]] = 1L for a non-regular language L. Therefore [[¬ϕ]] is not recognizable (see514

Theorem 9.2 below).515

Example 7.2. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and ϕ = ∀x.
(

(Pa(x) ∧ {a}) ∨516

(Pb(x) ∧ {b})
)

. With r the series from Example 4.2, [[ϕ]] = r which is recognizable. On517

the other hand, [[ϕ ∧ ϕ]] = r ⊙ r is not recognizable.518

Example 7.3. Let S = (N,+, ·, 0, 1). Then ([[∃x.1]], w) = |w| and ([[∀y.∃x.1]], w) =519

|w||w|
for each w ∈ Σ∗. So [[∃x.1]] is recognizable, but [[∀y.∃x.1]] is not recogniz-520

able. Indeed, let A = (Q, in,wt, out) be any weighted automaton over S. Let M =521

max{in(p), out(p),wt(p, a, q) | p, q ∈ Q, a ∈ Σ}. Then (||A||, w) 6 |Q||w|+1 ·M |w|+2
522

for each w ∈ Σ∗, showing ||A|| 6= [[∀y.∃x.1]]. Similarly, ([[∀X.2]], w) = 22
|w|

for each523

w ∈ Σ∗, and [[∀X.2]] is not recognizable due to its growth.524

These examples lead us to consider fragments of MSO(S,Σ). As in [11], we define525

the syntax of Boolean formulas of MSO(S,Σ) by526

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | ∀X.ϕ
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where a ∈ Σ. Note that in comparison to the syntax of MSO(Σ), we only replaced527

disjunction by conjunction and existential by universal quantification. Then, we have528

[[ϕ]]V(w, σ) ∈ {0, 1} for each Boolean formula ϕ and (w, σ) ∈ Σ∗
V if Free(ϕ) ⊆ V .529

Expressing disjunction and existential quantification by negation and conjunction resp.530

universal quantification, for each ϕ ∈ MSO(Σ) there is a Boolean formula ψ such531

that [[ψ]] = 1L(ϕ), and conversely. Hence Boolean formulas capture the full power of532

MSO(Σ).533

Now the class of almost unambiguous formulas of MSO(S,Σ) is the smallest class534

containing all constants s ∈ S and all Boolean formulas which is closed under disjunction,535

conjunction, and negation.536

It is useful to introduce the closely related notion of recognizable step functions: these537

are precisely the finite sums of series s1L where s ∈ S and L ⊆ Σ∗ is regular. By538

induction it follows that [[ϕ]] is a recognizable step function for any almost unambiguous539

formula ϕ ∈ MSO(S,Σ). Conversely, if r : Σ∗ → S is a recognizable step function,540

by the Büchi-Elgot-Trakhtenbrot theorem, we obtain an almost unambiguous sentence ϕ541

with r = [[ϕ]].542

For ϕ ∈ MSO(S,Σ), let const(ϕ) be the set of all elements of S occurring in ϕ. We543

recall that two subsets A,B ⊆ S commute, if a · b = b · a for all a ∈ A, b ∈ B.544

Definition 7.3. A formula ϕ ∈ MSO(S,Σ) is syntactically restricted, if it satisfies the545

following conditions:546

(1) for all subformulas ψ ∧ ψ′ of ϕ, the sets const(ψ) and const(ψ′) commute or ψ or547

ψ′ is almost unambiguous,548

(2) whenever ϕ contains a subformula ∀x.ψ or ¬ψ, then ψ is almost unambiguous,549

(3) whenever ϕ contains a subformula ∀X.ψ, then ψ is Boolean.550

We let srMSO(S,Σ) denote the collection of all syntactically restricted formulas from551

MSO(S,Σ).552

Also, a formulaϕ ∈ MSO(S,Σ) is called existential, if it has the form ∃X1. . . . ∃Xn.ψ553

where ψ contains only first order quantifiers.554

Theorem 7.2 (Droste and Gastin [28]). Let S be any semiring, Σ an alphabet, and555

r : Σ∗ → S a series. The following are equivalent:556

(1) r is recognizable.557

(2) r = [[ϕ]] for some syntactically restricted and existential sentence ϕ of MSO(S,Σ).558

(3) r = [[ϕ]] for some syntactically restricted sentence ϕ of MSO(S,Σ).559

Proof (sketch). (1) → (2): We have r = ||A|| for some weighted automaton A =560

(Q, in,wt, out). Then we can use the structure of A to define a sentence ϕ as required561

such that ||A|| = [[ϕ]].562

(2) → (3): Trivial.563

(3) → (1): By structural induction we show for each formula ϕ ∈ srMSO(S,Σ) that564

[[ϕ]] = ||A|| for some weighted automaton A over Σϕ and Sϕ where Sϕ = 〈const(ϕ)〉 is565

the subsemiring of S generated by the set const(ϕ). For Boolean formulas, this is easy.566

For disjunction and existential quantification, we use closure properties of the class of rec-567

ognizable series. For conjunction, the assumption of Definition 7.3(1) and the particular568
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induction hypothesis allow us to employ the construction from Lemma 4.3. If ϕ = ∀x.ψ569

where ψ is almost unambiguous, we can use the description of [[ψ]] as a recognizable step570

function to construct a weighted automaton with the behavior [[ϕ]].571

Note that the case ϕ = ∀x.ψ requires a crucial new construction of weighted au-572

tomata which does not occur in the unweighted setting since, in general, we cannot reduce573

(weighted) universal quantification to existential quantification.574

A semiring S is locally finite if each finitely generated subsemiring is finite. Examples575

include any bounded distributive lattice, thus in particular all Boolean algebras and the576

semiring ([0, 1],max,min, 0, 1). Another example is given by ([0, 1],min,⊕, 1, 0) with577

x⊕ y = min(1, x+ y).578

We call a formula ϕ ∈ MSO(S,Σ) weakly existential, if whenever ϕ contains a sub-579

formula ∀X.ψ, then ψ is Boolean.580

Theorem 7.3 (Droste and Gastin [26, 28]). Let S be locally finite and r : Σ∗ → S a581

series. The following are equivalent:582

(1) r is recognizable.583

(2) r = [[ϕ]] for some weakly existential sentence ϕ of MSO(S,Σ).584

If moreover, S is commutative, these conditions are equivalent to the following one:585

(3) r = [[ϕ]] for some sentence ϕ of MSO(S,Σ).586

The proof uses the fact that if S is locally finite, then each recognizable series r ∈587

S 〈〈Σ∗〉〉 can be shown to be a recognizable step function.588

Observe that Theorem 7.3 applies to all bounded distributive lattices and to all fi-589

nite semirings; in particular, with S = B it contains our starting point, the Büchi-Elgot-590

Trakhtenbrot theorem, as a very special case.591

Given a syntactically restricted formula ϕ of MSO(S,Σ), by the proofs of Theo-592

rem 7.2 we can construct a weighted automaton A such that ||A|| = [[ϕ]] (provided the593

operations of the semiring S are given in an effective way, i.e., S is computable). Since594

the equivalence problem for weighted automata over computable fields is decidable by595

Corollary 8.4 below, we obtain:596

Corollary 7.4. Let S be a computable field. Then the equivalence problem whether [[ϕ]] =597

[[ψ]] for syntactically restricted sentences ϕ, ψ of MSO(S,Σ) is decidable.598

In contrast, the equivalence problem for weighted automata is undecidable for the599

semirings (N ∪ {∞},min,+,∞, 0) and (N ∪ {−∞},max,+,−∞, 0) (Theorem 8.6).600

Since the proof of Theorem 7.2 is effective, for these semirings also the equivalence prob-601

lem for syntactically restricted sentences of MSO(S,Σ) is undecidable.602

8 Decidability of “r1 = r2?”603

In this section, we investigate when it is decidable whether two given recognizable series604

are equal. For this, we assume S to be a computable semiring, i.e., the underlying set of605
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S forms a decidable set and addition and multiplication can be performed effectively. In606

the first part, we fix one of the two series to be the constant series with value 0.607

Let P = (λ, µ, γ) be a linear presentation of dimension Q of the series r ∈ S 〈〈Σ∗〉〉.608

For n ∈ N, let UP
n = 〈{λµ(w) | w ∈ Σ∗, |w| 6 n}〉 and UP = 〈{λµ(w) | w ∈ Σ∗}〉,609

so UP
n and UP are subsemimodules of S{1}×Q. Then UP

0 ⊆ UP
1 ⊆ UP

2 · · · ⊆ UP =610
⋃

n∈N
UP
n , and each of the semimodules UP

n is finitely generated.611

Lemma 8.1. The set of all pairs (P, n) such that P is a linear presentation and UP
n =612

UP
n+1 is recursively enumerable (here, the homomorphism µ from the presentation P is613

given by its restriction to Σ).614

Proof. Note that UP
n = UP

n+1 if and only if every vector λµ(w) with |w| = n+1 belongs615

to UP
n if and only if for each w ∈ Σ∗ of length n+ 1,616

λµ(w) =
∑

v∈Σ∗

|v|6n

svλµ(v)

for some sv ∈ S. A non-deterministic Turing-machine can check the solvability of this617

equation by just guessing the coefficients sv and checking the required equality.618

Corollary 8.2. Assume that, for any linear presentation P , UP is a finitely generated619

semimodule. Then, from a linear presentation P of dimension Q, one can compute n ∈ N620

with UP
n = UP and finitely many vectors x1, . . . , xm ∈ S{1}×Q with 〈{x1, . . . , xm}〉 =621

UP .622

Proof. Since UP is finitely generated, there is some n ∈ N such that UP = UP
n and623

therefore UP
n = UP

n+1. Hence, for some n ∈ N, the pair (P, n) appears in the list from624

the previous lemma. Then UP = UP
n = 〈{λµ(v) | v ∈ Σ∗, |v| 6 n}〉.625

Clearly, every finite semiring satisfies the condition of the corollary above, but not all626

semirings do.627

Example 8.1. Let S be the semiring (N,+, ·, 0, 1) and consider a presentation P with628

λ =
(

1 0
)

and µ(w) =

(

1 |w|
0 1

)

.

Then UP
n is generated by all the vectors

(

1 m
)

for 0 6 m 6 n so that
(

1 n+ 1
)

∈629

UP
n+1 \ U

P
n ; hence UP is not finitely generated.630

As a positive example, we have the following.631

Example 8.2. If S is a skew-field (i.e., a semiring such that (S,+, 0) and (S\{0}, ·, 1) are632

groups), then we can consider UP
n as a vector space. Then the dimensions of the spaces633

UP
i ⊆ S{1}×Q are bounded by |Q| and dim(UP

i ) 6 dim(UP
i+1) implying UP

|Q| = UP .634

Hence, for any skew-field S, in the corollary above we can set n = |Q|.635

We only note that all Noetherian rings (that include all polynomial rings in several636

indeterminates over fields, by Hilbert’s basis theorem) satisfy the assumption of Corol-637

lary 8.2.638
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Theorem 8.3 (Schützenberger [97]). Let S be a computable semiring such that, for any639

linear presentation P , UP is a finitely generated semimodule. Then, for a linear presen-640

tation P , one can decide whether ||P || = 0.641

Proof. We have to decide whether yγ = 0 for all vectors y ∈ UP . By Corollary 8.2,642

we can compute a finite list x1, . . . , xm of vectors that generate UP . So one only has to643

check whether xiγ = 0 for 1 6 i 6 m.644

Example 8.3. If S is a skew-field, a basis of UP can be obtained in time |Σ| · |Q|3645

(where the operations in the skew-field S are assumed to require constant time). The646

algorithm actually computes a prefix-closed set of words u1, . . . , udim(UP ) such that the647

vectors λµ(ui) form a basis of UP (cf. [95]). This basis consists of at most |Q| vectors648

(cf. Example 8.2), each of size |Q|. Hence ||P || = 0 can be decided in time |Σ||Q|3.649

If S is a finite semiring, thenUP = UP
|SQ|. Hence the vectors λµ(w) with |w| 6 |S||Q|

650

form a generating set. To check whether λµ(w)γ = 0 for all such words w, time |Σ||S||Q|

651

suffices. Within the same time bound, one can decide whether ||P || = 0 holds.652

Corollary 8.4. Let S be a computable ring such that, for any linear presentation P ,653

UP is a finitely generated semimodule. Then one can decide for two linear presentations654

P1 and P2 whether ||P1|| = ||P2||.655

Proof. Since S is a ring, there is an element −1 ∈ S with x+(−1) ·x = 0 for any x ∈ S.656

Replacing the initial vector λ from P2 by −λ, one obtains a linear presentation for the657

series (−1)||P2||. This yields a linear presentation P with ||P || = ||P1|| + (−1)||P2||.658

Now ||P1|| = ||P2|| if and only if ||P || = 0 which is decidable by Theorem 8.3.659

Remark 8.5. Let n1 and n2 be the dimensions of P1 and P2, respectively. Then the linear660

presentation P from the proof above can be computed in time n1 · n2 and has dimension661

n1+n2. If S is a skew-field, then we can therefore decide whether ||P1|| = ||P2|| in time662

|Σ|(n1 + n2)
3.663

Let S be a finite semiring. Then from s ∈ S and weighted automata for ||P1|| and664

for ||P2||, one can construct automata accepting {w ∈ Σ∗ | (||Pi||, w) = s} for i = 1, 2.665

This allows us to decide ||P1|| = ||P2|| in doubly exponential time. If S is a finite ring,666

this result follows also from the proof of the corollary above and Example 8.3.667

However, the following result is in sharp contrast to Corollary 8.4. For two series r and s668

with values in N ∪ {−∞}, we write r 6 s if (r, w) 6 (s, w) for all words w.669

Theorem 8.6 (cf. Krob [69]). There are series r1, r2 : Σ
∗ → N∪{−∞} such that the sets670

of weighted automata A over the semiring (N ∪ {−∞},max,+,−∞, 0) with ||A|| = r1671

(with ||A|| 6 r1, with r2 6 ||A|| resp.) are undecidable.672

We remark that analogous statements hold for the semiring (N∪{∞},min,+,∞, 0).673

As a consequence, the equivalence problem of weighted automata over these two semi-674

rings is undecidable (this undecidability was shown by Krob). The original proof by675

Krob is rather involved reducing Hilbert’s 10th problem to the equivalence problem. A676
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simplified proof was found by Almagor, Boker and Kupferman in [3] starting from the677

undecidability of the question whether a 2-counter machine A will eventually halt when678

started with empty counters. The proof below is an extension of the arguments from [3].679

A 2-counter machine is a deterministic finite automaton over the alphabet Σ with680

Σ = {a+, a−, a?, b+, b−, b?}. The idea is that we have two counters, a and b. The counter681

a is incremented when executing a+ and decremented when executing a−; this action a−682

can only be executed if the value of the counter a is positive. Similarly, the action a? can683

only be executed when the counter a is zero. Formally, the 2-counter machine M halts684

from the empty configuration if it accepts some word w ∈ Σ∗ such that685

(1) |u|a−
6 |u|a+

and |u|b− 6 |u|b+ for any prefix u of w,686

(2) |u|a−
= |u|a+

for any prefix ua? of w, and687

(3) |u|b− = |u|b+ for any prefix ub? of w.688

Words satisfying the conditions (1)-(3) will be called potential computation. By Min-689

sky’s theorem [83], the set of 2-counter machines that halt fom the empty configuration690

is undecidable.691

Proof of Theorem 8.6. The maximal error of a word w ∈ Σ∗ is the maximal value n ∈ N692

such that there exists693

• a prefix u of w with n = |u|a−
− |u|a+

or n = |u|b− − |u|b+ or694

• a prefix ua? of w with n = |u|a+
− |u|a−

or695

• a prefix ub? of w with n = |u|b+ − |u|b− .696

Let r′1 be the series that assigns the maximal error to any word w ∈ Σ∗. Then the697

following properties of r′1 are essential:698

(1) A word w ∈ Σ∗ is a potential computation if and only if (r′1, w) = 0.699

(2) The series r′1 is recognizable over the semiring (Z ∪ {−∞},max,+,−∞, 0).700

Now let M be a 2-counter machine. We define, from M and r′1, a new series r′M701

setting702

(r′M , w) =

{

max((r′1, w), 1) if w ∈ L(M)

(r′1, w) otherwise.

Note that703

r′M = (r′1 + 1 · 1Σ∗)⊙ 1L(M) + r′1 ⊙ 1Σ∗\L(M)

where + and ·, ⊙ in this expression for series refer to the addition max and multiplica-704

tion + of values in the semiring (N∪{−∞},max,+,−∞, 0). Since the language L(M)705

is regular, this series r′M is recognizable and a weighted automaton A with ||A|| = r′M can706

be computed from M (cf. Section 4.1). For a word w ∈ Σ∗, we have (r′1, w) = (r′M , w)707

if and only if w /∈ L(M) or (r′1, w) > 0. Recall that (r′1, w) > 0 is equivalent to saying708

“w is no potential computation”. Consequently, r′1 = r′M if and only ifM does not accept709

any potential computation if and only if the 2-counter machine M does not halt from the710

empty configuration. Since this is undecidable, the equality of r′1 and r′M is undecidable.711

Since (r′1, w) 6 (r′M , w) for any word w, it is also undecidable whether r′M 6 r′1.712

Next let (r′2, w) = 1 for any word w. Then r′2 = 1 · 1Σ∗ is recognizable over the713

semiring (Z ∪ {−∞},max,+,−∞, 0). Now let M be a 2-counter machine. We define,714
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from M and r′2, a new series s′M setting715

(s′M , w) =

{

(r′1, w) if w ∈ L(M)

(r′2, w) otherwise.

Note that s′M = r′1⊙1L(M) +r
′
2⊙1Σ∗\L(M). Hence a weighted automaton with behavior716

s′M can be computed from M . Then (r′2, w) 6 (s′M , w) if and only if w /∈ L(M) or717

1 6 r′1(w). Hence r′2 6 s′M if and only if the 2-counter machine M does not halt from718

the empty configuration. Consequently, it is undecidable whether r′2 6 s′M .719

Recall that the series r′1, r′2, r′M , and s′M are recognizable over the semiring (Z ∪720

{−∞},max,+,−∞, 0). Set (r1, w) = (r′1, w)+|w| and define r2, rM , and sM similarly.721

One can check that the weighted automata for the dashed series use transition weights −1,722

0, 1, and −∞, only. Hence, adding 1 to every transition in these weighted automata trans-723

forms them into weighted automata over (N∪{−∞},max,+,−∞, 0) whose behavior is724

r1 etc. This implies that the above undecidabilities also hold for weighted automata with725

non-negative integer weights.726

9 Characteristic series and supports727

The goal of this section to investigate the regularity of the support of recognizable (char-728

acteristic) series.729

Lemma 9.1. Let S be any semiring and L ⊆ Σ∗ a regular language. Then the charac-730

teristic series 1L of L is recognizable.731

Proof. Take a deterministic finite automaton accepting L and weight the initial state, the732

transitions, and the final states with 1 and all the non-initial states, the non-transitions,733

and the non-final states with 0. Since every word has at most one successful path in the734

deterministic finite automaton, the behavior of the weighted automaton constructed this735

way is the characteristic series of L over S.736

For all commutative semirings, also the converse of this lemma holds. This was first737

shown for commutative rings where one actually has the following more general result:738

Theorem 9.2 (Schützenberger [97] and Sontag [101]). Let S be a commutative ring, and739

let r ∈ Srec〈〈Σ∗〉〉 have finite image. Then r−1(s) is recognizable for any s ∈ S.740

It remains to consider commutative semirings that are not rings. Let S be a semiring.741

A subset I ⊆ S is called an ideal, if for all a, b ∈ I and s ∈ S we have a+ b, a · s, s ·a ∈742

I . Dually, a subset F ⊆ S is called a filter, if for all a, b ∈ F and s ∈ S we have743

a · b, s+ a ∈ F . Given a subset A ⊆ S, the smallest filter containing A is the set744

F(A) = {a1 · · · an + s | ai ∈ A for 1 6 i 6 n, and s ∈ S} .
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Lemma 9.3 (Wang [108]). Let S be a commutative semiring which is not a ring. Then745

there is a semiring morphism onto B.746

Proof. Consider the collection C of all filters F of S with 0 6∈ F . Since S is not a ring,747

we have F({1}) ∈ C. By Zorn’s lemma, (C,⊆) contains a maximal element M with748

F({1}) ⊆ M . We define h : S → B by letting h(s) = 1 if s ∈ M , and h(s) = 0749

otherwise. Clearly h(0) = 0 and h(1) = 1.750

Now let a, b ∈ S. We claim that h(a+b) = h(a)+h(b). By contradiction, we assume751

that a, b 6∈ M but a + b ∈ M . Then 0 ∈ F(M ∪ {a}) and 0 ∈ F(M ∪ {b}). Since S is752

commutative, we have 0 = m · an + s = m′ · bn
′

+ s′ for some m,m′ ∈ M , n, n′ ∈ N753

and s, s′ ∈ S. This implies that 0 = m ·m′ · (a+ b)n+n′

+ s′′ for some s′′ ∈ S. But now754

a+ b ∈M implies 0 ∈M , a contradiction.755

Finally, we claim that h(a · b) = h(a) · h(b). If a, b ∈M , then also ab ∈M , showing756

our claim. Now assume a 6∈M but ab ∈M . As above, we have 0 = m · an + s for some757

m ∈M , n ∈ N, and s ∈ S. But then 0 = m · an · bn + s · bn = m · (ab)n + sbn ∈M by758

ab ∈M , a contradiction.759

Theorem 9.4 (Wang [108]). Let S be a commutative semiring and L ⊆ Σ∗. Then L is760

regular iff 1L is recognizable.761

Proof. One implication is part of Lemma 9.1. Now assume that 1L is recognizable. If S762

is a ring, the result is immediate by Theorem 9.2. If S is not a ring, by Lemma 9.3 there763

is a semiring morphism h from S to B. Let A be a weighted automaton with ||A|| = 1L.764

In this automaton, replace all weights s by h(s). The behavior of the resulting weighted765

automaton over the Boolean semiring B is 1L ∈ B 〈〈Σ∗〉〉. Hence L is regular.766

Now we turn to supports of arbitrary recognizable series. Already for S = Z, the ring767

of integers, such a language is not necessarily regular (cf. Example 7.1). But we have the768

following positive result.769

Proposition 9.5. Let S be a zero-sum- and zero-divisor-free monoid (i.e., x + y = 0 or770

x · y = 0 implies 0 ∈ {x, y}). Then the support of every recognizable series over S is771

regular.772

Proof. Let A be a weighted automaton. Deleting all transitions of weight 0 and delet-773

ing all remaining weights, one gets a nondeterministic finite automaton that accepts the774

support of ||A||.775

Examples of zero-sum- and zero-divisor-free semirings include (N,+, ·, 0, 1), (N ∪776

{−∞},max,+,−∞, 0), and (P(Γ∗),∪, ·, ∅, {ε}). In [65], it is shown that, in the above777

proposition, one can replace the condition “zero-divisor-free” by “commutative” cover-778

ing, e.g., the semiring N × N with componentwise addition and multiplication. One can779

even characterize those semirings for which the support of any recognizable series is reg-780

ular:781

Theorem 9.6 (Kirsten [66]). For a semiring S, the following are equivalent:782

(1) The support of every recognizable series over S is regular.783
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(2) For any finitely generated semiring S′ ⊆ S, there exists a finite semiring Sfin and784

a homomorphism η : S′ → Sfin with η−1(0) = {0}.785

It is not hard to see that positive (i.e., zero-sum- and zero-divisor-free) semirings786

like (N,+, ·, 0, 1) or (P(Γ∗),∪, ·, ∅, {ε}) and locally finite semirings (like (Z/4Z)ω or787

bounded distributive lattices) satisfy condition (2) and therefore (1).788

Given a semiring S, by Lemma 9.1, the class SR(S) of all supports of recognizable789

series over S contains all regular languages. Closure properties of this class SR(S) have790

been studied extensively, see e.g. [10]. A further result is the following.791

Theorem 9.7 (Restivo and Reutenauer [92]). Let S be a field and L ⊆ Σ∗ a language792

such that L and its complement Σ∗ \ L both belong to SR(S). Then L is regular.793

In contrast, we note the following result which was also observed by Kirsten:794

Theorem 9.8. There exists a semiring S such that L ∈ SR(S) (and even 1L is recogniz-795

able) for any language L over any finite alphabet Σ.796

Proof. Let Γ = {a, b} and ∆ = Γ∪{c}. Furthermore, let ∆ = {γ | γ ∈ ∆} be a disjoint797

copy of ∆. The elements of the semiring S are the subsets of ∆
∗
∆∗ and the addition of S798

is the union of these sets (with neutral element ∅). To define multiplication, let L,M ∈ S.799

Then L⊙M consists of all words uv ∈ ∆
∗
∆∗ such that there exists a word w ∈ ∆∗ with800

uw ∈ L and wrevv ∈ M . Alternatively, multiplication of L and M can be described as801

follows: concatenate any word from L with any word from M , delete any factors of the802

form dd for d ∈ ∆, and place the result into L ⊙M if and only if it belongs to ∆
∗
∆∗.803

For instance, we have804

{abc} · {ca, cba, a} = {abcca, abccba, abca} and

{abc} ⊙ {ca, cba, a} = {aba, aa}

since the above procedure, when applied to abc and a, results in abca /∈ ∆
∗
∆∗ . Then it805

is easily verified that (S,∪,⊙, ∅, {ε}) is a semiring.806

Now let L ⊆ Γ∗. Define the linear presentation P = (λ, µ, γ) of dimension 1 as

follows:

λ1 = {c} ⊙ Lrev

µ(d)11 = {d} for d ∈ Γ

γ1 = {c}

For v ∈ Γ∗, one then obtains807

(||P ||, v) = {c} ⊙ Lrev ⊙ {v̄} ⊙ {c} =

{

{ε} if v ∈ L

∅ otherwise.

This proves that the characteristic series of L is recognizable for any L ⊆ Γ∗. To obtain808

this fact for any language L ⊆ Σ∗, let h : Σ∗ → Γ∗ be an injective homomorphism. Then809

1L = 1h(L) ◦h

which is recognizable by Lemma 6.2(1).810
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An open problem is to characterize those (non-commutative) semirings S for which811

the support of every characteristic and recognizable series is regular.812

10 Further results813

Above, we could only touch on a few selected topics from the rich area of weighted814

automata. In this section, we wish to give pointers to many other research results and815

directions. For details as well as further topics, we refer the reader to the books [43,816

96, 72, 10, 94] and to the recent handbook [31] with extensive surveys including open817

problems.818

Recognizability Some authors use linear presentations to define recognizable series [10,819

76].820

The transition relation of weighted automata given in this chapter can alternatively be821

considered as aQ×Q-matrix whose entries are functions from Σ to S (cf. [93, Section 6]).822

A more general approach is presented in [95, 94] where the entries are functions from Σ∗
823

to S. Here, the free monoid Σ∗ can even be replaced by an arbitrary monoid with a length824

function.825

The surveys [45, 47, 48] contain an axiomatic treatment of iteration and weighted826

automata using the concept of Conway semirings (i.e., semirings equipped with a suitable827

∗-operation).828

The abovementioned books contain many further properties of recognizable series829

including minimization, Fatou-properties, growth behavior, relationship to coding, and830

decidability and undecidability results.831

The coincidence of aperiodic, starfree, and first-order definable languages [98, 81]832

has counterparts in the weighted setting [26, 27] for suitable semirings. An open problem833

would be to investigate the relationship between dot-depth and quantifier-alternation (as834

in [102] for languages). Recently, the expressive power of weighted pebble automata835

and nested weighted automata was show to equal that of a weighted transitive closure836

logic [12].837

Recall that the distributivity of semirings permitted us to employ representations and838

algebraic proofs for many results. Using automata-theoretic constructions, one can obtain839

Kleene and Büchi type characterizations of recognizable series for strong bimonoids [40]840

which can be viewed as semirings without distributivity assumption, also cf. [34].841

Weighted pushdown automata A huge amount of research has dealt with weighted842

versions of pushdown automata and of context-free grammars. The books [96, 72] and843

the chapters [70, 88] survey the theory and also infer purely language-theoretic decid-844

ability results on unambiguous context-free languages. The list of equivalent formalisms845

(weighted pushdown automata, weighted context-free grammars, systems of algebraic846

equations) has recently been extended by a weighted logic [80].847
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Quantitative automata Motivated by practical questions on the behavior of technical848

systems, new kinds of behaviors of weighted automata have been investigated [21, 20].849

E.g., the run weight of a path could be the average of the weights of the transitions.850

Various decidability and undecidability results, closure properties, and properties of the851

expressive powers of these models have been established [21, 20, 34, 33, 82, 40]. An852

axiomatic investigation of such automata using Conway hemirings is given in [30]. A853

Chomsky-Schützenberger result for quantitative pushdown automata is obtained in [41].854

Discrete structures Weighted tree automata and transducers have been investigated,855

e.g., for program analysis and transformation [99] and for description logics [6]. Their in-856

vestigation, e.g. [9, 15, 16, 71, 39], was also guided by results on weighted word automata857

and on tree transducers, for an extensive survey see [52].858

Distributed behaviors can be modelled by Mazurkiewicz traces. The well-established859

theory of recognizable languages of traces [23] has a weighted counterpart including a860

weighted distributed automaton model [50].861

Automata models for other discrete structures like pictures [53], nested words [4], and862

texts [42, 60], have been studied extensively. Corresponding weighted automata models863

and their expressive power have been investigated in [49, 80, 79, 37, 90, 24].864

Infinite words Weighted automata on infinite words were investigated for image pro-865

cessing [106] and used as devices to compute real functions [105]. A discounting pa-866

rameter was employed in [32, 38] in order to calculate the run weight of an infinite867

path. This led to Kleene-Schützenberger and logical descriptions of the resulting be-868

haviors. Alternatively, semirings with infinitary sum and product operations allow us869

to define the behavior analogously to the finitary case and to obtain corresponding re-870

sults [46, 28]. Also the quantitative automata from above have been investigated for871

infinite words employing, e.g., accumulation points of averages to define the run weight872

of infinite paths [21, 20, 34, 33, 82]. The behaviors of these automata also fit into the873

framework of Conway hemirings [25]. Weighted Muller automata on ω-trees were stud-874

ied in [6, 91, 78].875

Applications Since the early 90s, weighted automata have been used for compressed876

representations of images and movies which led to various algorithms for image transfor-877

mation and processing, cf. [62, 1] for surveys.878

Practical tools for multi-valued model checking have been developed based on weigh-879

ted automata over De Morgan algebras, cf. [22, 17, 73]. De Morgan algebras are particular880

bounded distributive lattices and therefore locally finite semirings. Weighted automata881

have also been crucially used to automatically prove termination of rewrite systems, cf.882

[107] for an overview.883

In network optimization problems, one often employs the max-plus-semiring (R ∪884

{−∞},max,+,−∞, 0), see [76] in this Handbook.885

For quantitative evaluations, reachability questions, and scheduling optimization in886

real-time systems, timed automata with cost and multi-cost functions form a vigorous887

current research field [7, 5, 14, 13]. Rational and logical descriptions of weighted timed888

and of multi-weighted automata were given in [37, 90, 36, 35].889
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In natural language processing, an interesting strand of applications is developing890

where weighted tree automata play a central role, cf. [68, 77] for surveys. Toolkits for891

handling weighted automata models are described in [67, 2]. A survey on algorithms for892

weighted automata with references to many further applications is given in [84].893

We close with three examples where weighted automata were employed to solve long-894

standing open questions in language theory. First, the equivalence of deterministic multi-895

tape automata was shown to be decidable in [58], cf. also [95]. Second, the equality896

of an unambiguous context-free language and a regular language can be decided using897

weighted pushdown automata [100], cf. also [86]. Third, the decidability and complexity898

of determining the star-height of a regular language were determined using a variant of899

weighted automata [59, 64].900
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