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Chapter 1

Introduction

This habilitation thesis reports on a selection of my contributions since my
PhD thesis in 2002.

The growing importance of embedded systems

Embedded systems are a modern technology which has an important impact
on our everyday life. There are indeed more and more computing systems,
and our comfort more and more relies on them (as an illustration in thirty
years, we have gone from ‘no phone at home’ to ‘everyone with a mobile
phone’). One of the characteristics shared by these systems is that they have
to meet numerous quantitative constraints, like resource constraints (power
consumption, memory usage, costs, bandwidth, etc.), timing constraints (re-
sponse time, propagation delays, etc.), and constraints on the environment in
which they operate (signal sensors, interactions with a (possibly continuous)
environment, etc.). Another important characteristic of embedded systems
is that they have to be powerful, performant, and reliable. Thus, their con-
ception and verification pose a great challenge!

The model-checking approach to verification

As part of the effort that has been made for the development of reliable em-
bedded systems, several verification approaches have been developed, among
which the so-called model-checking approach, which I more specifically work
on. Model-checking is a model-based approach to verification, and has been
distinguished by the Turing award in 2007,1 awarded to Edmund M. Clarke,
E. Allen Emerson, and Joseph Sifakis.

1http://www.acm.org/press-room/news-releases/turing-award-07/
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Given a system S and a property P to be checked on S, the model-
checking approach consists in constructing a mathematical model MS for
the system and a mathematical model ϕP for the property, for which we
will be able to automatically check that MS satisfies ϕP . If the models are
accurate enough with respect to S and P , we will deduce that the system S
satisfies the property P .

Models for representing systems can be automata, and extensions thereof,
but also process algebra, Petri nets, etc., and properties can either be mod-
elled in the very same formalisms, or as formulas in some (eg. temporal)
logic. For instance, one can write formulas like

G (car.crash→ F airbag.inflate) (1.1)

to express that the airbag inflates, each time the car crashes.
A difficulty of this approach is that accurate (classes of) models need to

be developed, that should be readable (for a human being to be able to write
and understand the model), and that should be efficiently and automatically
analysable. Of course, given a precise system to be analysed, the model
which is chosen needs be a trade-off between expressiveness, conciseness, and
analysability.

The challenges that model-checking techniques have to face are, among
others: (i) the growing complexity of computing systems, (ii) their growing
size yielding the well-known state-explosion problem, (iii) the requirement
for correct systems, and (iv) a race towards high-performance systems. We
give below some solutions the model-checking approach suggests to challenges
posed by the development of embedded systems.

embedded systems challenges model-checking solutions

complex computing systems development of expressive (and
concise) models

growing-size systems development of abstractions to
fight the state-explosion problem

critical aspects, correctness, safety development of (efficient) model-
checking algorithms, qualitative
analysis (answer: ‘no’ or ‘yes’)

performance aspects quantitative analysis (answer: a
value)

In this thesis, we will (partly) address most of these aspects, in the framework
of timed automata.
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The timed automaton model

In this thesis, we will be interested in timed systems, i.e. in systems that
have to meet quantitative constraints on delays between events, and not only
constraints on the order of these events. For instance, in those systems, we
may be more interested in the following property:

G (car.crash→ F65ms airbag.inflate) (1.2)

which says that the airbag should inflate no later than 5 ms after the car
crashes, than in the untimed property (1.1).

Even though several models taking time into account had already been
proposed in the past, for instance time(d) Petri nets [Mer74, Ram74], in
the early nineties, a great step has been done towards the development of
verification techniques for timed systems, with the development of timed
automata by Rajeev Alur and David Dill [AD90, AD94].

A timed automaton is a finite automaton that can manipulate variables.
These variables have a very specific behaviour, and increase synchronously
with time, they can be compared with a constant, or reset to 0. We give a
(simplified) model for a car, as a network of timed automata.

Idle

radio.on!

radio.off!

Urg.

KO

car.crash? y:=0

airbag.inflate! y62

Brake

car.brake?, y:=0

y62, slow down!

car.crash?

Controller

Idle

Inf.

airbag.inflate? x:=0

16x63

Airbag

Off

On

radio.on? radio.off?

radio.on?

radio.off?

Radio

The timed automaton for the airbag reads as follows: the airbag is idle until
it receives a signal saying that it should inflate, and within [1, 3] after this
signal is received, the airbag gets inflated. We use a binary synchronisation,
an event a! synchronises with an event a?. Note that the above system is not
closed (some events, like ‘slow down?’, ‘car brake!’ are missing).

One of the fundamental properties of the timed automaton model is that,
though there are infinitely many possible configurations in the system, many
verification problems can be solved (eg. reachability and safety properties,
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untimed ω-regular properties, branching-time timed temporal properties,
etc.), because a finite-state abstraction, called the region automaton, can
be used to check those properties. An extensive literature has been written
on that model since the original paper [AD90], and it is worth noticing that
Rajeev Alur and David Dill have received in 2008 the CAV award for this
seminal article, which is among the most quoted article in computer-aided
verification.2 Also, developments have gone up to the implementation of tools
like Uppaal 3 [BDL+06], and to their application to industrial case studies,
for instance [HSLL97, BBP04, JRLD07].

Content of the thesis

The contributions I will describe follow a natural evolution in my research
interests from the verification of simple (untimed) properties in timed sys-
tems to the verification of quantitative properties in those systems, not only
involving constraints over delays, but also over resources. Also it follows an-
other evolution from qualitative to quantitative verification: we start with
questions like “does the system satisfy a property?”, which requires a ‘yes/no’
answer, and end up with questions like “how likely will a system satisfy the
property?”, to which an answer should be a value. The latter question is
very close to questions asked in performance evaluation.

A rough picture of the two evolutions is given below, and each technical
chapter of this thesis is classified.

quantitative
verification

qualitative
verification

untimed
properties

timed
properties

resource-based
properties

Chap. 3 Chap. 4 Chap. 5

Chap. 6

Chapter 2 shortly reports the basic definitions, that will be needed in the
rest of the thesis.

2See http://www.princeton.edu/cav2008/cav award announce.html.
3See http://www.uppaal.com/
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In chapter 3, we focus on the most basic properties one wants to ver-
ify, namely reachability (or basic safety) properties. These properties ask
whether some location of the timed automaton can be reached (or on the
contrary avoided). We present two generic approaches to verify those prop-
erties, and discuss their correctness and termination when applied to timed
automata. Then, we present an abstraction operator that yields intriguing4

but interesting correctness problems. We end the chapter with two improved
abstraction operators, that have led to an impressive speed-up of the verifica-
tion process, and are now implemented as standard options in the verification
tool Uppaal.

These works have been started and partly done while visiting Aalborg
Universitet (Denmark) during my post-doc. This stay has been a great op-
portunity to get interested in more practical aspects of the verification of
timed systems, with a focus on data structures, algorithms and abstractions.

This chapter is based on the papers [Bou03, Bou04, BBFL03, BBLP04,
BBLP05], and works on the improved abstractions are joint works with Gerd
Behrmann, Emmanuel Fleury, Kim G. Larsen, and Radek Pelànek.

In chapter 4, we consider more involved properties of timed systems,
which can express constraints over delays. We consider linear-time timed
temporal logics as a formalism for expressing properties of systems. These
logics extend the classical LTL [Pnu77] logic with timing constraints, and the
property (1.2) is such a property. In that framework, with Fabrice Chevalier
and Nicolas Markey, we started in 2005 working on a 15-year-old conjecture
by Rajeev Alur and Thomas A. Henzinger [AH90], that there is an expres-
siveness gap between MTL 5 and TPTL,6 two natural timed extensions of
LTL. We have proven the conjecture, but we have seen that the tentative
witness proposed by [AH90] needed to be refined. This piece of works, pub-
lished as [BCM05, BCM08], is one of the first expressiveness results obtained
in the framework of timed systems, and has inspired some other research,
among which [DP06, DRP07].

In 2005, I have been quite fascinated by the paper by Joël Ouaknine
and James Worrell at LICS’05 [OW05], who have proven that the already-
mentioned logic MTL is decidable7 (under some restricted semantics, though),
contrary to what was actually believed in the community. The techniques

4The classical abstraction operator that was commonly used is actually not correct for
the whole class of timed automata with diagonal constraints.

5MTL stands for “Metric Temporal Logic” and has been defined in [Koy90].
6TPTL stands for “Timed Propositional Temporal Logic” and has been defined

in [AH89].
7It is however non-primitive recursive!
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used, based on well-quasi-orders were also really interesting,8 and that is
when I really got interested in these logics for model-checking purposes.
That is also the period when I decided to spend a sabbatical year at Ox-
ford University (England),9 which I have done in 2007. In this chapter, I
explain (in a rather simple way) why it is difficult to use general linear-time
timed logics in the verification process. I then present several restrictions
that have been made to get improved decidability (and complexity) results,
and terminate with a description of a fragment of MTL that is rather ex-
pressive and for which the model-checking problem can be solved rather effi-
ciently [BMOW07, BMOW08]. These are joint works with Nicolas Markey,
Joël Ouaknine, and James Worrell.

In chapter 5, timed automata are extended with ‘observer variables’, that
evolve in a more complex way than clocks do, but cannot be used to restrict
the possible executions of the system. These additional variables are called
cost variables as they can be used to measure the cost (in terms of energy,
or price, etc.) of an execution. They increase linearly with time in ev-
ery location (with a rate depending on the location), and discretely when a
transition is fired. This model has been defined in 2001 by Rajeev Alur et
al. [ALP01] and Kim G. Larsen et al. [BFH+01], and various optimisation
and model-checking questions have been addressed since then on that model.
For instance, one can ask what is the best way to execute a system in such a
way that the cost per time unit is minimal. I have started working on that
model while visiting Aalborg Universitet (Denmark) with Ed Brinksma and
Kim G. Larsen, precisely on the previously mentioned optimisation problem,
and I found it really challenging and exciting.

In this chapter, I will first present the model of weighted timed automata
(this is how we will call this extension of timed automata with cost vari-
ables), and give the first decidability results that have been proven for ba-
sic optimisation problems. Then we extend to the two-player framework,
which is a usual framework for modelling systems embedded in an environ-
ment [Thom02], where one of the players tries to minimize the cost, and
the other player tries to maximize the cost. This problem will happen to
be much more complex than the single-player framework that was implicitly
assumed before. Indeed, in general the two-player problem is undecidable
(we will explain the idea of the proof, as we find it rather instructive), and

8It is fair saying that such techniques had already been developed in the context of
networks of similar single-clock timed automata [AJ98], and also in the context of timed
Petri nets [AN01] by Parosh Aziz Abdulla, Bengt Jonsson, and Aletta Nylén.

9Where Joël Ouaknine and James Worrell hold a position.
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only the restriction to single-clock automata yields decidability. Then, we
investigate a natural model-checking problem, where properties no more ex-
press constraints on delays (as in chapter 4), but express constraints on the
cost variables. We extend classical temporal logics with cost constraints and
can write properties like

G (failure→ (out of orderUcost656e repair))

which says that each time there is a failure, the machine will be put into
the out of order mode until it is repaired, and the reparation will cost no
more than 56e. Unfortunately, as in the two-player framework, the results
are negative: the model-checking of both natural extensions of CTL and
LTL with cost constraints is undecidable. However, restricting the number of
clocks to one yields, as in the two-player framework, decidability of the model-
checking problem, with a reasonable complexity (at least not higher than the
corresponding problem with timing constraints instead of cost constraints).

This chapter reports, among others, works published as [BBL04, BBL08,
BCFL04, BCFL05, BBM06, BM07, BBBR07, BLM07, BLM08], and which
are joint works with Thomas Brihaye, Ed Brinksma, Véronique Bruyère,
Franck Cassez, Emmanuel Fleury, Kim G. Larsen, Nicolas Markey, and Jean-
François Raskin. Furthermore, we also briefly report ongoing works.

In chapter 6, I will present the most recent developments I have been
involved in. This work has long been something I had in mind, but my
knowledge in probabilistic systems was not strong enough to do it on my own.
In 2006, together with Thomas Brihaye, who was holding a post-doctoral
position in Cachan at that time, we decided to start working on the subject,
and to get help from people who were specialists of probabilistic systems.
That is why we visited Christel Baier’s group in Dresden in December 2006.

The aim is to add probabilities to timed automata, so that unlikely (se-
quences of) events will happen with probability 0. The model of proba-
bilistic timed automata developed by the PRISM team [KNSS02, KNP04]
is not sufficient, because the delays are still chosen non-deterministically,
and the idea is then to make all delay choices probabilistic instead. This
yields a purely probabilistic semantics to timed automata, that somehow
extends the continuous-time Markov chain model [Fel68]. In this frame-
work, we first investigate the natural almost-sure model-checking problem,
which asks whether a property is satisfied with probability one in a timed
automaton. Due to the rather complex structure of the probabilistic space
generated by a timed automaton, it was not easy to get decidability of the
problem, and we have then defined an ‘equivalent’ topological space where
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largeness10 (of ω-regular sets of runs) coincides with sets of probability one, in
the restricted framework of single-clock timed automata though. Using that
characterisation we have designed an algorithm that decides the almost-sure
model-checking problem for ω-regular properties. This algorithm is based on
the construction of a finite Markov chain that is a correct abstraction for the
almost-sure model-checking problem, but only in the single-clock automata
framework. It is interesting to notice that this limitation to a single clock is
unfortunately not only a restriction that appears in the proof, but that we
have designed a two-clock counter-example to that algorithm. These works
are joint works with Christel Baier, Nathalie Bertrand, Thomas Brihaye and
Marcus Größer, and have been published as [BBB+07, BBB+08a]

Then, we have gone to the more complex quantitative model-checking
problem, where the aim is to compute the probability (or approximations
thereof) of a given ω-regular property in a timed automaton. The previous
abstraction is no more correct in that framework, and we have designed
another finite Markov chain abstraction that solves the quantitative model-
checking problem for a restricted class of timed automata. This work will
appear as [BBBM08] and is joint work with Nathalie Bertrand, Thomas
Brihaye and Nicolas Markey.

This subject is rather new, I believe it is challenging and interesting. It
leaves a wide range of open problems, notably the mix of non-determinism
and probabilities, as in Markov decision processes. In the end of the chapter,
I report some preliminary results that we are currently working on.

In chapter 7, I give some conclusions and perspectives, even though every
chapter already gives perspectives for the specific subject developed in the
chapter.

In the following, the symbol + indicates one of my results.

Other recent contributions not included in this thesis

I will briefly review some of my other recent works, and refer to

http://www.lsv.ens-cachan.fr/∼bouyer/mes-publis.php

for a complete list of my publications.

10In the topological sense. We recall that a set in a topological space is meager if it is a
denumerable union of nowhere-dense sets, and a set is large if its complement is meager.
Note that this is a stronger notion than density, because a dense set can be meager! This
is for instance the case of Q in R (for the classical topology).
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Time(d) Petri nets. With Serge Haddad11 and my (now former) PhD stu-
dent Pierre-Alain Reynier, we have investigated some timed and distributed
systems. We have in particular studied several models that add timing con-
straints to Petri nets, the so-called time/timed Petri nets. We have compared
their expressiveness with that of networks of timed automata, and have ob-
tained interesting results for the timed Petri net model, where Zeno be-
haviours distinguish between timed automata and bounded timed Petri nets.
All these works correspond to the articles [BHR06a, BHR06b, BHR08].

Using ideas taken from our study of timed Petri nets, we have proposed
an algorithm that applies a partial-order reduction to networks of timed
automata. This is a challenging issue, because timing constraints put depen-
dency on events, that could appear as independent at first sight. This work
has been published as [BHR06c].

Robustness and implementability issues. This issue shall be a bit dis-
cussed in chapter 6. What we have seen so far is that timed automata can
be seen as a model for representing embedded systems. They can also be
used to model programs. However, this model then appears as too idealized,
because a real implementation platform will not assume the same hypotheses
as the ‘mathematical’ model does. For instance, clocks in a timed automata
are infinitely precise, whereas they are digital in a real processor, actions and
communications are instantaneous in a timed automaton, whereas they are
not in a real computing system, etc., hence the necessity of integrating these
aspects in the verification process. This can be done either by integrating the
implementation platform in the model, as proposed in [AT05], or by over-
approximating the behaviour of the real system by another timed automaton,
as suggested by [DDR04]. In the latter, a model of robustness is proposed,
that over-approximates the behaviour of the system implemented using a
simple processor. The robustness notion coincides with the one proposed
few years earlier by Anuj Puri [Pur98]. This notion of robustness has been
further investigated, and an algorithm for verifying basic safety properties
(under the robust semantics) has been proposed in [DDMR04, DDMR08],
algorithm that we have extended to LTL properties in [BMR06] and even
later to a subclass of timed properties in [BMR08]. Those are joint works
with Nicolas Markey and Pierre-Alain Reynier.

O-minimal hybrid systems. I would like to mention a last subject,
namely the model of o-minimal hybrid systems. We know that general hy-

11Who was at LAMSADE, Université Paris-Dauphine (France) at that time, and is now
at LSV/CNRS & ENS Cachan (France).
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brid systems are mostly undecidable [Hen96, HKPV98], and harsh restric-
tions need to be made to yield decidability. O-minimal hybrid systems have
been first proposed in [LPS00] as an interesting class of systems. These sys-
tems have very rich continuous dynamics, but limited discrete steps (at each
discrete step, all variables have to be reset, independently from their initial
values). This allows to decouple the continuous and discrete components of
the hybrid system, and to deduce properties of the global system from those
of the continuous parts of the system.

With Thomas Brihaye and my (now former) PhD student Fabrice Cheva-
lier, we have studied the two-player game problem in o-minimal hybrid sys-
tems, and have shown that it was decidable, proving that the suffix encoding
proposed in [Bri07] was actually a correct abstraction for solving the problem.
This has been published as [BBC06b]. Recently, a side result of a joint work
with Marcin Jurdziński, Ranko Lazić and Micha l Rutkowski (University of
Warwick, England), and Thomas Brihaye [BBJ+08] is that the o-minimality
hypothesis made in [BBC06b] is not required to get the decidability, and only
the strong-reset assumption is sufficient.

Also, following the development of weighted timed automata (cf. chap-
ter 5), we have extended o-minimal hybrid systems with cost (observer) vari-
ables, and have proven that most problems that are undecidable for weighted
timed automata become decidable for that model, see [BBC07].
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Chapter 2

Timed systems: things one
should know before starting

2.1 The timed automaton model

We assume the framework of dense time, and refer to [Alu91, chapter 2] for
a justification of that framework.

2.1.1 Preliminaries

We consider as time domain the set R>0 of non-negative reals. Let Σ be a
finite alphabet. A timed word over Σ is a finite or infinite sequence of pairs
(a0, τ0)(a1, τ1)(a2, τ2) · · · such that for every i ∈ N, ai ∈ Σ, and (τi)i∈N is a
non-decreasing sequence in R>0. Furthermore we may call the τi’s the time
stamps of the timed word.

We let X be a finite set of variables, called clocks. A (clock) valuation
over X is a mapping v : X → R>0 that assigns to each clock a time value.
The set of all valuations over X is denoted RX

>0. Let t ∈ R>0, the valuation
v + t is defined by (v + t)(x) = v(x) + t for every x ∈ X. For Y ⊆ X,
we denote by [Y ← 0]v the valuation assigning 0 (respectively v(x)) for any
x ∈ Y (respectively x ∈ X \Y ). We write 0X for the valuation which assigns
0 to every clock x ∈ X.

The set of (general) clock constraints over X, denoted C(X), is defined
by the grammar:

C(X) 3 g ::= x ∼ c | x− y ∼ c | g ∧ g

where x, y ∈ X are clocks, c ∈ Q, and ∼ ∈ {<,6,=,>, >}. Let k ∈ Q>0, a
clock constraint g is k-bounded if any constant c appearing in g lies within
the interval [−k; +k].
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Clock constraints are evaluated over clock valuations, and the satisfaction
relation, denoted v |= g, is defined inductively as follows:8><>:

v |= (x ∼ c) if v(x) ∼ c
v |= (x− y ∼ c) if v(x)− v(y) ∼ c
v |= g1 ∧ g2 if v |= g1 and v |= g2

Also, we write JgK = {v ∈ RX
>0 | v |= g} the polyhedron defined by g.

We denote by Cdf(X) the subset of C(X) that do not make use of diagonal
constraints, i.e. of constraints of the form x− y ∼ c.

2.1.2 Timed automata

The model of timed automata has been defined initially by Alur and Dill
in the early nineties [AD90, AD94]. In this thesis, we will consider various
questions on timed automata, that may require several features that were
not initially in the model (like invariants, labelling by atomic propositions,
etc.). For convenience, we thus define a general model of timed automata
including all these aspects, and might forget some of the useless components
in the following chapters.

Definition 2.1 A timed automaton is a tuple

A = (AP, X, L, `0,Goal, E, Inv,L)

where AP is a finite set of atomic propositions, X is a finite set of clocks, L
is a finite set of locations, `0 ∈ L is the initial location, Goal ⊆ L is a set
of goal (or final) locations, E ⊆ L × C(X) × 2X × L is a finite set of edges
(or transitions), Inv : L→ Cdf(X) assigns an invariant to every location, and
L : L→ 2AP labels every location with atomic propositions.

A timed automaton in which all clock constraints are diagonal-free, is said
diagonal-free.

Remark 2.2 In the above definition, we omit actions labelling edges, contrary to
classical definitions, because we will not use them in the following (but will use
the name of the edge instead, for instance to define the transition system given
by a timed automaton). However, they are useful for modelling purposes, see for
instance the simplified car model on page 7.

y

The semantics of a timed automaton A = (AP, X, L, `0,Goal, E, Inv,L)
is given as a timed labelled transition system TA = (S, s0,→,L) where S =
L × RX

>0 is the set of configurations (or states)1 of A, s0 = (`0,0X) is the

1Later, we write loc(s) = ` and val(s) = v whenever s = (`, v).
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initial configuration, L extends the labelling function of A to configurations,

writing L(s)
def
= L(loc(s)), and → contains two types of moves:

• delay moves: (`, v)
t−→ (`, v + t) 2 if t ∈ R>0, and for all 0 6 t′ 6 t,

v + t′ |= Inv(`);

• discrete moves: (`, v)
e−→ (`′, v′) if there exists an edge e = (`, g, Y, `′)

in E such that v |= g ∧ Inv(`), v′ = [Y ← 0]v, and v′ |= Inv(`′).

A run % in A is a finite or infinite sequence of moves in the transition
system TA, with a strict alternation of delay moves (though possibly 0-delay

moves) and discrete moves. In the following, we may write a run % = s
t1−→

s′1
e1−→ s1

t2−→ s′2
e2−→ s2 . . . more compactly as % = s

t1,e1−−→ s1
t2,e2−−→ s2 . . .. A

transition of the form s
t,e−→ s′ will be called a mixed move. If % is a finite run

and ends in some sn with loc(sn) ∈ Goal, we say that % is accepting. If s ∈ S
is a configuration, we write Runs(A, s) (respectively Runsf(A, s), Runsaccf ) the
set of infinite (respectively finite, finite accepting) runs that start in s. An

infinite run % = s
t1,e1−−→ s1

t2,e2−−→ s2 . . . in Runs(A, s) is said Zeno wheneverX
i∈N

ti <∞.

If A is a timed automaton, a configuration (`, v) is valid whenever v |=
Inv(`). A timed automaton A is said non-blocking whenever for every valid
configuration s of A, there exists some delay t and some edge e, there exists

some configuration s′ such that s
t,e−→ s′ is a mixed move of A. Note that

this is an easy condition to be checked. In the following, we will assume
that timed automata are non-blocking, to avoid boring considerations, even
though most developments can also be made in more general models.

Unless specifically mentioned, we assume that constants appearing in
constraints of timed automata are integers, and no more rationals, as assumed
in the initial definition.3 We know, see [AD94, Lemma 4.1], that this is
without loss of generality.

2.2 Expressing properties

2.2.1 Basic untimed properties

Let A = (X,L, `0,Goal, E, Inv) be a timed automaton. We say that (i) A
satisfies the reachability property with respect to Goal if there exists a run

2Letting s = (`, v), we will later write s+ t for the configuration (`, v + t).
3We chose rational constants in the definition for convenience. It will for instance be

useful in chapter 4.
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% ∈ Runsaccf (A, s0), and (ii) A satisfies the safety property with respect to
Goal if there is no run % ∈ Runsaccf (A, s0) (hence Goal is avoided). Reachability
and safety properties are dual properties, and are the most basic properties
we will be interested in.

An ω-regular property ϕ over AP is a language over the alphabet Bool(AP),4

the set of Boolean combinations of atomic propositions, that can be defined
by an ω-automaton Bϕ (for instance with a Muller acceptance condition).
Let A = (AP, X, L, `0, E, Inv,L) be a timed automaton. An infinite run

% = s
t1,e1−−→ s1

t2,e2−−→ s2 . . . in Runs(A, s) satisfies the ω-property ϕ whenever
there is an infinite word uu1u2 . . . over alphabet Bool(AP) which is accepted
by Bϕ, and such that L(s) |= u and for every i ∈ N>0, L(si) |= ui. We
write % |= ϕ when the run % satisfies the ω-regular property ϕ, and A |= ϕ
whenever for every run % ∈ Runs(A, s0), % |= ϕ.

The model-checking problem asks, given a timed automaton A and an
ω-regular property ϕ, whether A |= ϕ. For complexity issues, for an ω-
regular property, we will assume that the size of the input is the size of the
corresponding ω-automaton.

Remark 2.3 Reachability and safety properties can obviously be expressed as
ω-regular properties. We label Goal locations (and only those locations) with a
specific atomic proposition g, and we consider the following ω-automata, where
two concentric circles denote accepting states for a Büchi accepting condition, and
unlabelled transitions are implicitly labelled by ‘true’.

g

reachability property

¬g

safety property

y

2.2.2 Classical temporal logics

In this subsection we define two classical temporal logics that are used to
specify properties of systems. We then explain how we interpret those prop-
erties on timed automata.

We fix a finite set AP of atomic propositions.

4The set Bool(AP) is infinite, but we assume we take one representative (of minimal
size) per set of equivalent formulas.
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The linear-time temporal logic LTL. The syntax of LTL [Pnu77] over
AP is given by the following grammar:

LTL 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ

where p ∈ AP. The U -modality is called the ‘Until’ modality.
Two semantics can be naturally defined for LTL over timed automata.

The first one evaluates formulas when transitions are taken (it will be called
the pointwise semantics), and the second one evaluates formulas continu-
ously (it will be called the continuous semantics). In the following we will
distinguish between the two semantics. They share rules for basic modalities,
and only differ in the interpretation of the term position. We interpret LTL
formulas over runs of a timed automaton, from some position along that run.

We fix a timed automaton A = (AP, X, L, `0,Goal, E, Inv,L), and we let

% = s
t1,e1−−→ s1

t2,e2−−→ s2 · · · sn−1
tn,en−−−→ sn · · · be a finite or infinite run of A,

and $ be a position along %. The satisfaction relation for % from $ (written
(%,$) |= ϕ if % satisfies ϕ from $) is defined inductively as follows:

(%,$) |= p ⇔ p ∈ L(%[$])
(%,$) |= ¬ϕ ⇔ (%,$) 6|= ϕ

(%,$) |= ϕ ∨ ψ ⇔ (%,$) |= ϕ or (%,$) |= ψ
(%,$) |= ϕU ψ ⇔ there exists a position $′ > $ along %

such that (%,$′) |= ψ, and
for every position $ < $′′ < $′, (%,$′′) |= ϕ

where %[$] is the configuration along % at position $.

• In the continuous semantics, a position in a run % is any state
appearing along %: it can for instance be formally defined as a pair
(i, t) ∈ N×R>0 where i is the index of the last edge that has been fired
before that position, and t is the delay since that edge was fired. For

instance for the i-th transition of the run (`i−1, vi−1)
ti,ei−−→ (`i, vi), any

state (`i−1, vi−1 + t) with 0 6 t 6 ti is a position of % (represented as
the pair (i− 1, t)), and obviously, so is (`i, vi) (represented as the pair
(i, 0)). This semantics is very strong because for % to satisfy ϕU ψ, all
intermediary states of % need to satisfy ϕ before ψ holds.

• In the pointwise semantics, a position in the run % is one of the states
si, represented by its index i. In this semantics, formulas are checked
only right after a transition has been taken. Sometimes, the pointwise
semantics is given in terms of timed words (see table 2.1). When it will
be more convenient, we will used this equivalent terminology.
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The initial position $0 of a run represents its initial configuration, and we
write % |= ϕ whenever (%,$0) |= ϕ. Let A be a timed automaton with
initial configuration s0, and ϕ be an LTL formula. We say that A satisfies
ϕ over infinite (respectively finite) runs, and we write A |= ϕ (respectively
A |=f ϕ), whenever for all infinite runs % ∈ Runs(A, s0) (respectively % ∈
Runsaccf (A, s0)), % |= ϕ.

The pointwise semantics of LTL can be defined in terms of timed
words instead of runs, and the position is then an index. Let w =
(a0, τ0)(a1, τ1)(a2, τ2) · · · be a (finite or infinite) timed word, and i ∈ N.
The pointwise semantics of LTL is redefined as follows:

(w, i) |= p ⇔ p ∈ ai

(w, i) |= ¬ϕ ⇔ (w, i) 6|= ϕ
(w, i) |= ϕ ∨ ψ ⇔ (w, i) |= ϕ or (w, i) |= ψ
(w, i) |= ϕU ψ ⇔ there exists i′ > i

such that (w, i′) |= ψ, and
for every i < i′′ < i′, (w, i′′) |= ϕ

Given a timed automaton A and a run % = s
t1,e1−−−→ s1

t2,e2−−−→ s2 · · · in A,
we have that, in the pointwise semantics:,

(%, i) |= ϕ ⇔ (w, i+ 1) |= ϕ

where w is the timed word (L(s), 0)(L(s1), t1)(L(s2), t1 + t2) · · · over the
alphabet 2AP. Note that this is somehow as if we had puts labels on
transitions.

Table 2.1: The pointwise semantics in terms of timed words

We define some syntactic sugar for LTL: true ≡ (p∨¬p) stands for true,
false ≡ (¬true) stands for false, (ϕ → ψ) ≡ (¬ϕ ∨ ψ) is the classical
implication, F ϕ ≡ (trueU ϕ) (ϕ will eventually hold), G ϕ ≡ ¬(F ¬ϕ) (ϕ
holds everywhere), and X ϕ ≡ (falseU ϕ) (at the next position, ϕ holds).

The next result plays a fundamental role in verification, and current re-
search still improves the practical issues behind this theoretical result.

Proposition 2.4 ([WVS83, VW94, Wol00]) In the pointwise semantics,
any LTL formula defines an ω-regular property, and the size of an equivalent
ω-automaton is exponential.

Remark 2.5 The above proposition is not stated in the continuous semantics,
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because we have chosen the strict semantics for the U-modality,5 and due to
that choice, two runs %1 = s

0,e−−→ s1 and s
0.1,e−−−→ s2 in a timed automaton with

L(s) = {p} and L(s1) = L(s2) = ∅ will not satisfy the same LTL properties in
the continuous semantics. For instance, %1 does not satisfy ‘F p’ in the continuous
semantics, whereas %2 does (a position along that run is labelled by p, eg. ‘s+0.1’).
There are some subtleties in the choice of the semantics for the U-modality, that
we will not discuss further.

y

Example 2.6 The property G (p → F q) mentioned in the introduction (with
p ≡ car.crash and q ≡ airbag.inflate) is in LTL. It is equivalent to the ω-regular
property defined by the following automaton (with a Büchi accepting condition):

true

p

q

¬p ¬q

Note that the first transition labelled by true is due to the choice of the strict
semantics for the U-modality.

y

The branching-time temporal logic CTL. The syntax of CTL [CE82]
over AP is given by the following grammar:

CTL 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E (ϕU ϕ) | A (ϕU ϕ)

where p ∈ AP.
Formulas of CTL are interpreted over configurations of a timed automaton

A = (AP, X, L, `0, E, Inv,L). Given s a configuration of A and ϕ ∈ CTL, the
satisfaction relation is defined inductively as follows, writing s |= ϕ whenever
ϕ is satisfied from s in A:

s |= p ⇔ p ∈ L(s)
s |= ¬ϕ ⇔ s 6|= ϕ

s |= ϕ1 ∨ ϕ2 ⇔ s |= ϕ1 or s |= ϕ2

s |= E (ϕU ψ) ⇔ there exists % ∈ Runs(A, s) and a position $
along % such that %[$] |= ψ, and
for every position $0 < $′ < $ along %, %[$′] |= ϕ

s |= A (ϕU ψ) ⇔ for every % ∈ Runs(A, s), there is a position $
along % such that %[$] |= ψ, and
for every position $0 < $′ < $ along %, %[$′] |= ϕ

5In the semantics of the U-modality, positions $′ and $′′ are taken in such a way that
$ < $′′ < $′. An alternative would be to assume that $ 6 $′′ 6 $′ but this yields a
less general definition.
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where $0 still denotes the initial position of the run, and where we take the
same notations as in the paragraph about LTL. Also, we make the same dis-
tinctions for the interpretation of the term position, even though this will be
less fundamental. Finally, note that, as for LTL, we could have distinguished
between finite and infinite runs, but that will not play any real role, hence
we only consider the interpretation over infinite runs.

Example 2.7 We can write that the airbag inflates each time the car crashes:

A G
�
car.crash⇒ A F airbag.inflate

�
.

Also, we can write that we can repair the machine when it fails:

A G
�
failure⇒ E F repair

�
.

y

2.3 The region automaton abstraction

In this section, we recall the classical region automaton construction [AD90,
AD94], and state some of the decidability and complexity results that can
be proven, based on that construction.

2.3.1 The region equivalence

We fix a timed automaton A = (AP, X, L, `0,Goal, E, Inv,L), and we define
M = max{|c| ∈ N | x ∼ c or x − y ∼ c constraint labelling an edge of A}.
Given two valuations v and v′ in RX

>0, we say that they are M-region equiv-
alent, and we write v ∼=M v′, whenever:

• for every clock x ∈ X, v(x) > M if and only if v′(x) > M ,

• for every clock x ∈ X, if v(x) 6 M , then bv(x)c = bv′(x)c,6 and
v(x) = bv(x)c if and only if v′(x) = bv′(x)c,

• for every pair of clocks (x, y) ∈ X2, for every integer −M 6 c 6 M ,
v(x)− v(y) 6 c if and only if v′(x)− v′(y) 6 c.7

6bαc denotes the integral part of α.
7If the timed automaton is diagonal-free, we can change this condition into: “if v(x) 6

M and v(y) 6 M then ({v(x)} 6 {v(y)} if and only if {v′(x)} 6 {v′(y)})”, where {α}
denotes the fractional part of α.
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We will give the partitions yielded by the equivalence relation ∼=3 when
there are two clocks, called x and y, in the general case (on the left) and
in the diagonal-free case (on the right).

y

x1

1

2

2

3

3

0

y

x1

1

2

2

3

3

0

A region is one piece of the partition. In the following, we may repre-
sent the abstract behaviours in the region partition as follows: while time
elapses, regions are visited following the diagonal, hence the time succes-
sor of a triangular region is a flat region, whose successor is a triangular
region, etc. When resetting a clock, we just project the region onto one
of the axes. This is illustrated by the following picture, that we will reuse
later.

time elapsing

reset to 0

Table 2.2: The region equivalence

The equivalence ∼=M has finite index, and an equivalence class of ∼=M is called
a region. We give an example of region equivalence in table 2.2. It is rather
tedious (but not really difficult) to prove that the relation ≡A defined by

(`, v) ≡A (`′, v′) ⇔
¨
` = `′

v ∼=M v′

is a time-abstract bisimulation (see table 2.3). If s is a configuration of A,
we write [s]A the equivalence class of A with respect to the equivalence ≡A.

2.3.2 The region automaton

The region automaton of the timed automatonA = (AP, X, L, `0,Goal, E, Inv,L)
is the (labelled) finite automaton Γ(A) = (AP, Q, q0, Qf , T, λ) such that:

23



Let TA = (S, s0,→) be the timed transition system associated with the
timed automaton A. A relation R ⊆ (S×S) is a time-abstract bisimulation
whenever it is a symmetric relation satisfying the two following conditions:

• if s1
e−→ s′1 and (s1, s2) ∈ R, there exists s′2 ∈ S such that s2

e−→ s′2
and (s′1, s

′
2) ∈ R;

• if s1
t1−→ s1 + t1 for some t1 ∈ R>0 and (s1, s2) ∈ R, there exists

t2 ∈ R>0 such that s2
t2−→ s2 + t2 and (s1 + t1, s2 + t2) ∈ R.

This is a simplified definition (for instance, usually, we consider actions
labelling edges, not the edges themselves), but it is convenient (and suffi-
cient) for our purpose.

Table 2.3: Time-abstract bisimulation

- Q = (L× RX
>0)/ ≡A,

- q0 = [s0]A (where s0 = (`0,0X)),

- Qf =
¦
[s]A | loc(s) ∈ Goal

©
,

- q
e−→ q′ if there is a mixed move s

t,e−→ s′ in TA
with q = [s]A and q′ = [s′]A,8

- λ(q) = L(s) if q = [s]A.

We extend the notions of runs, and the various notations to finite au-
tomata in a straightforward way. Furthermore, we say that a transition
q

e−→ q′ of Γ(A) is implicitly labelled by a constraint g whenever JgK =

{val(s+ t) ∈ RX
>0 | s

t,e−→ s′ is a mixed move in TA}.

Thanks to the time-abstract bisimulation property mentioned before, it
is not difficult to prove the following proposition.

Proposition 2.8 Let A be a timed automaton with initial configuration s0.

• There is a finite run in Runsaccf (A, s0) if and only if there is a finite run
in Runsaccf (Γ(A), [s0]A).

• There is a run in Runs(A, s0) satisfying an ω-regular property ϕ if and
only if there is a run in Runs(Γ(A), [s0]A) satisfying ϕ.

8Because ≡A is a time-abstract bisimulation, this condition is equivalent to “for every
s such that [s]A = q, there is a mixed move s

t,e−−→ s′ with [s′]A = q′”.
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• All runs in Runs(A, s0) satisfy an ω-regular property ϕ if and only if
all runs in Runs(Γ(A), [s0]A) satisfy ϕ.

Remark 2.9 Using language-theoretic terms (cf. [AD94]), the timed automaton
A accepts a timed word w = (a1, τ1)(a2, τ2) · · · (an, τn) if and only if the finite
automaton Γ(A) accepts the (finite untimed) word untime(w) = a1a2 · · · an.

y

Example 2.10 We illustrate the construction on the timed automaton A:

`0

(y<2)

`1

(y62)

`2

(y<1)

`3

(y61)

`4

(y<1)

1<y<2

e1

y=2,y:=0

e2

x>2,x
:=

0

e20

0<
y<

1
e3

y=1,y:=0

e4

x>1,x:=0e40

The set of regions for that (diagonal-free) automaton is:
y

x1

1

2

2

region 1<x<y<2

0

The region automaton Γ(A) of A is the following finite automaton:

`0,x=y=0

`3,0<x=y<1 `1,1<x=y<2

`4,0<x<1,y=0 `2,1<x<2,y=0

`0,x=0,0<y<1

`3,0<x<y<1 `1,1<x<y<2

e3 e1

e4 e2

e40 e20

e3 e1

e4 e2

It is easy to match every run in A onto Γ(A), and vice-versa. Furthermore the
existence of a run satisfying the LTL property ‘G F black ∧ G F grey’ in Γ(A)
implies the existence of a run satisfying that property in A.

y
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2.3.3 Decidability and complexity results

Now it is not difficult to compute that the number of regions of a timed
automaton A is bounded by (2M + 2)(|X|+1)2 in the general case, and by
2|X| · |X|! · (2M + 2)|X| in the diagonal-free case. In both cases, there are
thus exponentially many regions. However, in general the finite automaton
Γ(A) needs not be computed, and non-deterministic algorithms can be used
to check basic reachability, safety or ω-regular properties. Hence we get the
following result, which has been and is still fundamental for the development
of verification techniques for timed systems.

Theorem 2.11 ([AD90, AD94]) Model-checking reachability, safety, or ω-
regular properties in timed automata is decidable, and PSPACE-complete.

The PSPACE-hardness can be obtained by simulating a linearly-bounded Tur-
ing machine. This is not our purpose to give more details, we thus better
refer to [AD94, AL02].

More generally, we can mix classical complexity results for the model-
checking of LTL and CTL over finite automata [CES83, SC85] and the above
region automaton construction to get the following theorem.

Theorem 2.12 Model-checking LTL or CTL properties in timed automata is
PSPACE-complete.

Note that even though the two model-checking problems belong to the same
complexity class, the model-checking of LTL is harder, because it is both
exponential in the size of the system and in the size of the formula, whereas
the model-checking of CTL is polynomial in the size of the formula and ex-
ponential in the size of the system.
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Chapter 3

Reachability analysis in timed
systems

3.1 Introduction

By their very definition timed automata describe (uncountable) infinite state-
spaces. Thus, algorithmic verification relies on the existence of exact finite
abstractions. In the original work by Alur and Dill, the so-called region au-
tomaton construction provides such an abstraction. However, whereas well-
suited for establishing decidability of problems related to timed automata,
the region automaton is highly impractical from a tool implementation point-
of-view. Instead, most real-time verification tools (like CMC 1 [LL98], Kronos
2 [DOTY96], and Uppaal 3 [BDL+06]) apply abstractions based on so-called
zones, which in practice provide much coarser abstractions.

In this chapter, we review the most basic methods that can be used for
analysing timed automata. We focus on simple reachability properties (or
equivalently on basic safety properties). We first describe the two forward
and backward paradigms, that are not specific to the analysis of timed sys-
tems, and then apply these two methods to the timed automata framework.
We discuss in particular the termination and the correctness of the two ap-
proaches. For the case of the forward analysis, abstraction operators need
to be used to ensure termination of the computation, we thus describe the
abstraction operator which is commonly used, and finally present several
improvements thereof.

1http://www.lsv.ens-cachan.fr/∼fl/cmcweb.html/
2http://www-verimag.imag.fr/TEMPORISE/kronos/
3http://www.uppaal.com/
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3.2 Checking reachability properties:

two general methods

There are two main approaches for checking reachability (or safety) properties
in systems (not only timed systems, but all kinds of systems). We describe
these two approaches shortly and apply them to timed automata in the next
section.

• Forward analysis. The general idea is to compute configurations which
are reachable from the initial configuration within 1 step, 2 steps, etc.
until final (or goal) configurations are computed, or until the computa-
tion terminates. The forward analysis computation can be schematized
as below.

Init

Final

• Backward analysis. The general idea is to compute configurations from
which we can reach final configurations within 1 step, 2 steps, etc.
until the initial configuration is computed, or until the computation
terminates. The backward analysis computation can be represented as
below.

Final

Init
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These two generic approaches are used in many contexts, including the anal-
ysis of models like counter machines, hybrid systems, etc. Of course, given a
class of systems, specific techniques (eg. abstractions, widening operations,
etc.) can be used for improving the computations. We will now focus on
timed automata and explain how these two approaches can be implemented
in that framework.

3.3 Reachability analysis in timed automata:

the zone symbolic representation

Timed automata have infinitely (and even uncountably) many configura-
tions, it is thus necessary to use symbolic representations for doing the
computations. For the discussion which follows we fix a timed automaton

A = (X,L, `0,Goal, E, Inv). Given an edge e =
�
`

g,a,Y−−−→ `′
�

of A, we need to

be able to compute its effects on a set of valuations. More precisely, if W is
a set of valuations, we define the two following sets of valuations:8>>><>>>:

Poste(W ) = {v′ ∈ RX
>0 | ∃v ∈ W ∃t ∈ R>0 such that v + t |= g

and v′ = [Y ← 0](v + t)}

Pree(W ) = {v ∈ RX
>0 | ∃v′ ∈ W ∃t ∈ R>0 such that v + t |= g

and [Y ← 0](v + t) = v′}

A valuation v′ is in Poste(W ) whenever there exists some valuation v ∈ W
and some t ∈ R>0 such that (`, v)

t,e−→ (`′, v′) is a mixed move in TA. Similarly
a valuation v is in Pree(W ) whenever there exists some valuation v′ ∈ W and

some t ∈ R>0 such that (`, v)
t,e−→ (`′, v′) is a mixed move in TA.

It is worth noticing that if W is a zone, i.e., a set of valuations defined
by a general clock constraint, then for every transition e of A, Poste(W ) and
Pree(W ) are both zones. For analysing timed automata, zones are the most
basic and commonly used symbolic representation.

In the following, we will need to decompose the computation of Poste and
Pree in several simpler steps, hence we define the following operations on
zones (or more generally on sets of valuations):

• Future of W :
−→
W = {v + t | v ∈ W and t ∈ R>0}

• Past of W :
←−
W = {v − t | v ∈ W and t ∈ R>0}

• Intersection of W and W ′: W ∩W ′ = {v | v ∈ W and v ∈ W ′}
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• Reset to zero of W with respect to the set of clocks Y :
[Y ← 0]W = {[Y ← 0]v | v ∈ W}

• Inverse reset to zero of W with respect to the set of clocks Y :
[Y ← 0]−1W = {v | [Y ← 0]v ∈ W}

It can be shown that all those elementary operations preserve zones, and
moreover, they allow to express the Poste and Pree operators:8><>:

Poste(W ) = [Ye ← 0](
−→
W ∩ JgeK)

Pree(W ) =
←−−−−−−−−−−−−−−−−−−−−−−−
[Ye ← 0]−1(W ∩ JYe = 0K) ∩ JgeK

3.4 The DBM data structure

The most common data structure for representing zones is the so-called DBM
data structure. This data structure has been first introduced in [BM83] and
then set in the framework of timed automata in [Dil90]. Several presentations
of this data structure can be found in the literature, for example in [CGP99,
Ben02, Bou04].

A difference bound matrix, we shall write DBM for short, for a set X =
{x1, . . . , xn} of n clocks is an (n+ 1)-square matrix of pairs

(≺,m) ∈ V = ({<,6} × Z) ∪ {(<,∞)}.

A DBM M = (≺i,j,mi,j)06i,j6n defines the following subset of RX
>0 (if v ∈

RX
>0, v is the ‘canonical’ valuation over X ∪ {x0} — where x0 is a fresh

clock — such that v(x) = v(x) for every x ∈ X, and v(x0) = 0; In the
following we may write v instead of v):

{v : X → R>0 | ∀ 0 6 i, j 6 n, v(xi)− v(xj) ≺i,j mi,j}

where γ < ∞ simply means that γ ∈ R>0 (without any constraint on γ).
This subset of RX

>0 is a zone and will be denoted by JMK. To simplify
the notations, we now assume that all constraints are non-strict, so that
coefficients of DBMs will simply be elements of Z ∪ {∞}.

Example 3.1 We consider the zone over the set of clocks X = {x1, x2} defined
by the general clock constraint

(x1 > 3) ∧ (x2 6 5) ∧ (x1 − x2 6 4).

This zone, depicted on the next picture on the right, can be represented by the
DBM on the left.
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x0 x1 x2

x0

x1

x2

�
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

�
x2

x13

5

x1−x2=4

y

A zone can have several representations using DBMs. For example, the
zone of the previous example can equivalently be represented by the DBM

x0 x1 x2

x0

x1

x2

�
0 −3 0
9 0 4
5 2 0

�

However there is a normal form for DBMs, which tightens all possible con-
straints. This can be done using a Floyd-Warshall algorithm on the matrix
(viewed as the adjacency matrix of a weighted graph). A zone has a unique
representation as a DBM in normal form. Tests like emptiness checks or com-
parisons of zones can be done syntactically on the DBMs in normal form.
For example, a zone Z is included in a zone Z ′ if the DBM in normal form
representing Z is smaller than the DBM in normal form representing Z ′.4 Fi-
nally all operations on zones described in section 3.3 can easily be done using
DBMs, details can be found in all previously mentioned papers on DBMs.

Let us just mention that the DBM data structure is the most basic
data structure which is used for analysing timed systems, some more in-
volved BDD-like data structures can also be used, for example CDDs (which
stands for ‘Clock Difference Diagrams’) [LPWY99], or more recently federa-
tions [DHGP04, Dav05].

3.5 Backward analysis

We first focus on the backward analysis computation, which will surprisingly
turn out to be the simplest to analyse. We fix a timed automaton A =
(X,L, `0,Goal, E, Inv).

4The order is taken coefficient by coefficient.
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3.5.1 Backward symbolic transition system

The backward symbolic transition system associated with A is denoted by
‘⇐’ and is defined inductively as follows:

e =
�
`1

g,a,Y−−−→ `2

�
∈ E W1 = Pree(W2)

(`2,W2)⇐ (`1,W1)

Obviously, if we write ⇐∗ for the reflexive and transitive closure of ⇐, we
have that (`′,W ′) ⇐∗ (`,W ) if and only if for every v ∈ W , there exists
v′ ∈ W ′ and a run in A from (`, v) to (`′, v′).

The backward analysis algorithm then consists in computing iteratively
the following sets of symbolic configurations:

Sb
0 = {(`,RX

>0) | ` ∈ Goal}
Sb

1 = Sb
0 ∪ {(`,W ) | ∃(`′,W ′) ∈ Sb

0 such that (`′,W ′)⇐ (`,W )}
...

Sb
p+1 = Sb

p ∪ {(`,W ) | ∃(`′,W ′) ∈ Sb
p such that (`′,W ′)⇐ (`′,W ′)}

...

until either (i) the computation stabilizes, or (ii) a symbolic state is com-
puted, which contains the initial configuration of A. To help event (i) hap-
pen, it is possible to add the following inclusion check: if (`,W ) ∈ Sb

p+1

and if there exists (`,W ′) ∈ Sb
p such that W ⊆ W ′ (or even if there exist

(`,Wi) ∈ Sb
p for finitely many i’s such that W ⊆ S

iWi), then do not in-
clude (`,W ) in Sb

p+1. The procedure answers ‘Yes’ in case (ii) and ‘No’ in
case (i) ∧ ¬(ii).

3.5.2 Termination and correctness

The backward analysis computation enjoys the following nice property, which
can be seen as a consequence of the correctness of the backward analysis
algorithm for TCTL [HNSY94]. However, we will give below a simple and
direct proof of that result.

Theorem 3.2 The backward computation terminates and is correct with re-
spect to reachability properties.5

5I.e. Goal is reachable if and only if it is declared as reachable by the backward
computation.
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Correctness is immediate as the computation is exact (as opposed to over-(or
under-)approximate). The inclusion check does not cause any trouble as any
state reachable from a configuration belonging to a symbolic state that is
not added due to that test is actually already reachable from the previous
symbolic state that was computed.

Termination needs some additional argument, that we sketch here. As-
sume that Ri’s (for 1 6 i 6 p) are regions of A (as defined in page 23),
then:

•
←−−−−

p[
i=1

Ri is a finite union of regions;

• [Y ← 0]−1

 
p[

i=1

Ri

!
is a finite union of regions (for any set of clocks Y );

• g ∩
 

p[
i=1

Ri

!
is a finite union of regions if g is a clock constraint of A.

These properties altogether imply that each of the symbolic configurations
(`,W ) that are added to Sb

i is such that W is a finite union of regions. As
there are finitely many regions, the sequence (Sb

i )i>0 stabilizes, hence the
termination of the backward computation.

Backward analysis may appear as an accurate method for analysing timed
automata, but in practice, some tools (like Uppaal) prefer using a forward
analysis computation. One of the reasons comes from the use of (bounded)
integer variables that are really helpful for modelling real systems. Backward
analysis is then not suitable for dealing with arithmetical operations: for
example if we know in which interval lies the variable i and if we know that i
is assigned the value j.k + `.m, it is not easy to compute the possible values
of variables j, k, `, m (apart from listing all possible tuples of values). For
this kind of operations, forward analysis is much more suitable.

3.6 Forward analysis

In this section we focus on the forward analysis computation, which will
require the development of abstractions, and more effort for proving its cor-
rectness. We fix a timed automaton A = (X,L, `0,Goal, E, Inv).
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3.6.1 Forward symbolic transition system

The forward symbolic transition system associated with A is denoted by ‘⇒’
and is defined inductively as follows:

e =
�
`1

g,a,Y :=0−−−−−→ `2

�
∈ E W2 = Poste(W1)

(`1,W1)⇒ (`2,W2)

Obviously, if we write ⇒∗ for the reflexive and transitive closure of ⇒, we
have that (`,W ) ⇒∗ (`′,W ′) if and only if for every v′ ∈ W ′, there exists
v ∈ W and a run in A from (`, v) to (`′, v′).

The forward analysis computation then consists in computing iteratively
the following sets of symbolic configurations:

S f
0 = {(`0,0X)}
S f

1 = S f
0 ∪ {(`′,W ′) | ∃(`,W ) ∈ S f

0 such that (`,W )⇒ (`′,W ′)}
...

S f
p+1 = S f

p ∪ {(`′,W ′) | ∃(`,W ) ∈ S f
p such that (`,W )⇒ (`′,W ′)}

...

until either (i) the computation stabilizes, or (ii) a symbolic state is com-
puted, which contains a final configuration of the timed automaton (i.e., a
configuration of the form (f, v) with f ∈ F ). To help event (i) happen, it is
possible to add an inclusion check, as in the backward analysis computation.
The procedure answers ‘Yes’ in case (ii) and ‘No’ in case (i) ∧ ¬(ii).

3.6.2 Discussion on the termination and correctness

The forward analysis gives a correct answer, but it may not terminate. An
example of automaton in which the forward computation does not terminate
is given below. The zones that are computed by the above procedure are
represented on the right part of the figure, and it is easy to check that the
computation will never terminate.

`

(y61)

x>1∧y=1,a,y:=0
y

x1 2 3 4 5 6

1
···
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To overcome this problem, it is necessary to use some abstraction operators.
Several have been proposed in [DT98]: for instance, if Z and Z ′ are computed
for the location `, they are replaced by the smallest zone containing both Z
and Z ′; this approximation is called the convex-hull abstraction6, it does
not ensure termination and is only semi-correct, in the sense that a location
announced as reachable might not be reachable (the convex-hull abstraction
is an over-approximation). The most interesting abstraction studied in this
paper is the extrapolation operator. We will present it now, but we first need
to formalize a little more the forward analysis procedure. We follow the lines
of [BBFL03, BBLP04] and define (abstract) symbolic transition systems.

3.6.3 Abstract forward symbolic transition systems

Let a be an abstraction operator (possibly partially) defined on the sets of
valuations (a associates to sets of valuations sets of valuations). We define
the abstract forward symbolic transition system ‘⇒a’ in the following way:

(`,W )⇒ (`′,W ′) W = a(W )
(`,W )⇒a (`′, a(W ′))

This transition system gives naturally rise to the following forward compu-
tation in A.

S f,a
0 = {(`0, a({0X}))}
S f,a

1 = S f,a
0 ∪ {(`′,W ′) | ∃(`,W ) ∈ S f,a

0 such that (`,W )⇒a (`′,W ′)}
...

S f,a
p+1 = S f,a

p ∪ {(`′,W ′) | ∃(`,W ) ∈ S f,a
p such that (`,W )⇒a (`′,W ′)}

...

with the same halting conditions (and inclusion checks) as previously.

3.6.4 Soundness criteria

The abstraction operator a is said correct with respect to reachability prop-
erties in A whenever the following holds:

if (`0, a({0X}))⇒∗
a (`,W ) then there exists a run

(`0,0X)→∗ (`, v) with v ∈ W in A
6It is a language abuse, because it is not really the convex hull of the two zones, but it

is the smallest zone containing the convex-hull of the two zones.
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The abstraction operator a is said complete with respect to reachability
properties whenever the following holds in A:

if (`0,0X)→∗ (`, v) is a run in A then
(`0, a({0X}))⇒∗

a (`,W ) for some W with v ∈ W

Remark 3.3 Note that these two notions could be generalized to more general
properties than reachability properties, but we follow our lines and concentrate on
reachability properties.

y

Our aim is to define abstraction operators a such that the four following
properties hold:

(Finiteness) {a(W ) | a defined on W} is finite
(this ensures termination of the “abstract” forward computation)

(Correctness) a is correct with respect to reachability

(Completeness) a is complete with respect to reachability

(Effectiveness) a is “effective”

The three first properties are properly defined, the last one is more informal.
The effectiveness criterion expresses that the abstraction has to be easily
computable. In timed automata literature this is most of the time interpreted
as “a has to be defined for all zones and a(Z) has to be a zone when Z is a
zone”. Note that other effectiveness criteria could be proposed, but that is
the one we choose here.

3.6.5 The extrapolation operator

The abstraction operator which is commonly used is called extrapolation, and
sometimes normalization [Ben02] or approximation [Bou04]. We will note it
here Extrak, it is defined up to a constant k as follows: if Z is a zone, Extrak(Z)
is the smallest k-bounded zone7 which contains Z. This operation is well-
defined on DBMs: if M is a DBM in normal form representing Z, a DBM
representing Extrak(Z) is obtained from M where each coefficient (≺;m)
with m < −k is replaced by (<;−k) and all coefficients (≺;m) with m > k is
replaced by (<;∞), all other coefficients are unchanged. We write Extrak(M)
for this transformed DBM: it holds that JExtrak(M)K = Extrak(JMK).

7A k-bounded zone is a zone defined by a k-bounded clock constraint.
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Example 3.4 Consider again the zone introduced in example 3.1. As we have
already mentioned, it can be represented by the DBM in normal form on the left
and its 2-extrapolation is the DBM on the right (where we again do not mention
the comparison operators):

M =

�
0 −3 0
9 0 4
5 2 0

�
and Extra2(M) =

�
0 −2 0

+∞ 0 +∞
+∞ 2 0

�

They are both represented on the picture below.

3

x2

x1

5

2

2

JMK

JExtra2(M)K

y

Obviously,

• Extrak is a finite abstraction operator because there are finitely many
DBMs whose coefficients are either (<;∞) or some (≺;m) with ≺ ∈
{<; 6} and −k 6 m 6 k;

• the computation of Extrak is effective and can easily be done using
DBMs;

• Extrak is a complete abstraction with respect to reachability because
for every zone Z, Z ⊆ Extrak(Z).

The only point that needs to be carefully studied is the correctness of Extrak:
of course, not all constants k yield correctness, but we have to choose such a
constant k carefully, so that the abstraction operator be correct with respect
to reachability properties. We now discuss in details this important aspect.

3.6.6 Correctness of the extrapolation operator

Before 2003, several attempts of proofs of the following theorem can be found
in the literature, but they appear to be all incomplete or/and incorrect.
We have thus written a complete and detailed correctness proof (in [Bou03,
Bou04] and then in [BBFL03]), in the restricted context of diagonal-free
timed automata. We will not detail the proof here, which is actually rather
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technical. The main stream of the proof is to prove that any zone computed
by the abstract forward transition system does not intersect a region that
does not intersect a real reachable zone in the non-abstract forward transition
system.

+ Theorem 3.5 ([Bou03, Bou04]) Let A be a diagonal-free timed automa-
ton. Take k the maximal constant appearing in the constraints of A. Then
Extrak is a correct abstraction with respect to reachability properties in A.

Remark 3.6 Theorem 3.5 can be refined, and a refined extrapolation operator
can be used, which uses one constant kx per clock x ∈ X, instead of one global
constant k for all the clocks. Writing K for the mapping x 7→ kx, we define the
extrapolation operator ExtraK that transforms any DBM M = (≺i,j ;mi,j)06i,j6n

by replacing coefficient (≺i,j ;mi,j) by (<;∞) if mi,j > K(xi), and by (<;−kj) if
mi,j < −K(xj). Theorem 3.5 also holds for ExtraK when for every clock x, K(x)
is the maximal constant to which x is compared in A.

y

Surprisingly this theorem does not extend to timed automata with gen-
eral clock constraints. Indeed, consider the timed automaton Abug depicted
below. For every integer k, the extrapolation operator Extrak is not correct
with respect to reachability properties for Abug. One can even also prove
that, for automaton Abug, there is no abstraction operator Abs satisfying
the four above-mentioned criteria (finiteness, correctness, completeness and
effectiveness). Some details are given in table 3.1.

Abug

`0 `1 `2 `3

`4`5`6`7

Error

x363

x1,x3:=0

x2=3

x2:=0

x1=2,x1:=0

x2=2,x2:=0

x1=2,x1:=0

x2=2

x2:=0

x1=3

x1:=0

x2>x1+2

x4<x3+2

The loop

+ Proposition 3.7 ([Bou03, Bou04]) Consider the timed automaton Abug

defined before. For every integer k, Extrak is not a correct abstraction with
respect to reachability properties in Abug. Furthermore, there is no abstraction
operator a that over-approximates zones, and that can be finite, effective and
correct with respect to reachability properties in Abug.
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We explain the problem with automaton Abug. The zone Zα which is
computed by a forward analysis when reaching the location ‘Error’ after
having taken α times the loop is defined by the constraints below (on the
left). Fixing an integer k, taking α large enough the extrapolated zone is
also described below (on the right).

Zα :

8>><>>:
1 6 x2 − x1 6 3
1 6 x4 − x3 6 3
x3 − x1 = 2α+ 5
x4 − x2 = 2α+ 5

Extrak(Zα) :

8<: 1 6 x2 − x1 6 3
1 6 x4 − x3 6 3
x3 − x2 > k

Note that if v ∈ Zα, then in particular v(x2) − v(x1) = v(x4) − v(x3).
On the other hand, there are valuations v ∈ Extrak(Zα) such that v(x2)−
v(x1) 6= v(x4) − v(x3). Obviously, the zone Zα does not intersect the
constraint x2 − x1 > 2 ∧ x4 − x3 < 2, which implies that the location
‘Error’ is not reachable. However, Extrak(Zα) intersects the constraint
x2 − x1 > 2 ∧ x4 − x3 < 2 (for α large enough), which implies that the
location ‘Error’ is computed as reachable by the abstract forward analysis
that uses the abstraction operator Extrak (for any integer k). The problem
with automaton Abug comes from the use of diagonal constraints on the
transition leading to location ‘Error’.

Table 3.1: Timed automaton Abug makes the abstract forward analysis fail

Note however that for timed automata with three clocks (and possibly di-
agonal constraints), it is possible to find a constant k such that Extrak is
correct with respect to reachability properties (the constant k may however
be larger than the maximal constant appearing in a constraint of the automa-
ton) [Bou04]. In the general case (more than three clocks), a way of handling
diagonal constraints is to remove first (or on-the-fly) diagonal constraints as
we know they can be removed (see [BDGP98]). However this leads to an
unavoidable exponential blowup in the size of the model, as stated by the
theorem below, hence in the length of the forward iterative computation.

+ Theorem 3.8 ([BC05]) Timed automata with diagonal constraints are ex-
ponentially more concise8 than timed automata without diagonal constraints.

8This means that we can find a family of timed automata with diagonal constraints
(An)n∈N such that the size of An is polynomial in n, and for every n ∈ N, any timed
automaton Bn without diagonal constraints that recognizes the same language as An will
have size at least exponential in n.
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In [BLR05b], together with François Laroussinie and Pierre-Alain Reynier
(LSV/CNRS & ENS Cachan, France), we have proposed an algorithm to
analyse timed automata with diagonal constraints without first removing
diagonal constraints in the model. This algorithm is based on the abstraction-
refinement paradigm [Kur94], and first applies the abstract forward analysis
algorithm (that is correct for diagonal-free timed automata), and in case a
path is found, that witnesses the reachability property, we check whether
this is a real witness for the reachability property. In case it is, we have
proven that the reachability property was satisfied. In case it is a spurious
witness (i.e., no real run can be read on that path), we look for the diagonal
constraint that is ‘responsible’ for this incorrect answer (there must be one,
thanks to Theorem 3.5), we remove it, and we start again the computation on
the modified automaton. It is worth noticing that this diagonal constraint
is non-trivial to be found, as there might be several (sometimes counter-
intuitive) reasons for a path to be spurious, see [BLR05b] for details.

3.6.7 Improving the extrapolation operator

In this subsection, we focus on diagonal-free timed automata. We have seen
in Theorem 3.5 that the abstraction operator Extrak where k is the maximal
constant appearing in the timed automaton can actually be improved. We
will briefly present two ideas for improving the abstract forward computation.
They are orthogonal, always improve the basic extrapolation operator, and
can be applied together.

A location-dependent abstraction operator. The first improvement
comes from the observation that the use of an extrapolation constant might
not really be relevant in all the parts of an automaton. For instance, con-
sider the timed automaton depicted below. The basic abstraction operator
considers that the maximal constant (for clock y, if — following remark 3.6 —
we consider one constant per clock) used in the extrapolation operator be
106. However, in location `1, from all configurations (`1, v) and (`1, v

′) with
v(x) = v′(x) and v(y), v′(y) > 5, the set of reachable states is identical (be-
cause the clock y is reset before its value is checked larger than 106), somehow
stipulating the irrelevance of constant 106 in location `1.
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`0 `1

(x614)

`2

(x614)

`3

x65

y>5

x:=0

y:=0

y>106

We have developed a method that computes one extrapolation constant
per pair ‘(clock,location)’. The computation of such constants is easy, and
reduces to computing (least) solutions of difference bound inequations.

Each time there is a constraint that compares a clock x to a constant c
on a transition leaving location `, we add a constraint k`

x > c to the system
of inequations, because the precise value of clock x up to c is useful to know
whether the transition can be taken or not. Each time there is a transition
that does not reset clock x between locations ` and `′, we add a constraint
k`

x > k`′
x , expressing that if a constant has to be distinguished from location

`′, then it also has to be distinguished from `, because clock x is not reset.
We do not add such a constraint if clock x is reset (as this somehow resets the
dependence). To any timed automaton A we associate that way a system
of inequations over variables (k`

x)(x,`)∈X×L, that we denote SA. Taking a
tuple K = (α`

x)(x,`)∈X×L of integers, which is a solution to the above system,
we define in a natural way the extrapolation operator ExtraK that takes
those constants as references (the choice of the extrapolation constant hence
depends on the current location).

+ Theorem 3.9 ([BBFL03]) Let A be a diagonal-free timed automaton. Con-
sider the system of inequations SA as defined above, and consider K a (or
the least) solution to this system. Then ExtraK is a correct abstraction with
respect to reachability properties in A.

Example 3.10 Consider again the previous automaton. The system of inequa-
tions that corresponds to that automaton is:¨

k`0
x > 5, k`1

x k`1
x > 14, k`2

x k`2
x > 14, k`3

x k`3
x > k`0

x

k`0
y > k`1

y k`1
y > k`2

y k`2
y > 5 k`3

y > 106, k`0
y

«
The least solution to that system is K = (α`i

x ) with α`i
x = 14 for every i ∈

{0, 1, 2, 3}, α`i
y = 5 for every i ∈ {0, 1, 2}, and α`3

y = 106. The abstract for-
ward analysis computation will be much shorter if we use the abstraction operator
ExtraK than if we use the abstraction operator Extra106 .

y
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Remark 3.11 Note that the system SA always has a solution, for instance the
one that associates to every pair (x, `) the maximal constant that appears in the
timed automaton. Moreover, due to the form of the system of inequations, it also
always has a (unique) least solution.

Furthermore notice that this method has originally been developed for the
larger class of updatable timed automata [BDFP04]. For this general undecidable
class of models, the existence of a solution to the system SA yields a correct
algorithm for checking reachability properties, and moreover, for any decidable
subclass described in [BDFP04], there is a solution to the system SA.

y

Distinguishing between clock constraints. We first explain the basic
idea of this new abstraction on a very simple example. Consider a zone
over a single clock x defined by the constraint a 6 x 6 b where a and b
are integers. To detect whether an upper-bounded constraint x 6 c can be
satisfied, it is sufficient to know that a 6 c. The position of b with respect to
c is not relevant. Hence, if only upper-bounded constraints are used, the idea
is to abstract away this value, and to abstract the previous zone into the one
defined by the constraint a 6 x. Similarly, to detect whether a lower-bounded
constraint x > c can be satisfied, it is sufficient to know that c 6 b. The
position of a with respect to c is not relevant. Hence, if only lower-bounded
constraints are used, the idea is to abstract away this value, and to abstract
the previous zone into the one defined by the constraint x 6 b.

This idea can be formalized and generalized as follows: if A is a timed
automaton, to every clock x of A, we associate two constants L(x) and U(x)
which respectively represent the maximal lower and upper bounds to which
x is compared to in A. They are called the lower and upper bound functions
of A. Then, if M = (≺i,j;mi,j)06i,j6n is a DBM in normal form, we define
the DBM ExtraLU(M) = (≺′i,j;m′

i,j) as follows:

(≺′i,j;m′
i,j) =

8>><>>:
(<;∞) if either mi,j > L(xi), or −m0,i > L(xi),

or (i > 0 and −m0,j > U(xj))
(<;−U(xj)) if i = 0 and −m0,j > U(xj)

mi,j otherwise

It is rather easy to get convinced that for every zone Z, it holds that Z ⊆
ExtraK(Z) ⊆ ExtraLU(Z) if K(x) = max(L(x), U(x)) for every clock x ∈ X.
Hence if we use the abstraction operator ExtraLU instead of ExtraK in the
forward analysis computation, it will always terminate faster.

Example 3.12 We consider the zone Z defined by the constraints

2 6 x1 6 4 ∧ 0 6 x2 − x1 6 2
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We assume L(x1) = U(x1) = K(x1) = 1, and that L(x2) = 1, U(x2) = K(x2) = 6.
The abstracted zones ExtraK(Z) and ExtraLU (Z) are depicted below.

x2

x1

L(x2)=1

Z

ExtraKM(Z)

ExtraLU (Z)

L(x1)=U(x1)=1

2

U(x2)=6

y

+ Theorem 3.13 ([BBLP04, BBLP05]) Let A be a diagonal-free timed au-
tomaton. Define the lower and upper bound functions L and U of A. Then
ExtraLU is a correct abstraction with respect to reachability properties in A.

This is worth noticing that this abstraction is correct with respect to reach-
ability properties, but that we may be very careful if one wants to use it
for checking other kinds of properties. Indeed, the correctness proof of the
above theorem relies on a notion of time-abstract simulation (which does not
preserve deadlock properties), whereas the proof of eg. Theorem 3.5 relied
on a stronger notion of time-abstract bisimulation.

Remark 3.14 Note that the inclusion check used for stopping earlier the for-
ward computation together with the use of the abstraction operator ExtraLU en-
compasses the domination point trick used for improving the analysis of jobshop
scheduling problems [AM01, AAM06].

y

Practical improvements. These two coarser abstraction operators have
been implemented in the tool Uppaal (since the version 3.4.2 of the tool). Im-
provements in the performance have been rather impressive, with a speed-up
of approximately 20% of the analysis times. We do not report the experi-
ments here but better refer to [BBLP05].

3.7 Conclusion

In this chapter, we have rather briefly presented works done for improving
the verification of basic properties (like reachability properties) in timed au-
tomata. These works have mostly focused on the development of algorithms
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and abstractions for the analysis of timed automata. The basic algorithms
have been presented, together with a commonly used symbolic representa-
tion. We have also reported some abstractions which have yielded much
improvement in the practical verification of timed systems (they are now
standard options in the tool Uppaal). This work stems from collaborations
started during my post-doctoral stay at Aalborg Universitet (Denmark) in
2002. The works on the abstraction operators have been done in collabo-
ration with Gerd Behrmann, Emmanuel Fleury, Kim G. Larsen, and Radek
Pelànek.

Since then, I am not aware of the development of any other abstraction
operators that have improved that much the analysis of timed automata.
In that area, works have mostly focused on the development of better data
structures for representing zones, and on algorithmic ideas to improve the
basic operations on zones (see for instance the work on federations made by
the Uppaal team [DHGP04, Dav05]).
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Chapter 4

Linear-time temporal logics for
real-time systems

4.1 Introduction

In the previous chapter, we have seen techniques developed for verifying ba-
sic properties (like reachability, safety, etc.) in timed automata. These tech-
niques extend to untimed specification languages like LTL [Pnu77], but do
not straightforwardly extend to more involved properties that express timing
constraints. For instance, one would like to express bounded-response time
properties like ‘the airbag inflates within 5 ms after the car crashes’, which
imposes not only a constraint on the sequence of events that happen, but
also on the delays between those events. Timed automata are adequate to
represent timed systems, but not that much for representing properties of
systems. Indeed, if A is a timed automaton representing the system, and
P a timed automaton representing the property, verifying that A satisfies
the property P corresponds to checking that all behaviours of A are also
behaviours of P . This is an inclusion question, and that problem is unfor-
tunately undecidable for timed automata [AD94]. Of course, one can then
model undesired behaviours (i.e. the negation of the property we want to
verify) in a timed automaton P , in which case we now need to check that
there is no joint behaviours inA and P (like in test automata, see [ABBL03]),
but this is actually not possible to express that way properties like response
properties.

Following the development of temporal logics in model-checking of finite-
state systems [Pnu77, QS82, SC85, CES86] (cf. section 2.2.2), timed tem-
poral logics have been proposed, which extend classical temporal logics with
timing constraints. There are several ways of expressing such constraints, a
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standard one consists in constraining temporal modalities. For instance, one
can write a formula like

G (car.crash→ F65ms airbag.inflate)

to express the above-mentioned quantitative property of the airbag. Sev-
eral timed extensions of CTL [CES86] and LTL [Pnu77] have been proposed,
and TCTL, a natural extension of CTL, has been first proven suitable (from
a decidability point-of-view) for model-checking purposes [ACD90, ACD93,
HNSY94]. On the contrary, model-checking natural timed extensions of LTL,
like MTL [Koy90] or TPTL [AH89], is very hard [AH93, Hen98, OW05].

In this chapter our point is not to discuss the advantages or disadvantages
of the branching-time vs the linear-time paradigms (for that we refer to
eg. [Var98, Var01, NV07]), nor it is to give an exhaustive overview of all
the works on timed temporal logics. It is rather to focus on the linear-time
framework, which has generated quite a wide range of works these last few
years in the timed systems community, and to give a comprehensive overview
of the expressiveness and decidability of main linear-time timed temporal
logics.

After having presented several logics extending LTL with timing con-
straints in section 4.2, we will present a first expressiveness result that had
been conjectured in the early nineties, and that we have proven recently
(section 4.3). Then, we will turn to the decidability of those logics (for the
classical model-checking and satisfiability problems), and show that it is sel-
dom decidable and always difficult! We will explain why this is actually the
case, by informally showing how we can simulate channel machines using
linear-time timed temporal logics (section 4.4). We will end this chapter
(section 4.5) with a rather long section on fragments of logics that have been
studied, yielding much more interesting decidability and complexity results.

4.2 Syntax and semantics of linear-time timed

temporal logics

In this section, we present the logics we will focus on in the whole chapter.
All these logics extend the logic LTL [Pnu77] by adding timing constraints
in the formulas. In the literature, several ways of doing so have been pro-
posed, yielding logics with different properties and expressiveness, we can
mentioned for instance MTL [Koy90], TPTL [AH89], QTL [HR04, HR05], or
TL+counting [HR07, Rab08]. In this chapter we focus on the two first logics,
as they are the ones we have worked on these last few years.
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We let AP be a finite set of atomic propositions.

4.2.1 The logic MTL

The syntax of MTL [Koy90] over AP is given by the following grammar:

MTL 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUI ϕ

where p ∈ AP, and I is an interval of R>0 with rational bounds.
In chapter 2, we have defined two semantics for LTL. We make the same

distinction of MTL, and distinguish between the pointwise and the continuous
semantics. Hence, following what we have done for LTL, we give the semantics
of MTL with a generic notion of position. We refer to page 19 for the two
possible interpretations of this term.

Formulas of MTL are interpreted over runs of a timed automaton, from
some position along that run.1 Basic formulas are interpreted as for LTL, we
thus omit the definitions. We fix a timed automaton A = (AP, X, L, `0,Goal,

E, Inv,L), and we let % = s
t1,e1−−→ s1

t2,e2−−→ s2 · · · sn−1
tn,en−−−→ sn · · · be a finite

or infinite run of A, and $ be a position along %. The satisfaction relation
for the Until modality is defined as follows:

(%,$) |= ϕUI ψ ⇔ there exists a position $′ > $ along % such that
duration(%[$;$′]) ∈ I, (%,$′) |= ψ,
and for every position $ < $′′ < $′, (%,$′′) |= ϕ

where %[$;$′] is the sub-run of % that starts at position $ and ends at position
$′, and duration(·) gives the duration of a run, i.e., the sum of all delays along
that run. If $0 is the initial position of run %, we write % |= ϕ whenever
(%,$0) |= ϕ. Let A be a timed automaton with initial configuration s0, and
ϕ be an MTL formula. We say that A satisfies ϕ over infinite (respectively
finite) runs, and we write A |= ϕ (respectively A |=f ϕ), whenever for all
infinite runs % ∈ Runs(A, s0) (respectively % ∈ Runsaccf (A, s0)), % |= ϕ.

As we will need to really distinguish between the semantics in this chap-
ter, we introduce some more notations. When it will be required, we will
write |=cont (respectively |=point) for the satisfaction relation under the con-
tinuous (respectively pointwise) semantics. Hence, in the following we may
distinguish between the four satisfaction relations |=cont

f , |=point
f , |=cont, and

|=point.

1Usually, MTL is interpreted over timed words (or equivalently observations) [Hen98,
Ras99] or over signals (or equivalently timed state sequences) [AH93, AH94, AFH96,
Ras99], but this formulation with runs is simpler and sufficient for our purpose.
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We extend the syntactic sugar defined in subsection 2.2.2 for LTL: FI ϕ ≡
(trueUI ϕ) (eventually, ϕ will hold within interval I from now), GI ϕ ≡
¬(FI ¬ϕ) (for all positions within I, ϕ holds), and X Iϕ ≡ (falseUI ϕ)
(next position is within I from now and satisfies ϕ). We also use pseudo-
arithmetical expressions to represent intervals. For instance, ‘= 1’ stands for
the singleton interval [1; 1], and ‘> 2’ stands for the interval [2; +∞).

Example 4.1 Using MTL, we can write properties like

G (problem→ F62 alarm) (4.1)

expressing that each time a problem occurs, within 2 time units, an alarm rings.
We can also express more involved properties, like

G (problem→ (F615 repair ∨G[12,15] alarm))

saying that each time a problem occurs, either it is repaired in no more than 15
time units, or an alarm rings for 3 time units 12 time units after the problem.

y

Remark 4.2 The choice of the interpretation of MTL in terms of the pointwise
or the continuous semantics has an impact on the precise meaning of the formulas,
and as we will see later, also on their applicability in model-checking. The formula
F=2 a expresses that an a will happen two time units later. This formula is equiv-
alent to F=1 F=1 a (in one time unit, it will be the case that in one time unit, an a
occurs) in the continuous semantics, but not in the pointwise semantics, because
there may be no action one time unit after the initial position (hence any formula
F=1 ψ would be evaluated as wrong from the initial configuration).

y

4.2.2 Two extensions of MTL: TPTL and MTL+Past

The logic TPTL. In MTL, timing constraints are added using intervals
decorating modalities. There is another classical way for expressing such
quantitative constraints, which consists in adding variables to the formulas.
The logic TPTL [AH89] over AP and the (finite) set of variables Y is defined
by the following grammar:

TPTL 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | x.ϕ | x ∈ I | ϕU ϕ

where p ∈ AP, I is an interval of R>0 with rational bounds, and x ∈ Y is a
formula variable.

The semantics of TPTL is defined on finite or infinite runs of a timed
automaton with a valuation for formula variables, and a position along the
run. We fix a timed automaton A = (AP, X, L, `0,Goal, E, Inv,L), and we

let % = s
t1,e1−−→ s1

t2,e2−−→ s2 · · · sn−1
tn,en−−−→ sn · · · be a finite or infinite run,
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u ∈ RY
>0 be a valuation for formula variables, and $ be a position along %.

The satisfaction relation is then defined as follows:

(%,$, u) |= p ⇔ p ∈ L(%[$])
(%,$, u) |= ¬ϕ ⇔ (%,$, u) 6|= ϕ

(%,$, u) |= ϕ ∨ ψ ⇔ (%,$, u) |= ϕ or (%,$, u) |= ψ
(%,$, u) |= x.ϕ ⇔ (%,$, u[x← time($)]) |= ϕ

(%,$, u) |= x ∈ I ⇔ time($)− u(x) ∈ I
(%,$, u) |= ϕUI ψ ⇔ there exists a position $′ > $ along % such that

duration(%[$;$′]) ∈ I, (%,$′, u) |= ψ,
and for every position $ < $′′ < $′, (%,$′′, u) |= ϕ

where time($)
def
= duration(%[$0;$]) ($0 is the initial position along %), and

u[x ← α] is the valuation assigning u(y) to every variable y ∈ Y \ {x}, and
α to x.

We use the two interpretations for the term position, as in MTL, and
when useful, we distinguish between the two satisfaction relations |=cont and
|=point. As for MTL, we define the satisfaction relation for a timed automaton
over infinite or finite runs. Also we use the same syntactic sugar as for MTL
(F , G , etc.).

Example 4.3 This is not difficult to get convinced that property (4.1) can be
rewritten in TPTL as the formula

G (problem→ x.F (alarm ∧ x 6 2))

Indeed, each time a problem occurs, the current value of the time is frozen and
stored in the formula variable x, and then later, when the alarm rings, we verify
that the delay since the value has been frozen is smaller than or equal to 2.

Another TPTL formula is:

G (problem→ x.F (alarm ∧ F (failsafe ∧ x 6 2))) (4.2)

which says that whenever a problem occurs, then within 2 time units, an alarm
rings and later (but still within 2 time units since the problem occurred), the
system enters a failsafe mode.

y

The logic MTL+Past. Following the classical untimed framework [Kam68,
LPZ85], we also extend MTL with past-time modalities. The syntax of
MTL+Past [AH92a, AH93] over AP is given by the following grammar:

MTL+Past 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUI ϕ | ϕSI ϕ
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where p ∈ AP, and I is an interval of R>0 with rational bounds. The S -
modality is called the ‘Since’ modality, and is somehow the dual of the ‘Until’.

The semantics of all modalities except the ‘Since’ have already been given.
We fix a timed automaton A = (AP, X, L, `0,Goal, E, Inv,L), we let % =

s
t1,e1−−→ s1

t2,e2−−→ s2 · · · sn−1
tn,en−−−→ sn · · · be a finite or infinite run of A, and $

be a position along %. The satisfaction relation is defined as follows:

(%,$) |= ϕSI ψ ⇔ there exists a position $′ < $ along % such that
duration(%[$′;$]) ∈ I, (%,$′) |= ψ,
and for every position $′ < $′′ < $, (%,$′′) |= ϕ

The intuition of formula ϕSI ψ is that ϕ holds since ψ was true (within I
in the past). In a standard way, we define F−1

I ϕ ≡ (trueSI ϕ), which says
that ϕ was true in the past, within a delay belonging to the interval I.

Example 4.4 The formula
G (p→ F−1

=1 q)

expresses that every p is preceded one time unit earlier by a q.
y

4.3 Expressiveness of linear-time timed tem-

poral logics

If needed, some vocabulary is defined in Table 4.1. In that section, we focus
on infinite runs.

In a rather obvious way, we get that every MTL formula can be expressed
in MTL+Past (syntactical inclusion), and in TPTL. Indeed, to translate an
MTL formula into an equivalent TPTL formula, it is sufficient to replace any
ϕUI ψ-sub-formula by x.(ϕU (ψ ∧ x ∈ I)) where x is a fresh variable dedi-
cated to that sub-formula. It is not difficult to check that this transformation
preserves the equivalence of formulas.

It had been conjectured for awhile (see [AH90, AH92b, AH93, Hen98])
that TPTL is strictly more expressive than MTL, with the suggestion that
formula (4.2) should be a witness of that gap of expressiveness. Together with
Fabrice Chevalier and Nicolas Markey, we have worked on that conjecture
and have proven the following surprising result, partly contradicting the fact
that formula (4.2) is a witness of the conjecture.
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Let ϕ and ϕ′ be two formulas that are interpreted over timed au-
tomata. They are said equivalent whenever for every timed automaton
A, A satisfies ϕ if and only if A satisfies ϕ′. Let L and L′ be two logical
languages interpreted over timed automata. We say that L′ is at least
as expressive as L, and we write L 6 L′, whenever for every formula
ϕ ∈ L, there is a formula ϕ′ ∈ L′ which is equivalent to ϕ. We say that
L′ is strictly more expressive than L whenever L 6 L′ and there exists
a formula ϕ′ ∈ L′ such that for every formula ϕ ∈ L, ϕ and ϕ′ are not
equivalent (we then say that ϕ′ cannot be expressed in L). Finally we say
that L and L′ are equally expressive whenever L 6 L′ and L′ 6 L.

There are several methods to prove that a logic L′ is strictly more
expressive than a logic L. First one can prove that there are two systems,
say two timed automata A and B in our case, and a formula ϕ′ in L′
such that A |= ϕ′, B 6|= ϕ′, but for every formula ϕ in L, A |= ϕ if and
only if B |= ϕ. We then speak of the distinguishing power of the logics.
Sometimes, it may be the case that L′ is strictly more expressive than L,
but that they have the same distinguishing power (this is for instance the
case of LTL, and of the logic that only allows the X -modality). In all the
cases we will consider in this chapter, this will actually be the case, and
we will need more involved constructions.

An example of more involved method is as follows. We construct a
formula ϕ′ in L′ and two (infinite) families of timed automata (Ai)i∈N and
(Bi)i∈N such that for every i ∈ N, Ai |= ϕ′, Bi 6|= ϕ′, and for every formula
ϕ in L, there exists i ∈ N such that Ai |= ϕ if and only if Bi |= ϕ.

Later (see table 4.2), we will give an example.

Table 4.1: About the expressiveness of logical languages

+ Proposition 4.5 ([BCM05]) In the continuous semantics, formula (4.2)
is equivalent to the MTL formula

G

�
problem→

�
F<1 alarm ∧ F[1,2] failsafe

∨ F61 (alarm ∧ F61 failsafe)
∨ F61 (F<1 alarm ∧ F=1 failsafe)

��
L99 (i)
L99 (ii)
L99(iii)

We explain the three sub-cases appearing in the formula of proposition 4.5,
illustrated on the picture next page. Cases (i) and (ii) are rather easy to
understand: on the first figure, the alarm happens within 1 time unit after
problem, and failsafe at least 1 time unit, but no more than 2 time units, after
alarm (which can be expressed by the MTL formula F<1 alarm∧F[1;2] failsafe);
on the second figure, alarm and failsafe happen within 1 time unit after alarm
(this can be ‘over-approximated’ by the formula F61 (alarm ∧ F61 failsafe)).
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[0;1) [1;2]

×
problem

×
alarm

×
failsafe

(i)

[0;1] [1;2]

×
problem

×
alarm

×
failsafe

61

(ii)

[0;1] [1;2]

×
problem

×
alarm

×
failsafe

=1

|=(F<1 alarm∧F=1 failsafe)

(iii)

Case (iii) is more tricky: the idea is to say that there is some (virtual
point) within 1 time unit after problem that will be exactly 1 time units
before failsafe, and it remains to say that alarm then needs to be within
the interval (0; 1) after this virtual point. This is expressed by the formula
F61 (F<1 alarm∧F=1 failsafe). As there may be no action at the virtual point,
this formula does not express what we want in the pointwise semantics, hence
it is correct (or does correspond to our intuition) only in the continuous
semantics!

We have actually proven that formula (4.2) cannot be expressed in MTL
under the pointwise semantics (see table 4.2 for two families of automata that
distinguish between MTL and formula (4.2)). This proves the conjecture that
TPTL is strictly more expressive than MTL in the pointwise semantics. To
prove the conjecture in the continuous semantics, we have exhibited another
formula, which says that there is a p within the first time unit, so that for
the rest of the first time unit, q does not hold: x.F (p ∧ x 6 1 ∧G (x 6 1→
¬q)). We have proven that this formula cannot be expressed in MTL in the
continuous semantics, confirming the initial conjecture.

+ Theorem 4.6 ([BCM05]) The logic TPTL is strictly more expressive than
MTL, under both pointwise and continuous semantics.

We get similar results for MTL+Past, which requires exhibiting other
formulas: F62 (q∧F−1 p) in the pointwise semantics, and F=1 (¬q S p) in the
continuous semantics. We thus also get the following theorem.

+ Theorem 4.7 ([BCM05]) The logic MTL+Past is strictly more expressive
than MTL, under both pointwise and continuous semantics.
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We consider the two families of timed automata (An)n∈N and (Bn)n∈N that
generate the two infinite executions depicted below.

p: problem

a: alarm

f : failsafe

0

An

then, periodic

2− 1
n

2

×
p

×
f

×
a

×
f

×
a

×
f

×
a

1
8n

1
4n

Bn

then, periodic
×
p

×
f

×
a

×
f

×
a

We can check that for every n ∈ N,8<:An |=point G

�
p→x.

�
F (a∧F (f ∧x62))

��
Bn 6|=point G

�
p→x.

�
F (a∧F (f ∧x62))

��
On the other hand, we can prove that for every n ∈ N, for every formula
ϕ ∈ MTL of granularity 1

n ,a

An |=point ϕ ⇔ Bn |=point ϕ

For some of the other expressiveness results that we have proven
in [BCM05], more complex models have been required, with two parame-
ters, one for the granularity and the other one for the size of the formula.

aAll constants appearing in the formula are integral multiples of 1
n .

Table 4.2: Formula (4.2) cannot be expressed in MTL in the pointwise se-
mantics

In [BCM05] we have proven some more expressiveness that we will not
detail here, for instance that MITL [AFH96], the fragment of MTL where
intervals labelling an U -modality cannot be punctual, is strictly less expres-
sive than MTL in both semantics. Various expressiveness results pursuing
our work and comparing MTL+Past, MTL, TPTL in their different semantics
can be found in the recent literature [DP06, DP07, DRP07].
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4.4 The model-checking and satisfiability

problems

Definition of the problems. We let L be a logical language interpreted
over (runs of) timed automata. The model-checking problem for the class L
asks, given a formula ϕ ∈ L and a timed automaton A, whether A |= ϕ.

We let U be the universal timed automaton, i.e. the timed automaton
that reads and accepts everything. The satisfiability problem for L asks,
given a formula ϕ ∈ L, whether there is a run % in U such that % |= ϕ. This
is equivalent to ‘U 6|= ¬ϕ’. This definition is rather non-standard where it
is better defined as the existence of a timed word (or time-state sequence)
satisfying the property ϕ, but this is due to our choice of the simplified
semantics of the logics on runs of timed automata.

In the two cases, we of course distinguish variants of the problems, de-
pending on the choice of the semantics.

Discussion. Until very recently [OW05], MTL and TPTL were both con-
sidered as undecidable, as they are both able to express the so-called forward
propagating formula ‘G (p → F=1 q)’, and the claim was that “as soon as
a logic is powerful enough to express the forward propagating formula, it is
undecidable” [AH92a, AH93, Hen98]. However that was a bit misleading, as
the decidability subtly depends on the choice of the semantics (being either
pointwise or continuous, and either interpreted over finite or infinite runs).
Below we summarize the decidability results for the model-checking prob-
lem2 for the logics MTL, MTL+Past and TPTL, indicating in the columns
the satisfaction relation that is considered.

|=point
f |=cont

f |=point |=cont

MTL
decidable, NPR
[OW05, OW07]

undecidable
[AFH96]

undecidable
[OW06a]

undecidable
[AFH96]

MTL+Past undecidable undecidable undecidable undecidable

TPTL
undecidable

[AH94]
undecidable

[AH94]
undecidable

[AH94]
undecidable

[AH94]

Note that in the table above, any hardness result (eg. undecidability results)
can easily be lifted from the pointwise to the continuous semantics.

2Note that these complexities coincide with those of the satisfiability problem, because
the considered logics are closed by negation, and timed automata can be encoded in a
polynomial size MTL — or more precisely an MITL — formula [HRS98, Ras99].
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This shows that model-checking linear-time timed temporal logics over
timed automata is really hard, the only logic that is decidable being MTL
under the weakest interpretation (the |=point

f -semantics). Moreover the com-
plexity is very high, it is non-primitive recursive [Sch02, CS08]. In the next
subsection, we explain some of the hardness results that we have mentioned
above (those which concern finite runs). The way it is presented is inspired
by [OW05], and has been worked out together with my PhD student Fabrice
Chevalier [Che07] when we have worked on the control problem for MTL
specifications [BBC06a]. In subsection 4.4.2, we explain the decidability of
MTL for the |=point

f -semantics (based on alternating timed automata), and
explain why the techniques cannot be extended to the |=point-semantics. The
only undecidability proof that we do not explain is the undecidability of MTL
model-checking under the latter semantics [OW06a].

4.4.1 Model-checking linear-time timed properties is
hard...

We first explain most of the lower bounds mentioned in the previous table.
They are obtained via a reduction from the halting problem for channel
machines with insertion errors and emptiness tests (ICMETs in short).

A channel machine [BZ83] is a finite automaton which can write on a
channel and read from it following a FIFO policy. We note ‘a!’ for writing a
at the tail of the channel and ‘a?’ for reading an a at the head of the channel.
A channel machine has insertion errors if any letter can be written at any
time anywhere in the channel. A channel machine without insertion errors
is said perfect. The halting problem for a channel machine asks whether a
distinguished halting state can be reached following rules of the machine.
It is rather obvious that the halting problem for a channel machine with
insertion error is trivial as any transition can be taken at any time (one can
always write on a channel, and if one cannot read a letter, it is then possible
to insert the relevant symbol on the channel). Hence, we add to the channel
machine the capability of testing that the content of a channel is empty or
not, yielding the ICMET model that we have already mentioned.

Example 4.8 Consider the channel machine depicted below:

s1 s2 s3 s4 s5 s6

a! a?

b! a? b? c? channel empty

A configuration of this system is a pair (s, w) where s is a discrete state of the
machine and w is a word representing the content of the channel. We give an
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error-free computation example for that machine, where ε represents the empty
channel:

(s1, ε)
a!−→ (s1, a) a!−→ (s1, aa) b!−→ (s2, aab)

a?−→ (s3, ab)
a?−→ (s3, b)

b?−→ (s4, ε)

We can see that no error-free computation allows to reach state s6 (because no c is
ever written on the channel). If we assume that this machine has insertion errors,
then the following move is allowed:

(s4, ε)
c?−→ (s5, ε)

(we assume implicitly that c has been inserted on the channel, so that the last
transition labelled by ‘c?’ can now be fired). Then, s6 is reachable because the
channel is empty in configuration (s5, ε), hence the last transition can be taken.

y

We recall results concerning the halting problem for channel machines.

Proposition 4.9 • The halting problem for perfect channel machines is
undecidable [BZ83].

• The halting problem for channel machines with insertion errors and
emptiness tests is decidable [Fin94, AJ96, CFPI96] but non-primitive
recursive [Sch02]. It is even in the Fωω-level of the fast growing hierar-
chy [CS08].3

We now explain how MTL (and variants thereof) can capture the behaviours
of channel machines. We will build a formula ϕ so that ϕ is satisfiable if
and only if the channel machine halts. Note that we will use the terminology
‘timed word’ in that part, to simplify the presentation (see page 19).

The idea is to encode a computation of a channel machine as a timed
word. In this encoding, the underlying untimed word is the trace of the
computation, that is, an alternating sequence of states and actions. We use
timing constraints to enforce the channel be FIFO: we require that any write
action ‘a!’ is followed one time unit later by a corresponding read action ‘a?’.
This is not difficult to be convinced that this enforces the channel be FIFO.
We illustrate this encoding on the next figure, which represents a timed word
(actions and time stamps).

=1 time unit

=1 time unit

×
q0

0

×
a!
.25

×
q1

.6

×
b!
.7

×
q2

.85

×
a?

1.25

×
q3

1.4

×
c!
1.5

×
q4

1.6

×
b?
1.7

×
q5

1.9

···

3Formally, in those papers, that is the halting problem for lossy channel machines which
is considered, but there is an easy reduction from the halting problem for lossy channel
machines to the halting problem for ICMETs.
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The above timed word encodes the following computation of the channel
machine:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

To properly encode a behaviour of a channel machine, a timed word must
satisfy the following constraints:

• states and actions alternate. This can be checked using an LTL formula.

• the untimed projection of the timed words follows the rules of the
channel machine. This can also be encoded with an LTL formula.

• the emptiness test can be done by enforcing that the delay between the
actions corresponding to the source and target states of the edge is 1
time unit. Due to the next rule, this will enforce the channel be empty.

• the channel is FIFO: to that aim we express that every write action is
followed one time unit later by a corresponding read action. This can
be expressed in MTL using formulas of the form:

G (a!→ F=1 a?)

However, this formula does not encode the property that the channel
behaves properly. Indeed, nothing prevents a read event ‘a?’ to happen,
even though there is no corresponding write event ‘a!’ one time unit
earlier. For instance, consider the following timed word:

=1 time unit

=1 time unit

×
q0

×
a!

×
q1

×
b!

×
q2

×
a?

×
q3

×
c?

×
q4

×
b?

×
q5

···

=1 time unit

This timed word satisfies the propagating formulas G (a!→ F=1 a?)
(for every letter a), even though the event ‘c?’ is not preceded by any
action one unit earlier. The above formula hence only encodes the
behaviour of a channel machine with insertion errors. However, from
that study, we already learn that the model-checking of MTL over finite
runs in the pointwise semantics is non-primitive recursive. To encode
a perfect channel machine, we need to be able to express the property
that every ‘a?’ is preceded one time unit earlier by an ‘a!’. We call this
property the ‘backward matching property’.
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We now discuss how we can express the backward matching property in
timed temporal logics. Indeed, we would like to know whether MTL can
express or not the behaviour of a perfect channel machine. We will present
here natural ideas, which will happen to be wrong for MTL, but sufficient to
prove undecidability of several variants or extensions of MTL.

• A first simple idea is to express this ‘backward matching property’ using
the following formula:

G ((F=1 a?)→ a!)

which expresses the fact that if there is a read event ‘a?’ one time
unit later, then there must be right now a corresponding write event
‘a!’. It is not hard to see that in the pointwise semantics, this does
not express what we want. Indeed this formula is still satisfied by the
previous timed word, because there is no action one time unit before
the action ‘c?’. However, in the continuous semantics, this formula
really enforces a perfect behaviour of the FIFO channel. That is why
MTL model-checking in the continuous semantics is undecidable.

• A second idea is to express this ‘backward matching property’ using a
past-time modality (hence in MTL+Past). The formula

G
�
a?→ F−1

=1 a!
�

precisely expresses that every read event ‘a?’ is preceded one time unit
earlier by a matching write event ‘a!’. That is why MTL+Past is unde-
cidable, even in the pointwise semantics.

• Finally, the ‘backward matching property’ can be expressed in TPTL
using the following more involved property:

¬
�
F x ·X

�
y · F (x > 1 ∧ y < 1 ∧ a?)

��

no action
×

x:=0

×
y:=0

×
a?

<1

>1

check x>1∧y<1

× ×

Informally (see the picture), this formula negates the fact that there
are two consecutive positions (in the pointwise sense) such that an a
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is read more than one time unit after the first position, and less than
time unit after the second position. This precisely negates the fact that
there is an ‘a?’ not preceded one time unit earlier by an action. This
implies that TPTL is undecidable, already in the pointwise semantics
(when at least two clock variables are used).

From all these considerations, over finite runs, we get that in the pointwise
semantics, MTL allows only to express behaviours of ICMETs, perfect chan-
nel machines require either the continuous semantics, or using MTL+Past or
TPTL in the pointwise semantics. Applying the complexity results for chan-
nel machines recalled in proposition 4.9, we get most of the lower bounds
that were announced (as said earlier, all these lower bounds results can be
lifted to the infinite runs framework). The only case which is missing is the
undecidability of MTL under the |=point-semantics.

Remark 4.10 We had mentioned that this presentation of the proof had been
worked out while studying the control problem for MTL specifications. We have
proven that, in that more general control (or two-player) framework, the backward
matching property was expressible in MTL in the |=point

f -semantics [BBC06a]. In
that framework, we assume that the controller is playing against an adversary, and
that adversary will be able to play a Check-action at most once in a play, exactly
at the same time a read action ‘a?’ occurs. Then, if globally the formula

F (a? ∧ Check)→ F (a! ∧ F=1 Check)

is satisfied, it means that no matter when the adversary plays his Check-action,
the above formula will hold. In other words, it means that there is no fake read
actions along the computation, and thus that the backward matching property is
satisfied. On the other hand, if the above formula is not satisfied, it means that
there is at least one fake read action ‘a?’, and that this was possible, only due to
an insertion of an a on the channel.

y

4.4.2 ... but sometimes decidable, though

We now explain the decidability of MTL for the |=point
f -semantics. It is

well-known that LTL formulas can be transformed into alternating finite au-
tomata [MSS88, Var96]. In a similar way, we can transform any formula of
MTL into an alternating timed automaton4 with a single clock [OW05]. For

instance, the formula G<2

�
a→ F=1 b

�
can be transformed into the following

alternating timed automaton (where we label edges with actions):

4This model has been defined and studied independently in [LW05, LW08] and [OW05,
OW07].
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`0 `1
x:=0

x<2,a
`2

x=1,b

with the obvious interpretation that any time an a is done (within the two
first time units), we fork a new thread which will check that a b appears
one time unit later. Satisfiability of an MTL formula ϕ is then equivalent
to the non-emptiness of the timed language accepted by the corresponding
single-clock alternating timed automaton Bϕ. A timed word is accepted by
an alternating timed automaton whenever there is an accepting behaviour
(i.e. a tree) that reads that timed word.

Theorem 4.11 Checking emptiness of alternating timed automata is decid-
able for one clock over finite timed words [LW05], any slight extension (infi-
nite timed words, two clocks, ε-transitions) leads to undecidability [LW08].

Remark 4.12 For a model-checking purpose, the above result is not sufficient.
However only a slight extension of the proof of theorem 4.11 is needed to extend
the result from satisfiability of MTL to the model-checking of MTL: to check that
a timed automaton A satisfies the MTL property ϕ (under the |=point

f -semantics),
it is sufficient to check that the set of joint accepting behaviours of A and B¬ϕ

is empty; And techniques used to prove the above theorem easily extend to that
more general problem [OW05, OW07].

y

We now briefly explain the decidability result in theorem 4.11. Consider
the timed word (c, 0.6)(a, 0.7)(a, 1.5)(b, 1.7). An execution of the previous
alternating timed automaton on that timed word can be depicted as the
following tree, which is not accepting as one of the branches (the second one
on the picture) is not accepting (accepting states are underlined).

`0,0 `0,0.6

`0,0.7

`1,0

`0,1.5

`1,0

`1,0.8

`0,1.7

`1,0.2

`2

(c,0.6) (a,0.7) (a,1.5) (b,1.7)

A configuration of the alternating timed automaton is a slice of the tree, for
instance, {(`0, 1.5), (`1, 0), (`1, 0.8)} is a configuration. Because we consider
finite words, there is no need to consider the tree structure of the execution,
but we can reason globally on configurations of the automaton. There are
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infinitely many such configurations, but as for the region automaton con-
struction for timed automata [AD94], the precise values of the clocks is not
really relevant, and the things which are important in a configuration are the
integral parts of the clocks and the relative order of the fractional parts. For
instance, for the above-mentioned configuration, we only need to know that
there is a state (`0, 0) with fractional part 0, and two other states (`1, 0) and
(`0, 1) such that the fractional part for (`1, 0) is larger than the fractional
part for (`0, 1); This can be represented by a word that orders states with
respect to their fractional part: 0 =frac (`1, 0) ≺frac (`0, 1.5) ≺frac (`1, 0.8) is
abstracted into the word (`1, 0) · (`0, 1) · (`1, 0), with the extra information
that the first letter has fractional part 0.5 For all configurations with the
same abstraction, the possible future behaviours are the same, in a time-
abstract bisimulation sense [OW07, LW08]. We can thus safely define an
abstract transition system that will ‘correspond’ to the transition system
of the original alternating timed automaton. Unfortunately, the set of ab-
stract configurations of a single-clock alternating timed automaton is still
infinite (because we cannot not bound a priori the size of a configuration,
hence the length of the word that abstracts the configuration). However,
it is not difficult to get convinced that there is a well-quasi-order on the
set of abstract configurations (which is the sub-word preorder)! We can use
this fundamental property to design an algorithm to decide the emptiness
problem of single-clock alternating timed automata [FS01]. From that, we
can derive an algorithm to decide the model-checking problem of MTL in the
|=point

f -semantics.
We will finally say few words on a possible encoding of the above abstract

transition system into a channel machine (more precisely a slight extension of
ICMETs with no more expressive power) [BMOW07]. From an abstract con-
figuration, the immediate time successor can be obtained by turning around
letters: roughly, the time successor of (`1, 0) · (`0, 1) · (`1, 0) (to distinguish

how states move around, we use colors) is (`1, 1) · (`1, 0) · (`0, 1) (by delay-

ing, the state concretizing the right-most (`1, 0) reaches the integer 1, its frac-
tional part becomes the smallest one, hence it changes into (`1, 1) and moves
to the left of the word). The next time successor is (`0, 2) · (`1, 1) · (`1, 0)
(for the same reason, the state concretizing (`0, 1) reaches integer 2, hence we
increase the integral part by 1 and move the letter to the left of the word).
We can view this evolution as the behaviour of a channel which contains the
encoding of the current configuration. It is worth noting that in this encod-

5Note that this is a simplified version of the real abstraction defined in [OW05].
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ing, a complete cycle of the channel6 corresponds to the elapsing of one time
unit. Note that discrete transitions in the abstract transition system can also
be implemented using rules of a channel machine, provided we allow some
extra features like global renaming and occurrence testing.7 The emptiness
test is used to check that a final configuration is accepting.

Note that we can prove the decidability of TPTL (under the same seman-
tics restrictions) with a single formula variable applying the same method.

Why does it not extend to infinite runs? The algorithmic idea that
we have just presented to solve the model-checking problem for MTL in the
|=point

f -semantics cannot be lifted to the framework of infinite runs, because
checking emptiness of single-clock alternating timed automata over infinite
timed words is undecidable [LW08]. Indeed, in that case, we can no more
reason on slices of a tree execution, as we need to check the (say Büchi)
acceptance condition on every branch of the tree. Moreover a construction à
la Miyano-Hayashi [MH84] cannot be used either, because the number of ele-
ments at a given level of an execution tree is potentially unbounded (because
of the value of the clock), and it is not possible to use some well-quasi-order
on slices as in the case of finite words to get a termination argument. Fi-
nally there is no way to circumvent the difficulty, because it has been proven
in [OW06a] that the model-checking problem for MTL over infinite runs in
the pointwise semantics is undecidable. We will not describe the undecid-
ability proof, which relies on a reduction to and from the recurrence problem
for ICMETs, and that problem is undecidable.

4.5 Some interesting fragments of MTL

To circumvent the untractability of MTL, several fragments thereof have
been considered. We briefly describe some of those fragments, and give hints
to explain why they are interesting and why they can be used for model-
checking purposes. All the works I have made on that topic are joint with
Nicolas Markey, Joël Ouaknine and James Worrell. In this section, we focus
on the interpretation of the logics over infinite runs, all upper bounds can of
course be lifted to the case of finite runs.

6A cycle of the channel corresponds to a portion of an execution along which everything
that is written on the channel is read. Along an execution, the number of cycles made by
the channel can be measured using an extra symbol that is put at the tail of the channel
as soon as it is read from the head of the channel.

7We omit the definition of those notions here, because they will not be used, and better
refer to [BMOW07].
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4.5.1 The logic MITL

In 1991, the fragment MITL 8 of MTL has been proposed [AFH91, AFH96],
which basically disallows punctual constraints on U-modalities. For instance,
the formula ‘G (a→ F=1 b)’ is not in MITL (because of the equality con-
straint ‘= 1’ on the F -modality), whereas ‘G

�
a→ F[1,2] b

�
’ is in MITL. One

reason why a positive result for MITL would be very satisfactory is that, in
real timed systems, it is impossible to check a punctual constraint (because
of the inherent imprecision of real systems). And disallowing punctual con-
straints leads indeed to an incredible improvement in the complexity of the
model-checking problem!

Theorem 4.13 ([AFH96]) The model-checking and satisfiability problems9

for MITL under the |=cont-semantics are EXPSPACE-complete.

The reason for this fairly low complexity (compared to the NPR or even
undecidable lower bound for MTL) is that the variability of models of MITL
formulas can be controlled, and any property expressible in MITL can be
recognized by a timed automaton (hence is somehow regular).

Example 4.14 We give an example (taken out of [AFH96]) to explain this regu-
larity. Consider the MITL formula

ϕ = G(0,1) (p→ F[1,2] q)

This formula says that within the first time unit, whenever p holds, then q must
hold at some point between 1 and 2 time units later. To check the truth of this
formula, a solution would be, each time p holds within the first time unit, to start
a clock and check that within 1 to 2 time units from that point, q becomes true.
However, there may be an unbounded number of segments in which p holds within
the first time unit. Hence, applying this method, an unbounded number of clocks
would a priori be required. A more clever method needs to be used, which is
illustrated below.

¬qq q

1 + t1 2 + t2t1 t2

¬p

0 1 2 3

8Standing for ‘Metric Interval Temporal Logic’.
9Also in that case, the two problems are equivalent, because MITL is closed under nega-

tion, and as already written in footnote 2 page 54, the behaviours of a timed automaton
can be captured by a polynomial size MITL formula.

63



We focus on models where q does not hold at time 2, and where there is a last
date within the interval (1, 2) at which q holds, and a first date within the interval
(2, 3) at which q holds. Other cases can be handled separately in a very similar
manner. The idea is to point to the last time q holds in the interval (1, 2) and the
first time q holds in the interval (2, 3). Then, the only points within (0, 1) that will
not satisfy F[1,2] b are in the interval (t1, t2), where t1 +1 is the point distinguished
in (1, 2) and t2 + 2 is the point distinguished in (2, 3). Hence, the only chance for
the global formula to hold from the beginning is that there is no p in the interval
(t1, t2). We can then build a timed automaton which guesses time points t1 and
t2, resets clocks at those time points, and checks that those time points really
satisfy the expected properties (for completeness, the constructed automaton is
given below).

(z=0) (z<1)

¬p
(z<1)

(z<1)

(z<2)
q

(1<z<2, x=1)
¬q

z<3
q

2<z<3, y=2x:=
0

y:=0

y:=0

x:=
0

y

The algorithm developed in [AFH96] relies on ideas illustrated in the previous
example, and from a formula ϕ ∈ MITL, builds a timed automaton Bϕ (with a
Büchi acceptance condition) such that for every timed automatonA, A |= ¬ϕ
if and only if the classical product A× Bϕ has no accepting run.

4.5.2 The logic Safety-MTL

The logic Safety-MTL has been proposed in [OW05] as a logic allowing to
express safety properties like bounded response time properties of the form
‘G (a → F=1 b)’ or ‘G (a → F65 (b ∧ F=1 c))’. Unlike MITL, it partly allows
punctual constraints on modalities, but cannot express general response time
properties. Roughly, a formula of MTL is in Safety-MTL whenever every
positive instance10 of an U-modality is constrained by a bounded interval.

Unlike all the logics we have mentioned so far, Safety-MTL is not closed
under negation. Hence, the model-checking and the satisfiability problems
need to be distinguished.

Theorem 4.15 ([OW05]) The model-checking problem for Safety-MTL un-
der the |=point-semantics is decidable.

10I.e., every instance under the scope of an even number of negations.
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The reason for the decidability of the model-checking problem for this logic is
that it can only express ‘safety’ properties, that is properties whose negations,
if violated, are violated after a finite prefix. For those formulas, we can thus
build a single-clock alternating timed automaton over finite words and with
only accepting states, which recognizes all bad prefixes of the formula. Then
the encoding for proving the decidability of alternating timed automata over
finite timed words can be used in that case as well.

Unlike MITL, Safety-MTL is not closed under negation, we can thus not
lift the above result to the satisfiability, and it needs to be proven separately.

+ Theorem 4.16 The satisfiability problem for Safety-MTL under the |=point-
semantics is decidable [OW06b] but non-elementary [BMO+08].

The non-termination problem 11 in ICMETs can be reduced to the sat-
isfiability of formulas in Safety-MTL, the first problem being proven non-
elementary [BMO+08].

4.5.3 The logics coFlat-MTL

From the investigations so far, it turns out that punctuality is the core of the
undecidability, and this was somehow admitted and not really problematic,
because punctual constraints are not really realistic, because hardly satisfi-
able by a real timed systems, where there is some inherent imprecision. Thus,
the first fragment we will present has maybe more a theoretical interest than a
practical motivation, in that we will present a fragment of MTL, where punc-
tuality is allowed, but of course with some other restrictions. The second frag-
ment will unify the approaches of MITL and of the first fragment, providing an
expressive logic that can be rather efficiently model-checked! These two frag-
ments are called in the original papers coFlat-MTL [BMOW07, BMOW08].
In this subsection, to distinguish between these two logics, we will call the
first fragment coFlat-MTLLTL, and the second fragment coFlat-MTLMITL, for
reasons that will become obvious very soon.

The fragment coFlat-MTLLTL. The syntax of the logic coFlat-MTLLTL

restricts the ϕUI ψ-subformulas in such a way that if I is not bounded,
then ψ must be in LTL, whereas ϕ can be in coFlat-MTLLTL itself. It is
worth noticing that coFlat-MTLLTL is rather powerful as it contains LTL,
Bounded-MTL (the subset of MTL where all modalities are bounded), and
is closed under invariance, which is rather useful for specifying correctness

11The termination problem asks whether all executions are finite, the non-termination
problem thus asks whether there is an infinite execution.

65



properties in critical systems. In particular, the formula ‘G (a→ F=1 b)’ is
in coFlat-MTLLTL, but ‘F G61 a’ is not in coFlat-MTLLTL. Using techniques
completely different from those developed for MITL, we have proven the
following result:

+ Theorem 4.17 ([BMOW07]) The model-checking problem for coFlat-MTLLTL

under the |=point-semantics is EXPSPACE-complete.

The decidability and upper bound are rather involved, and rely on an en-
coding into a slight extension of channel machines. We have already men-
tioned that the halting problem for channel machines is undecidable (Propo-
sition 4.9). However, we will not reduce to the general halting problem, but
to the halting problem when we bound the number of cycles of the whole
channel (cf. footnote 6 page 62). This restricted problem is proven to be
solvable in space polynomial in the size of the channel machine and in the
value of the cycle bound in [BMOW07].

We have already mentioned that we could encode MTL formulas into
single-clock alternating timed automata, and thus reduce the model-checking
problem to checking that there is (or not) a joint behaviour in a product of
a timed automaton and a single-clock alternating timed automaton corre-
sponding to the negation of the formula (see subsection 4.4.2). We have also
mentioned that this question could be reduced to the halting problem of some
channel machine. In this encoding, one cycle of the channel corresponds to
the elapsing of one time unit. If we consider a formula ϕ of Bounded-MTL
(fragment of MTL where all modalities are labelled by a bounded interval),
it is rather clear that its verification along a run % only requires to look at
a time-bounded prefix of % (the time bound can be set as the sum of all the
upper bounds of intervals labelling the modalities in the formula). Hence,
in the translation into channel machines, it means that we can restrict to
executions with a bounded number of cycles, which suggests an algorithm
for deciding the model-checking of Bounded-MTL.

We extend this idea to coFlat-MTLLTL, and because of the syntactic re-
striction made in coFlat-MTLLTL, if ϕ is a coFlat-MTLLTL formula, the alter-
nating automaton B¬ϕ has a special structure (that is somehow ‘flat’ — hence
the name for coFlat-MTLLTL, because the negation of a formula in that logic
is flat). An execution not satisfying a formula ϕ in coFlat-MTLLTL can be
decomposed as follows:

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive
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where the number of active fragments is at most exponential and the total
duration of active fragments is also at most exponential. An active fragment
corresponds to a cycle-bounded computation in a channel machine, whereas
the pure LTL parts are very simple computations corresponding to those of
a finite automaton (only simple LTL formulas are checked).

Remark 4.18 Unlike MITL, coFlat-MTLLTL does not only express ‘regular’ prop-
erties. For instance, the property ‘G (a→ F=1 b)’, which belongs to coFlat-MTLLTL,
can be used to generate the context-free language {anbm | n 6 m}.

y

Remark 4.19 Also, note that coFlat-MTLLTL might enforce a rather high vari-
ability.12 For instance, the formula

ϕn = a ∧ Double ∧G[0,2n) Double

where
Double =

�
b→ F=1 (b ∧X<1 a)

�
∧
�
a→ F=1 (b ∧X<1 a)

�
enforces a model to have at least a doubly-exponential variability (in n).

y

Finally, we conclude by noticing that coFlat-MTLLTL is not closed un-
der negation. Though this is not formally stated in the mentioned paper,
the following undecidability result is a straightforward consequence of the
undecidability proof for MTL in the |=point-semantics.

Theorem 4.20 ([OW06a]) The satisfiability problem for coFlat-MTLLTL un-
der the |=point-semantics is undecidable.

The fragment coFlat-MTLMITL. Recently we have extended the fragment
coFlat-MTLLTL by relaxing the restriction that a sub-formula on the right of
an unbounded ‘Until’ modality be in LTL in the fragment: the fragment
coFlat-MTLMITL now allows such formulas to be in MITL instead. This new
fragment is a superset of both MITL and coFlat-MTLLTL, but it can be model-
checked rather efficiently!

+ Theorem 4.21 ([BMOW08]) The model-checking problem for coFlat-MTLMITL

under the |=cont-semantics is EXPSPACE-complete.

The idea of the proof mixes the approaches for MITL and for coFlat-MTLLTL.
Alternating timed automata corresponding to negations of coFlat-MTLMITL

formulas do not yield anymore interesting properties for the models thereof.

12The variability of a run is the maximal number of discrete transitions made within
one time unit along that run.
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Hence to prove the above theorem, we do not use anymore an automata-
theoretic but a purely-logical approach. Because of the syntactical restric-
tions made in coFlat-MTLMITL, we can still decompose a signal not satisfying
an coFlat-MTLMITL-formula ϕ as follows:

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

where the number of ‘punctual’ fragments can be bounded by an exponential,
and the global duration of ‘punctual’ fragments can also be bounded by an
exponential. Roughly, a non-punctual fragment does not check any punctual
formulas, hence we will be able (i) to bound the variability of the model (fol-
lowing MITL ideas), and (ii) to stretch (in a reasonable way) those parts of the
model, and (iii) forget the timing constraints (by adding ‘tick’ atomic propo-
sitions, that will be sufficient to recover the timing constraints). A punctual
fragment cannot be treated in the same way, as it is not possible to stretch
the model without changing the truth of the formula, but fortunately, the
global duration of the punctual fragments is small, and we will use another
trick. Assume that we have to check that the formula ‘white → F=1 black’
holds within the interval [1, 2] of the signal below (where colors represent
atomic propositions). Then we will stack the two time units [1, 2] and [2, 3]
on two different tracks, and check that color white on track 1 implies color
black on track 2. That way we have removed the punctual modality F=1 .

0 1 2 3 4

white →F=1 black

0 1 2

2 3 4

track 1

track 2

|=

white1 → black2

We do the same for all the fragments with punctual modalities, and trans-
form our problem into a ‘tableau’ satisfiability problem for LTL+Past (the
extension of LTL with past-time modalities), as illustrated below.
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On a track of the tableau, only non-punctual constraints are checked (thanks
to stretching, timing constraints can be abstracted and expressed in LTL).
Columns of the tableau can be used to check punctuality constraints: ex-
tending the ideas illustrated before, when punctuality constraints need to be
checked, we stack two consecutive time units, so that two events separated
by exactly 1 time unit will be on the same vertical line, but the second event
will be one track below; Hence, a constraint ‘F=2 ϕ’ on track i at time t will
be propagated as a constraint ‘F=1 ϕ’ on track i+ 1 at time t, and finally as
a constraint ‘ϕ’ on track i + 2 at time t; We can then forget about timing
constraints and abstract them using propagating rules; Globally, we need
past-time modalities (think for instance of a formula ϕU=1 ψ that needs to
be checked). Thus we construct an LTL+Past formula that has a ‘tableau’
model (i.e., a model with several tracks, as we have depicted above) if and
only if the original coFlat-MTLMITL-formula has a model. Then, a model for
the latter can be extracted from the tableau following the snake-line (when
there are punctual constraints (black parts), we continue to the bottom, and
otherwise (grey parts) we continue to the right). The number of tracks that
are necessary can be bounded, thanks to the decomposition of a model into
punctual and non-punctual fragments.

We have thus reduced (using an exponential construction) our problem
to the satisfiability problem for LTL+Past, which is known to be solvable in
PSPACE [Rey04].
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4.5.4 Summary of the expressiveness and complexity
results

In this section, we have presented several fragments of MTL that have been
considered in the literature.13 We summarize the expressiveness of the dif-
ferent fragments on the following picture, where an arrow L → L′ means
that L′ is more expressive than L. Note that all inclusions are syntactical
inclusions, and though we did not prove it formally, we claim that all these
expressiveness results are strict (probably techniques similar to those devel-
oped in [BCM05] could be used, but this is always tedious to do, and we did
not take the time to do so).

MTL

coFlat-MTLMITL
LTL

MITL

Bounded-MTL

Safety-MTL

coFlat-MTLLTL

For the model-checking and satisfiability problems, we have focused on
infinite runs, but any upper bound can be lifted to the framework of finite
runs. In the table that summarizes the different complexity results, we are a
bit more precise than we have been so far in this section, and we distinguish
the cases when constants used in formulas are encoded in unary or in binary
(because that actually makes a difference). In grey, we give complexity re-
sults that can be deduced from the mentioned references, but that are not
formally stated. The model-checking problem for LTL is PSPACE-complete
(see theorem 2.12). The logic MITL is closed under negation and can express
the behaviours of timed automata, hence the complexities that are given are
those for the two problems. The logic Bounded-MTL is closed under negation
but cannot express behaviours of timed automata, hence we have several gaps
in the table. For the three last logics, we also need to distinguish between
the two problems. This distinction is made in the right-most column.

13We do not include in this summary the different fragments that have been studied by
Hirshfeld and Rabinovich, for instance in [HR05], as they do not compare easily to the
fragments we have studied.
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|=point/binary |=point/unary |=cont/binary |=cont/unary

LTL
PSPACE-c.

[SC85]
PSPACE-c.

[Rey04]

MITL
EXPSPACE-c.

[AFH96]
PSPACE-c.

[HR05]
EXPSPACE-c.

[AFH96]
PSPACE-c.

[HR05]

Bounded-MTL

EXPSPACE-c.
[BMOW07]

EXPSPACE
[BMOW07]

? ? m.-c.

EXPSPACE-c.
[BMOW07]

PSPACE-c.
[BMOW08]

EXPSPACE-c.
[BMOW08]

PSPACE-c.
[BMOW08]

sat.

coFlat-MTLLTL

EXPSPACE-c.
[BMOW07]

EXPSPACE-c.
[BMOW08]

EXPSPACE-c.
[BMOW08]

EXPSPACE-c.
[BMOW08]

m.-c.

undecidable
[OW06a]

sat.

coFlat-MTLMITL

EXPSPACE-c.
[BMOW08]

EXPSPACE-c.
[BMOW08]

m.-c.

undecidable
[OW06a]

sat.

Safety-MTL

decidable
[OW05]

? m.-c.

decidable [OW06b]
non-elementary [BMO+08]

?
non-elementary [BMO+08]

sat.

It is worth noting that several fragments have rather appealing complexities
(indeed, in the framework of timed systems, we seldom find better complex-
ities than PSPACE).

4.6 Conclusion and further work

In this section, we have studied popular linear-time timed temporal logics,
and in particular the expressiveness of various such logics. We have also
considered decidability and complexity aspects for the model-checking and
the satisfiability of those logics. The investigations for the full natural ex-
tensions were really pessimistic, with a single decidability result (and very
high complexity), furthermore under a rather restrictive semantics. Hence,
the quest for restrictions yielding better complexity results was a natural
line of research, and several fragments have been defined with, in most cases,
a really harsh improvement in the complexities. In those fragments, one
can express many interesting properties, like invariance properties, bounded
response time, etc.
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Following the development of chapter 3, I would be interested in being
involved in the development of a tool for fragments of linear-time timed tem-
poral logics. In particular, it seems that developing good data structures for
model-checking those logics is really challenging, as basic data structures like
DBMs will a priori not be sufficient. However, there is one point that should
be mentioned: even though the model-checking of MTL is hard, truth of MTL
formulas is invariant within a region (that can be easily seen for the point-
wise semantics using the transformation into alternating timed automata),
hence we do not need general data structures like polyhedra. The difficult
point is then that a large number of timing constraints need to be stored
during the model-checking process, but I think that DBMs with a number
of variables that may change dynamically could be used. And as far as I
know, the current version of Uppaal already implements DBMs with a num-
ber of variables which evolves dynamically. However, there might be a more
clever data structures for those fragments that have a rather low complex-
ity. Maybe we could use channel machines as a data structure in that case?
Indeed the channel of a channel machine can store an unbounded amount of
timing information.

Together with Mark Jenkins (Oxford University, England), Joël Ouak-
nine and James Worrell, we are currently investigating whether the flatness
ideas we have defined here could be used in the framework of branching-time
logics. Indeed, the satisfiability problem for TCTL is known to be undecid-
able in general [ACD93]. We think that flatness assumptions could lead to a
rather impressive improvement of the satisfiability problem (like going down
to 2EXPTIME). Following the techniques we have used for coFlat-MTLLTL,
this should require studying alternating channel machines with a bounded
number of cycles.
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Chapter 5

Weighted timed automata, a
model for embedded systems

5.1 Introduction

New challenges in embedded systems verification. Since a couple of
years, the verification technology for timed automata has evolved in several
interesting directions, to answer new challenges posed by modern real-life
systems, like the control of resources (eg. energy consumption, bandwidth or
memory limitations, etc.). Hybrid systems [Hen96, HKPV98, Ras05] can be
seen as a first answer to these new challenges, but they do not enjoy very
nice decidability properties, and even though many works are devoted to
that model (with the developments of heuristics, approximation algorithms,
extraction of decidable subclasses, etc.), there might be other alternative
and more accurate models. In that direction, weighted (or priced) timed au-
tomata [ALP01, BFH+01] have been designed as an extension of the timed
automaton formalism, which uses observer variables to measure the perfor-
mance or the cost of executions of the system. Several systems can be mod-
elled using weighted timed automata — we can for instance mention schedul-
ing problems [RLS06, BLR05a], or production systems, see [BLR05a] for ex-
amples of systems that can be modelled using weighted timed automata —
and natural interesting optimization questions can be asked.

Weighted/priced timed automata. Weighted timed automata1 extend
classical timed automata with cost information both on locations and tran-
sitions of the automaton. The cost labelling a location represents the cost

1In this chapter, we follow the terminology of [ALP01], but this model is called priced
timed automaton in [BFH+01].
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per time unit that has to be paid for staying in that location, and the cost
labelling a transition represents the cost to be paid for taking the transi-
tion. That way, every run in the automaton has a global cost, which is the
accumulated cost of every delay or discrete move along the run. Note that
the value of the cost variable does not restrict the possible executions of the
system, but gives a quantitative information on the quality of an execution.

Model-checking and games with an optimization criterion. Given
that the cost variable gives a measure of the quality of an execution, we
can use that model to optimize the performance of a system. For instance,
one may want to optimize the cost for reaching some distinguished set of
locations, and to synthesize schedules to achieve that optimal cost (this is
for instance the case for scheduling problems, where one wants to schedule
tasks on machines, in such a way that the energy consumption be minimal),
or one may want to compute the optimal mean-cost and schedules achieving
that optimal mean-cost.

More generally we can consider various model-checking problems where
the cost, viewed as an observer variable, can be used to specify properties of
the system. In that context, we will consider natural extensions of temporal
logics, where modalities are decorated with constraints on the cost. For
instance, in WCTL, an extension of CTL with cost constraints, one can write
properties like ‘ A G (request→ A F65 ack)’, which says that a request is
always acknowledged, and it does not cost more than 5.

Everything we have presented so far concerns closed systems, where we
can control everything in the system. In general, we will be interested in
embedded systems, which execute in an environment: in that case we say that
the systems are open. Classically, those systems are modelled as two-player
games [Thom02], and the optimization question(s) we asked then becomes
‘can we synthesize a strategy for the system (or controller) so that the cost
is the best we can expect, whatever is the behaviour of the environment?’.

Content of this chapter. These last years, there has been a prolific lit-
erature on that model. In section 5.2, we will present the model of weighted
timed automata. Then in section 5.3, we will present the first decidability re-
sults that have been obtained for basic optimization problems. In section 5.4,
we investigate the optimization problems in the context of open systems. In
section 5.5, we focus on more general model-checking problems, where prop-
erties are expressed in an extension of temporal logics with cost constraints.
Finally, in section 5.6, we give some recent investigations and perspectives.
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5.2 The weighted timed automaton model

In this section we introduce the weighted (or priced) timed automaton model,
that has been proposed in 2001 for representing resource consumption in real-
time systems [ALP01, BFH+01]

Definition 5.1 A weighted (or priced) timed automaton is a tuple

A = (AP, X, L, `0,Goal, E, Inv,L, cost)

where (AP, X, L, `0,Goal, E, Inv,L) is a (diagonal-free) timed automaton, and
cost : L ∪ E → N is a cost function which assigns a value to each location
and to each transition. The cost (function) cost is said stopwatch whenever
cost(L) ⊆ {0, 1} and cost(E) = {0}.

The semantics of a weighted timed automaton is that of the underlying timed
automaton. The role of the cost functions is to give a quantitative informa-
tion on the moves in the system. The value given to a location represents
a cost rate, and delaying t time units in a location ` will cost ‘t ·cost(`)’.
The value given to a transition represents the cost of taking that transition.
Formally, the cost of the two types of moves in a weighted timed automaton
is defined as follows:28<: cost

�
(`, v)

t−→ (`, v + t)
�

= t · cost(`)

cost
�
(`, v)

e−→ (`′, v′)
�

= cost(e)

A run % of a weighted timed automaton is a run of the underlying timed
automaton, i.e., a finite or infinite sequence of moves in the transition system
(with a strict alternation of delay and discrete moves). The cost of %, denoted
cost(%), is the sum of the costs of all the simple moves along %.

Example 5.2 We consider the weighted timed automaton A depicted on the next
figure, where we forget about dashed and plain transitions for now. When relevant
(i.e., when the cost is non-null), we decorate each location with a value (like 5 for
location `0), that represents the cost rate in that location, and we decorate each
transition with a value (like +7 for transition w3), that represents the discrete cost
of firing that transition. A possible run in A is:

% = (`0, 0) 0.1−−→ (`0, 0.1) e1−→ (`1, 0.1) e3−→ (`3, 0.1) 1.9−−→ (`3, 2) w3−→ (,, 2)

The cost of % is cost(%) = 5 · 0.1 + 1 · 1.9 + 7 = 9.4 (the cost per time unit is 5 in
`0, 1 in `3, and the cost of transition w3 is 7).

2Note that we overload the notation cost, which designs both the cost assigned to a
transition or a location in a weighted timed automaton, and the cost assigned to a move
in the transition system. Later it will also represent the cost of an execution.
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Remark 5.3 In our model, we have only defined one cost function. In general,
there can be several cost functions that measure the quality of runs. When this is
useful, we will say that several cost functions can (or need to) be used.

y

5.3 Optimization problems

Unlike hybrid systems, cost variables do not constrain the behaviours of the
system, but are ‘observer variables’ : they give a quantitative information
on the quality of a run, and can be used to measure the performance of a
system. Several optimization criteria can then be thought of, like the optimal
cost for reaching some goal in the system, or the optimal mean-cost that
can be achieved along infinite executions of the system. These optimization
problems are relevant for instance in scheduling problems, where the cost
evolution can be viewed as resource consumption.

5.3.1 Decidability results

In this subsection we give an overview of the decidability and complexity
results for the optimization problems that we have briefly mentioned before.
In the next subsection we will give a rough idea why these results hold.

The optimal cost problem. Intuitively, the optimal cost problem asks
what is the optimal cost for reaching the goal locations in a weighted timed
automaton. We assume A = (X,L, `0,Goal, E, Inv, cost) is a weighted timed
automaton. The optimal cost for reaching goal locations in A is defined as:

opt costA = inf{cost(%) | % ∈ Runsaccf (A, s0)}

By extension when we will speak of the complexity, we will mean the com-
plexity of the corresponding decision problem, which asks, given a threshold
c ∈ Q>0, whether opt costA 6 c. If ε > 0, a run % ∈ Runsf(A, s0) is an
ε-optimal schedule in A if opt costA 6 cost(%) 6 opt costA + ε.
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In this context, the first problem which has been solved already in the
early 90’s by Courcoubetis and Yannakakis is the optimal time problem, where
the cost represents the time that has elapsed (the cost rates in locations are
equal to 1 — they increase at the same speed as the time — and discrete
costs of transitions are set to 0): the problem then consists in computing the
optimal time for reaching one of the distinguished goal locations in a timed
automaton.

Theorem 5.4 ([CY92]) The optimal time in timed automata is computable
in exponential time.

Applying the further results (theorem 5.6) on weighted timed automata, we
can refine this result, and computing the optimal time in timed automata
can actually be solved in polynomial space. Moreover, we can prove that the
problem is indeed PSPACE-complete (if there is an answer to the reachability
problem, we can bound the duration of a witness run by an exponential,
and then answering positively to the decision problem for that upper bound
duration is equivalent to answering the reachability question, which is known
to be PSPACE-hard).

Almost ten years after this first result, the general cost optimal reacha-
bility problem in weighted timed automata has been formulated and solved
independently in [ALP01] and in [BFH+01].

Theorem 5.5 ([ALP01, BFH+01]) The optimal cost in weighted timed
automata is computable (in exponential time).

The algorithm developed in [ALP01] is based on an extension of the classical
region automaton, and yields an EXPTIME upper bound for solving the prob-
lem, whereas the algorithm developed in [BFH+01] is based on well-quasi-
orders, which gives no good information on the complexity of the problem.

With Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin, we
have computed the precise complexity of the problem.

+ Theorem 5.6 ([BBBR07]) The optimal cost problem in weighted timed
automata is PSPACE-complete. Furthermore, for every ε > 0, ε-optimal
schedules can be computed.

Remark 5.7 Note that the above result also holds when the costs of locations on
transitions are taken in Z = N ∪ −N, the set of integers.

y
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The optimal mean-cost problem. Intuitively, the optimal mean-cost
problem asks what is the optimal mean-cost (eg. cost per time unit) that can
be achieved (or approximated) in a weighted timed automaton. To define
the most general mean-cost problem, we assume that A is a weighted timed
automaton with two cost functions, say cost and reward. Then, the optimal
mean-cost of A with respect to cost and reward is formally defined as:

opt costω
A = inf{mean cost(%) | % ∈ Runs(A, s0)}

where mean cost(%) is defined as lim inf
n→+∞

cost(%n)

reward(%n)
(%n is the prefix of length

n of %). We use the ‘lim inf’ operator because the limit might not be properly
defined. A particular case is when the reward corresponds to the time elapsed,
in which case the value mean cost(%) is the mean cost per time unit along
run %. If ε > 0, a run % ∈ Runs(A, s0) is an ε-optimal schedule in A if
opt costω

A 6 mean cost(%) 6 opt costω
A + ε.

With Ed Brinksma and Kim G. Larsen, we have proven the following
result.

+ Theorem 5.8 ([BBL04, BBL08]) Under some restrictions for the reward
function, the optimal mean-cost problem is PSPACE-complete in weighted
timed automata. Furthermore, for every ε > 0, ε-optimal schedules can be
computed.

Remark 5.9 The restrictions mentioned in the above theorem assume the func-
tion reward be strictly non-Zeno, i.e., along any cycle of the region automaton, the
reward increases by some positive lower-bounded amount. If we consider the time
elapsed instead of a general reward-function, this amounts to the classical strongly
non-Zeno hypothesis, that is for instance made in [AMPS98].

Note that this hypothesis is required to get the above result, as we have exhib-
ited a counter-example to our algorithm in which this hypothesis is not satisfied,
see table 5.1.

y

5.3.2 The corner-point abstraction

The two decidability results mentioned in the previous subsection can be
proven using a refinement of the region construction. Indeed, regions are
not suitable for computing optimal (mean-)costs because costs of region-
equivalent trajectories may have pretty different costs. For example, the cost
of run % given in example 5.2 is 9.4 whereas the cost of the (region-equivalent)
run delaying 0.9 time units in `0 and then 2.1 time units in `3 is 13.6. However
we are not interested in computing the costs of all possible runs, but rather
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We consider the following weighted timed automaton. We write α/β to
indicate the cost and reward of the locations and the edges. We can notice
that the reward is not strongly non-Zeno, because of the right-most cycle.

0/0 0/0 11/1 0/0y>0,y:=0

3/2

x=1,x:=0

0/0

y=1,y:=0

0/0

x=1,x:=0

0/0

In this automaton, for every (infinite) run %, mean cost(%) = +∞, whereas
the algorithm (based on the corner-point abstraction, see next subsection)
computes 2.

Table 5.1: The reward needs to be strongly non-Zeno

to compute extremal (i.e., minimal and/or maximal) cost values. The idea
is then to record the cost of moving through extremal points of the regions
(which have integral coordinates). These points are called corner-points, and
will ‘decorate’ regions. We build a graph, called the corner-point abstraction,
which refines the classical region automaton, and whose states are tuples
(`, R, α) where ` is a location of the original automaton, R is a region, and
α is a corner-point of R. Intuitively, being in state (`, R, α) of this graph
means that we are in location `, in region R, close to the extremal point
α. We illustrate this notion of corner-points in example 5.10, and informally
explain how we build the corner-point abstraction.

Example 5.10 We illustrate the notion of corner-points in a two-dimensional
clock space. As recalled in table 2.2 (page 23), classical evolution of regions can
be schematized as in table 5.2: when time elapses, regions are visited following
time successors (the immediate successor of a triangular region is a flat region
while the immediate successor of a flat region is a triangular region), and when
firing transitions, clocks may be reset, and regions are then somehow projected
into flatter regions.

The corner-point abstraction is depicted in table 5.2. Corners decorating re-
gions are indicated with a black bold dot. We consider the top-left-most region
of the figure decorated with the corner in the bottom. When time elapses, it is
transformed into the top corner of the same region which is almost one time unit
later: thus, as the cost rate in the current location is supposed to be 3 per time
unit, the cost of this move is 3 (because almost one time unit has elapsed, the
cost has thus increased by almost 3). The next move is to enter the next region
(which is flat) but to stay close to the same corner. The cost is thus almost 0
(because almost no time has elapsed), that is why we label the move by 0. And
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time elapsing

reset to 0

The region abstraction

3
0 0

0

0 0
3

7

7

The corner-point abstraction

Table 5.2: Region vs corner-point abstraction

so on. For discrete moves, regions are transformed as usual, and corners are also
projected (the projection preserves the property of extremal points of polyhedra).
Transitions are then labelled with the cost of the transition (7 in our example).

y

Given a weighted timed automaton A, we build the so-called corner-
point abstraction of A, denoted CP(A), which refines the classical region
automaton construction by including corner information, as suggested in
example 5.10. The result is a weighted finite graph (whose cost functions
will also be denoted cost and reward), in which it is possible to solve the
(mean-)cost optimality problems [CLR90, Kar78, ZP96].

An important property of this graph is that, given a finite run % : (`0, v0)→
(`1, v1) → . . . → (`n, vn) in A, there exist two finite paths π : (`0, R0, α0) →
(`1, R1, α1)→ . . .→ (`n, Rn, αn) and π′ : (`0, R0, α

′
0)→ (`1, R1, α

′
1)→ . . .→

(`n, Rn, α
′
n) in CP(A) such that vi ∈ Ri for every i, αi and α′i are corners
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of Ri, and cost(π) 6 cost(%) 6 cost(π′). Conversely, for every finite path
π : (`0, R0, α0) → (`1, R1, α1) → . . . → (`n, Rn, αn) in CP(A), for every
ε > 0, we can construct a real run % : (`0, v0) → (`1, v1) → . . . → (`n, vn) in
A such that for every index i, vi ∈ Ri, and |cost(%)− cost(π)| < ε.

There is thus a strong relation between finite runs in A and finite paths
in CP(A). Computing the optimal cost for reaching a given goal in A reduces
to computing the optimal cost for reaching a distinguished set of states in
the discrete weighted graph CP(A).

The case of optimal mean-cost needs some more work, the corner-point
abstraction can nonetheless be used to compute it. We first recall that in a
finite weighted graph, the optimal mean-cost can be computed as the mean
cost of a reachable (simple) cycle that minimizes that value [Kar78] — we
call such a cycle an optimal cycle. Then, we prove that the mean-cost of
an infinite run in A cannot be any better than the optimal cycle in CP(A).
This can be proven by taking longer and longer prefixes of an infinite run %,
and at the limit, the ratio will always be larger than the mean-cost of the
optimal cycle in CP(A). Write %n for the prefix of length n of %. Applying the
previous result on finite runs, we can construct a finite path πn in CP(A) such
that cost(πn) 6 cost(%n). We can decompose πn into cycles as schematically
depicted below:

πn:

cycle-free

cycle appearing in πn

The linear part of πn is cycle-free, hence has a bounded length, and its
costs will somehow become negligible when n tends to +∞. The mean-
cost of every cycle is no better than the optimal cycle of CP(A). Hence, at
the limit, the mean-cost of % will not be better than the mean-cost of the
optimal cycle in CP(A). Conversely, paths in the corner-point abstraction
can be approximated by real runs in the original automaton with costs and
rewards that are very close to the one in the corner-point abstraction. The
construction is presented in details in [BBL08].

The size of the corner-point abstraction is exponential in the size of the
original automaton (a region R has at most |X| corner-points, where X is the
set of clocks of the automaton), i.e., as is the size of the region automaton.
Using non-determinism, we can guess optimal paths (respectively cycles)
in CP(A), without first computing the full graph. This non-deterministic
algorithm uses polynomial space, hence the PSPACE upper bound for the
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two optimization problems. The PSPACE lower bound can be easily obtained
by reduction to the reachability problem in timed automata, for appropriate
cost functions.

5.3.3 Partial conclusion and related work

In this section, we have presented the decidability results for the two basic
optimization problems on weighted timed automata. This is really encour-
aging because the theoretical complexity of these problems is not very high
(in the context of real-time model-checking).

We have seen in chapter 3 that the region automaton construction is
not implemented in tools like Uppaal [BDL+06] or Kronos [BDM+98] but a
symbolic approach (based on zones) is preferred and implemented. Following
this approach, a symbolic approach for computing optimal costs for reaching
some distinguished set of goal locations, based on an extension of zones, called
priced zones, has been developed in [LBB+01] and later implemented in the
tool Uppaal-Cora.3 The paper [BLR04] reports algorithms and applications of
this tool. Also, optimal cost, given some constraint on another cost variable,
is proven computable [LR05] and implemented in that tool. For the moment,
the optimal mean-cost is still not implemented, because there is no data
structure that has been developed to deal with that problem. This is however
a very challenging (and non-trivial) line of research: there is no obvious
extension of the priced zone symbolic representation which could be correct
for the optimal mean-cost problem.

Recently, the corner-point abstraction has been used to prove the decid-
ability of another optimization problem [FL08]. Along a run, the cost is
now discounted with respect to the time which has elapsed. This extends
the classical discounted payoff that we can find in the game theory litera-
ture [ZP96]. The optimal discounted cost is proven to be computable, and
it uses the corner-point abstraction.

5.4 Optimal (reachability) timed games

We have seen the optimal cost and the optimal mean-cost were both com-
putable in weighted timed automata in polynomial space. This is really
encouraging to consider more involved problems. In this section, we consider
the very similar problems, but no more in the context of closed systems, as
in the previous section, but in the context of open systems. An open system

3http://www.cs.aau.dk/∼behrmann/cora/publications.html
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somehow models an interaction between the system itself and the environ-
ment it is embedded in. As often this is modelled as games [Thom02] and
we will often use terminologies from game theory.

5.4.1 Weighted timed games

A weighted timed game is a weighted timed automaton in which transitions
are decoupled into controllable transitions (played by the controller) and
uncontrollable transitions (played by the environment).

Let G = (X,L, `0,Goal, E, Inv, cost) be a weighted timed game. We as-
sume Goal locations are sink locations with cost 0 per time unit, and a loop
on each of the locations with cost 0. A (controller) strategy in G from the
initial state s0 = (`0,0X) is a partial function f from Runsf(G, s0), the set of
finite runs starting in s0, into the set of controllable transitions of G plus the
symbol λ (which is for ‘delaying’) such that:

• f(s0) is defined,

• if f(%) is defined and last(%) = s, then:

– either f(%) is a controllable transition e in G, and e is enabled
from s, in which case f(%

e−→)4 has to be defined, and for every
uncontrollable transition u in G which is enabled from s, f(%

u−→)
has to be defined;

– or f(%) is λ, and there exists d > 0 such that f(%
d′−→) is defined

for every 0 < d′ 6 d, and f(%
d′−→) = λ for every < d′ < d, and

for every uncontrollable transition u enabled at some s + d′ with

0 6 d′ 6 d, f(%
d′,u−−→) has to be defined.

This is the notion of strategy that has been introduced in [BCFL04], but in
the literature, alternative definitions can be found, we mention for instance
the one used in [ABM04, BBR05], where f is a partial function that associates
to a run % ∈ Runsf(G, s0) a pair (d, e) ∈ R>0 × E which describes the next
move to be done (wait d time units, and take edge e) from the current
configuration. These different definitions yield different properties, we will
mention one of them later.

A strategy f is said memoryless if for all runs %, %′ ∈ Runsf(G, s0), last(%) =
last(%′) implies f(%) = f(%′). Memoryless strategies are somehow ‘simple’
strategies that do not take past into account to make the next decision. A
strategy f gives rise in a natural way to a set of maximal plays (because

4The notation %
e−→ is a shortcut for the run % extended by transition e.
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G is supposed to be non-blocking, they correspond to infinite runs gener-
ated by the strategy) denoted playsG(f). The strategy f is winning (for the
reachability goal) if and only if all (maximal) plays of playsG(f) end up in
Goal.

The classical reachability game problem asks, given a timed game G,
whether there is a winning controller strategy for the reachability goal. Clas-
sical reachability games have been considered in the context of timed sys-
tems in the 90’s, and deciding those games is EXPTIME-complete [AMPS98,
HK99]. For those games, memoryless strategies are sufficient, and they are
even region-invariant if we take the notion of strategy in [ABM04, BBR05],
but they are not region-invariant with the notion of strategy we have chosen
here, see [BCFL04].

With weighted timed games, an optimality criterion can be added to those
games. The cost of a winning strategy f is defined as:

costG(f) = sup{cost(%) | % ∈ playsG(f)}

Note that if f is a winning strategy, then for every % ∈ playsG(f), cost(%) <
+∞. However it might be the case that costG(f) = +∞.

The aim of the controller is to optimize this value and we want to compute
the optimal cost the controller can ensure, whatever the environment does,
which can be formally written as:

opt costG = inf{costG(f) | f winning strategy}

We will consider the following decision problem which asks, given a threshold
c ∈ Q>0, whether there is some strategy f such that costG(f) 6 c. We will
call this problem the bounded cost problem. We will also be interested in
synthesizing almost-optimal strategies, that is for every ε > 0, computing a
strategy fε which is ε-optimal : opt costG 6 costG(f) 6 opt costG + ε.

Example 5.11 (Taken from [BCFL04]) We consider the weighted timed au-
tomaton of example 5.2 (page 75). Dashed (respectively plain) arrows are now for
uncontrollable (respectively controllable) transitions. Depending on the choice of
the environment (going to location `2 or `3), the accumulated cost along plays of
the game is either 5t+ 10(2− t) + 1 (through `2) or 5t+ (2− t) + 7 (through `3)
where t is the delay elapsed in location `0. The optimal cost the controller can
ensure is thus inft62 max(5t + 10(2 − t) + 1, 5t + (2 − t) + 7) = 14 + 1

3 , and the
optimal time for firing transition e1 is when t = 4

3 . The optimal strategy for the
controller is thus to wait in location `0 until x = 4

3 , and then enter location `1.
Then, the environment chooses to go either to `2 or to `3, and finally when the
value of x reaches 2, the controller goes to the goal location ,.

y
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Remark 5.12 Let us mention that in the above example, the optimal cost is non-
integral, contrary to the case of closed systems. This means in particular that no
region-based technology (and even corner-point abstraction) can be used to solve
optimal timed games.

y

5.4.2 Discussion

In the late 90’s, optimal-time timed games (i.e., weighted timed games where
cost represents time elapsing) have been considered [AM99], and the complex-
ity has been made precise rather recently [JT07] using strategy improvement
techniques.

Theorem 5.13 ([AM99, JT07]) Optimal-time in reachability timed games
is computable. It is EXPTIME-complete.

The reason is that the region abstraction needs not be refined to compute
the optimal time.

Remark 5.14 Note also that the EXPTIME upper bound could have been com-
puted as follows: solve the reachability game classically, and record the corre-
sponding memoryless winning strategy (using for instance a backward algorithm à
la [AMPS98]), compute the maximal time τ for winning following that memoryless
strategy (this needs to be bounded, otherwise it would not be winning), and then
add an extra clock z which is never reset but is used in a guard z 6 c (for c chosen
non-deterministically not larger than τ) which constrains every transition leading
to a location in Goal. The optimal time is the smallest c for which the transformed
game is winning (because thanks to [AM99] we know that the optimal time is an
integer). Finally as the value of τ is at most exponential (because the selected
winning strategy is memoryless), this global algorithm only requires exponential
time.

y

Then, in [LMM02], optimal timed games (with general costs) are con-
sidered, and a doubly-exponential time algorithm is designed for computing
optimal cost (and synthesizing (almost-)optimal strategies) in acyclic timed
games. The algorithm somehow extends classical min/max-algorithms for
discrete games to timed games. Optimal timed games have further been
studied from 2004 on.

In [ABM04], the 2EXPTIME upper bound mentioned above is improved
to an EXPTIME upper bound. Note that this algorithm computes for every
winning state the optimal cost for winning and provides a (possibly almost)
optimal winning strategy. The algorithm which is proposed splits the state-
space into polyhedra on which (roughly) optimal winning strategies are uni-
form, it is pretty involved, and relies on nice geometrical properties of the

85



state-space. Moreover, a family of weighted timed games is given, for which
it is unavoidable to split the set of winning states into an exponential number
of pieces.

The work done in [BCFL04] has considered properties of optimal winning
strategies. In particular, it is shown that optimal winning strategies may need
some memory to win, but also that not much memory is required (the accu-
mulated cost since the beginning of the play is sufficient). A semi-algorithm is
proposed, which, if it converges, compute the set of winning states, together
with the optimal cost for winning. We have implemented [BCFL05] the semi-
algorithm, based on hybrid games, on top of the tool HyTech [HHWT97].
However, only a quite strong hypothesis ensures the termination of the semi-
algorithm (some strongly non-Zenoness of the cost function).

5.4.3 Undecidability results

The first undecidability result has come as a surprise from colleagues in
Belgium [BBR05], it requires weighted timed games with five clocks or more.
We have proposed an improved undecidability proof [BBM06], which only
uses weighted timed games with three clocks.

+ Theorem 5.15 ([BBR05, BBM06]) The bounded cost problem for weighted
timed games with no less than three clocks is undecidable.

Remark 5.16 This result does not formally imply the non-computability of the
optimal cost. Furthermore we did not manage to turn the proof in such a way
that the optimal cost be non-computable. However, this is already bad news.

y

We will present the basic ideas of the undecidability proof proposed in [BBM06],
which we think is quite instructive. First we consider the two small modules
that are depicted below. The module Add+x

z (x, y) (respectively Add+(1−x)
z (x, y))

uses z as an extra clock, lets the values of x and y at the end of the mod-
ule be the same as at the beginning of the module, increases the cost by x0

(respectively 1− x0) if x0 is the value of x when entering the module.

0 1

x=1,x:=0

y=1,y:=0 y=1,y:=0

z=1,z:=0z:=0

The cost is increased by x0
The values of x and y are unchanged

Module Add+x
z (x, y)

1 0

x=1,x:=0

y=1,y:=0 y=1,y:=0

z=1,z:=0z:=0

The cost is increased by 1−x0
The values of x and y are unchanged

Module Add+(1−x)
z (x, y)
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Concatenating these modules, one can implement various cost functions
(non-negative linear combinations of x0, y0, 1−x0, 1− y0). In particular, we
can implement the two cost functions cost1 and cost2 defined as follows:

cost1(x0, y0) = 2x0 + (1− y0) + 2 cost2(x0, y0) = 2(1− x0) + y0 + 1

Now, it is easy to check that 2x0 > y0 implies cost1(x0, y0) > 3, whereas
2x0 < y0 implies cost2(x0, y0) > 3. Moreover, if 2x0 = y0, then cost1(x0, y0) =
cost2(x0, y0) = 3. Hence if we are in a state with x = x0 and y = y0, and if
the choice of the cost function is given to the environment, it can enforce a
cost (strictly) larger than 3 if and only if 2x0 6= y0. Otherwise, the cost will
be 3, whatever is the choice of the environment. This will later serve as a
module to check whether twice the value of x is equal to the value of y. We
denote this test module Testz(2x = y), with the subscript z to indicate that
an extra clock z is used in the module.

To simulate a two-counter machine, the idea is to store the value of a
counter c into a clock, whose value will be, at distinguished points in time,
1
2c . Hence, to store the values of two counters, one needs two clocks. As-
sume an instruction increments the first counter, and lets the second counter
unchanged. Assume furthermore that the value of the first counter is c and
stored in clock x, whereas the value of the second counter is d and is stored
in clock y. We consider the module depicted on the figure below, which will
simulate the above instruction (the value of the first counter is initially stored
in clock x and finally in clock z).

�
x= 1

2c

y= 1

2d

z=?

�
(x61,y61,u61)

u:=0

(x61,y61,u61)

z:=0

x=1,x:=0

∨ y=1,y:=0

x=1,x:=0

∨ y=1,y:=0

�
x= 1

2c

y= 1

2d

z=α

�
(u=0)

u=1,u:=0

Testy(x=2z)

The duration of an execution in that module is one time unit (condition
checked by the extra clock u). It is not difficult to check that the final
values for x and y correspond to their initial values. The final value for
z has been non-deterministically guessed during the execution, so can be
anything within the interval [0, 1]. An uncontrollable transition leads to the
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test module Testy(x = 2z) that we have described earlier. If (and only if)
the guess for z has been correct (or equivalently 2α = 1

2c ) the environment
has no strategy to get a cost value larger than 3. There is no cost labelling
locations of the main automaton, we only add a discrete cost of +3 when
reaching the halting state. In that reduction,

the two-counter machine halts if, and only if,
the controller has a winning strategy with cost no more than 3

in the weighted timed game

It is worth noticing that the described reduction uses four clocks, and
not three, as claimed. However, we can get rid of clock u using the following
trick: the value of the second counter d is now stored by the value 1

3d (note
that the choice of 1

2c and 1
3d is arbitrary, it could be 1

pc and 1
qd for p and q

relatively prime integers). Indeed we can prove that the constraint u = 1 at
the end of the module can be replaced by the constraints that the value of x is
a negative power of 2 and the value of y is a negative power of 3. Testing that
the value of x is a negative power of 2 can be done by iteratively multiplying
the value of x by 2 (done using the Testy(z = 2x) module) and eventually
reaching 1. Finally the constraint that the last location of the module be
transient is done by adding a positive cost to that location, and requiring
the controller to have a strategy with cost no more than 3.

5.4.4 Decidability results

The previous undecidability result is rather bad news, but more positive
results have been looked at, though.

Theorem 5.17 ([BBR05]) The optimal cost in single-clock weighted timed
games is computable if we restrict to a stopwatch cost.

In the restricted case mentioned in the above theorem, the semi-algorithm
proposed in [BCFL04] terminates, because roughly, classical regions never
need to be split and are thus correct.

More recently, optimal cost in weighted timed games with one clock (but
arbitrary cost) has been proven computable [BLMR06] (though in a restricted
turn-based framework where locations are either controllable — i.e. all tran-
sitions leaving this location are controllable — or uncontrollable). This work
is joint work with Kim G. Larsen, Nicolas Markey, and Jacob I. Rasmussen.

+ Theorem 5.18 ([BLMR06]) The optimal cost in turn-based single-clock
weighted timed games is computable. Furthermore, for every ε > 0, we can
compute ε-optimal and memoryless strategies.
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Remark 5.19 The complexity of the algorithm we have designed (which relies on
the fix-point algorithm proposed in [BCFL04]) is 3EXPTIME, and the best lower
bound that is known is PTIME-hard.

y

5.4.5 Partial conclusion and remarks

In this section, we have presented the problem of optimal timed games, where
the aim of the controller is to optimize the cost for reaching some designated
set of goal locations, whatever the environment does. The general problem
is unfortunately undecidable, and only restricted classes of systems yield
decidability.

It is worth noticing here that the undecidability proof presented in sub-
section 5.4.3 can easily be adapted to optimal mean-cost timed games (exten-
sions of mean-payoff games), where the goal for the controller is to optimize
the mean-cost that can be achieved. The idea is to add a transition from the
Goal location to the initial location, let the reward be 1 when a Goal location
is visited. The question is then whether it is possible to have the mean-cost
be no more than 3 or not. And in the reduction, this is equivalent to testing
that the two-counter machine halts. Natural questions can be whether one
can find cost/reward functions that would yield a decidable optimal game
problem. Very recently, a restricted class of mean-cost timed games has been
proven decidable [JT08].

5.5 Model-checking problems

In this section, we will consider another kind of more involved problems,
and will study model-checking problems where specifications are given by
extensions of classical temporal logics like LTL [Pnu77] or CTL [CE82] with
cost constraints. In chapter 4, we have already studied extensions of LTL with
quantitative constraints put on delays between events. Now, the quantitative
constraints are no more relative to delays, but rather to the cost function.
We will consider two possible logics, one based on CTL, and the other one
based on LTL, and we will give decidability and undecidability results, that
will unfortunately also be rather bad news.

Before going to the definition of the logics, we give an example of systems
that will help illustrate our logics.

Example 5.20 The weighted timed automaton depicted below models a never-
ending process of repairing problems, which are bound to occur repeatedly with
a certain frequency. The repair of a problem has a certain cost, captured in the
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model by a cost variable (rates are indicated close to locations, and discrete costs
are indicated at the end of the edge). As soon as a problem occurs (modelled by
the Problem location) the value of the cost grows with rate 3, until actual repair is
taking place in one of the locations Cheap (rate 2) or Expensive (rate 4). At most
20 time units after the occurrence of a problem it will have been repaired one way
or another.

OK

(x69)

0
Problem

(x610)

3

Cheap

(x<20)

2

Expensive

(x615)

4

x>2

x>4

x=20,x:=0

+
5

x=15,x:=0 2 4 6 8 10 x

10

20

30

40

50

c

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

In this setting we are interested in properties concerning the cost of repairs. For
instance, we would like to express that whenever a problem occurs, it may be
repaired (i.e. reach the location OK) within a total cost of 47. The figure to the
right above gives the minimum cost of repair —as well as an optimal strategy—
for any configuration of the form (Problem, x) with x ∈ [0, 10]. Correspondingly,
the minimum cost for reaching OK from configurations of the form (Cheap, x)
(respectively (Expensive, x)) is given by the expression 45−2x (respectively 60−4x).
Symmetrically, we would like to express properties on the worst cost to repair, or
to link the uptime with the (best, worst) cost of repairing. As will be illustrated
later, extending temporal logics with cost information provides a nice setting for
expressing such properties.

y

5.5.1 WCTL: an extension of CTL with cost constraints

The logic WCTL 5 is a branching-time logic which extends CTL with cost
constraints on modalities. It has been first defined in [BBR04]. The syntax
of WCTL 6 over the finite set of atomic propositions AP is given by the
following grammar:

WCTL 3 ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | E (ϕU∼c ϕ) | A (ϕU∼c ϕ)

where p ∈ AP, c ∈ Q>0 and ∼ ∈ {<,6,=,>, >}.
5WCTL stands for “Weighted CTL”.
6The original syntax given in [BBR04] allowed more general constraints on modalities,

but we restrict to that fragment to get some decidability results.
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Formulas of WCTL are interpreted over configurations of a weighted timed
automaton A = (AP, X, L, `0,Goal, E, Inv,L, cost). Given s such a configu-
ration of A and ϕ, the satisfaction relation is defined inductively as follows
(atomic propositions and Boolean combinations are omitted because they are
straightforward), writing s |= ϕ whenever ϕ is satisfied from s:

s |= E (ϕU∼c ψ) ⇔ there exists % ∈ Runs(A, s) and a position $
along % such that cost(%[$0;$]) ∼ c, %[$] |= ψ, and
for every position $0 < $′ < $ along %, %[$′] |= ϕ

s |= A (ϕU∼c ψ) ⇔ for every % ∈ Runs(A, s), there is a position $
along % such that cost(%[$0;$]) ∼ c, %[$] |= ψ, and
for every position $0 < $′ < $ along %, %[$′] |= ϕ

where $0 still denotes the initial position of the run, and where we take
the notations of subsection 2.2.2. As for CTL, there might be two possible
interpretations, depending on the meaning of the term ‘position’. In the
following, this will not have much influence on the results we get, hence do
not insist anymore on that distinction.

Example 5.21 The weighted timed automaton A of example 5.2 (page 75) sat-
isfies the property s0 |= E F610 ,, where s0 = (`0,0X), because there is a run
from s0 that reaches , and whose cost is no more than 10 (eg. the run % given in
example 5.2).

y

Remark 5.22 In the (simplified) definitions we gave for weighted timed automata
and WCTL, only a single cost variable is assumed to measure quantities in the
system. However, as said in remark 5.3, there could be several cost variables in the
weighted timed automata, and each modality could be decorated by a constraint
involving one of the cost variables. For instance, there is a natural cost variable
that measures time elapsing (rate 1 in every location, and cost 0 for every edge),
that we will next denote time.

y

Example 5.23 We go back to example 5.20 (page 89). It is always possible to
repair a problem with cost at most 47 can be written in WCTL with the following
formula:

A G
�
Problem⇒ E F647 OK

�
.

We can also express that the worst cost to repair is 56, in the sense that state OK
can always be reached within this cost:

A G
�
Problem⇒ A F656 OK

�
.

Now, considering time as a special case of a cost, we can express properties relating
the time elapsed in the OK state and the cost to repair:

A G
�
¬E (OK Utime>8 (Problem ∧ ¬E Fcost<30 OK))

�
.
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This expresses that if the system spends at least 8 (consecutive) time units in the
OK state, then the next Problem can be repaired with cost at most 30.

y

Note that when there is a single cost variable which corresponds to time
elapsing, WCTL coincides with the classical logic TCTL [ACD93], whose
model-checking is known to be PSPACE-complete (even under a single-clock
assumption in the timed automaton [LMS04]). However, model-checking
WCTL will turn out not to be as easy as model-checking TCTL. Indeed, it
was first proven in [BBR04] that for five clocks or more, the model-checking
of WCTL is undecidable. We have then further proven that already three
clocks lead to undecidability [BBM06].

+ Theorem 5.24 ([BBR04, BBM06]) Model-checking WCTL is undecidable
for weighted timed automata with three clocks or more.

On the other hand, restricting to single-clock weighted timed automata
yields a surprising improvement for the model-checking of WCTL [BLM07,
BLM08]. Indeed, this becomes no more difficult than model-checking TCTL!

+ Theorem 5.25 ([BLM07, BLM08]) Model-checking WCTL is PSPACE-
complete for single-clock weighted timed automata (with possibly several cost
variables).

Remark 5.26 Note that the above result assumes the dense-time semantics, i.e.
the time domain be Q>0 or R>0. Indeed, it has been proven in [BBR04] that if
we restrict to the discrete-time domain N, the model-checking of WCTL becomes
decidable (the time space can be discretized).

y

We will not take much time explaining the undecidability result. Basically
a reduction similar to the one done for weighted timed games can be used
(roughly, when the second player is used, we can use the A -quantification
instead).

On the other hand, the decidability proof is rather technical, and uses
the following ideas: for each sub-formula (in a bottom-up manner, hence
starting from atomic propositions), we compute a sufficient granularity that
defines regions within which the truth of that sub-formula is uniform; Then,
each such region is labelled by the truth of the current sub-formula, and the
algorithm goes on with higher sub-formulas. It is thus interesting to notice
that there may be different cost variables constraining different modalities.
Globally, we can prove that an exponentially small granularity (in the size
of the formulas, and in the constants appearing in the formula) needs to be
distinguished, yielding immediately an exponential time algorithm to solve
the model-checking problem. A highly non-deterministic algorithm can be
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used instead, as it was done in [HKV96] for TCTL (though we were not aware
of that paper when designing our polynomial space algorithm for WCTL).

5.5.2 WMTL: an extension of LTL with cost constraints

The logic WMTL 7 is a linear-time logic which extends LTL with cost con-
straints on modalities. It has been introduced in [BM07]. The syntax of
WMTL over AP is given by the following grammar:

WMTL 3 ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | ϕU∼c ϕ

where p ∈ AP, c ∈ Q>0 and ∼ ∈ {<,6,=,>, >}.
As for MTL (see chapter 4), formulas of WMTL are interpreted over (fi-

nite or infinite) runs from some position along those runs. Let % be a (finite
or infinite) run in A, and $ be a position along %. The satisfaction rela-
tion is defined as follows (atomic propositions and Boolean combinations are
omitted):

(%,$) |= ϕU∼c ψ ⇔ there exists a position $′ > $ along % such that
cost(%[$;$′]) ∈ I, (%,$′) |= ψ,
and for every position $ < $′′ < $′, (%,$′′) |= ϕ

where we stick to the notations of subsection 2.2.2. As now usual, there
might be two possible interpretations for this logic, depending on the mean-
ing of the term ‘position’. In the following, we will focus on the simplest
interpretation, i.e. the |=point

f -semantics. Indeed, WMTL extends MTL, and
all other semantics already yield undecidable model-checking problems for
MTL (recall section 4.4).

Remark 5.27 As for WCTL, we can mix cost variables in the formulas. In the fol-
lowing, we will allow such features, and give (un)decidability results, distinguishing
between the number of cost variables that are used.

y

Example 5.28 Back to our example 5.20 (page 89), we can express that there is
no path from OK back to itself in time less than 10 and cost less than 20. This is
achieved by showing that no path satisfies the following formula:

OK U (Problem ∧ (¬OK) Utime610 OK ∧ (¬OK) Ucost620 OK).

y

7WMTL stands for “Weighted MTL”.
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+ Theorem 5.29 ([BM07, BLM08]) Model-checking WMTL is decidable for
the |=point

f -semantics, when we restrict to single-clock weighted timed au-
tomata with a single stopwatch cost variable. Any extension leads to the
undecidability of the model-checking problem. This can be summarized in the
following table (in bold face we indicate results that are proven, corollaries
are written in non-bold face):

stopwatch costs normal costs
1 variable 2 variables 3 variables 1 variable 2 variables

0 clock decidable ? undecidable ? undecidable
1 clock decidable undecidable undecidable undecidable undecidable
2 clocks undecidable undecidable undecidable undecidable undecidable

The decidability result relies on a construction based on stopwatch single-
clock alternating timed automata, that extends the construction made in
section 4.4.2 (the single-clock hypothesis appears rather quickly when trying
to extend the proof).

The undecidability proof relies on ideas similar to the one done for optimal
reachability timed games, except that one needs to store the values of the two
counters in a single clock. We do so by storing the value 1

2c3d in the unique
clock, where c (respectively d) is the value of the first (respectively second)
counter. All operations have to be done in a more clever way than it was
done for optimal timed games, we give parts of the reduction in table 5.3,
the complete reduction is given in [BM07, BLM08].

5.6 Conclusion and further works

Timed automata extended with cost information have been extensively stud-
ied in the past few years. We have presented here some of the results
which have been obtained in the context of model-checking and games. Ba-
sic optimization problems are surprisingly easy to do, but extensions to
games or to more general model-checking problems are hard in general.
We would like to point out the new interest in single timed automata that
arises from this study. Indeed, some of the problems become decidable in
that case (with a rather reasonable complexity). Restriction to single clock
models already yielded a dramatic improvement in the complexity of the
verification of reachability properties in timed automata (it becomes NP-
complete, see [LMS04]), and yielded decidability to alternating timed au-
tomata [LW05, LW08]. Though that might be seen as a drastic restriction,
this is however rather interesting because it allows to model systems with
(simple) timing constraints, but with other quantitative aspects.
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The following module, together with some WMTL formula, will simulate
an increment of the first counter.

A
1

B
1

C
2

D
1x61 x=1

x:=0

+2
to next module

x61x61

The WMTL formula needs to express that the value of the clock be divided
by 2 (to safely implement the increment of the first counter). This can
be achieved by expressing that no time elapses in locations A and D, and
that the global cost in that module accumulates to 3. It can be written:

G (A→(AU=0 ¬A)) ∧ G (D→(D U=0 ¬D)) ∧ G (A→(¬D U=3 D))

The following (more involved) module simulates a test to zero and a decre-
ment of the first counter. We let the reader imagine the WMTL that could
help simulating the instruction.

A0

1
B0

3
C0

1

A
1

B
3

C
1

C′ 1

D
1

E1

3

E2

3

F1

1

F2

1

G1

3

G2

3

H1

1

H2

1

A2

1

B2

2

C2

1

D2

1

x<1 x=1
x:=0

x<1

x=1
x:=0

x=
1

x:
=
0

x>
1x:=

0

x:=0

x:=0

x=1
x:=0

+1
to next module when c1>0

to next module when c1=0
x61

x=1

Table 5.3: Undecidability of WMTL: some ideas

We have several works in progress on the model of weighted timed au-
tomata, we will describe two of them. Some other possibilities include the
application of strategy improvement techniques to get further decidability
results. Indeed, we have recently applied these techniques to prove the com-
putability of the optimal cost in weighted games, where the underlying model
is not a timed automaton, but a strong-reset hybrid automaton [BBJ+08].
Similar techniques have been used to compute optimal time and optimal
mean-cost in (restricted classes of) timed games [JT07, JT08].

Approximate the optimal cost in timed games. Formally, we have
not proven that the optimal cost was not computable in weighted timed
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games, but rather that if it was computable, it would have a complicated form
(because deciding whether it is below a rational threshold is undecidable). An
interesting research direction is then to try to compute approximate optimal
costs instead (in practice, that would be sufficient, as soon as we can bound
the distance to the optimal value). Indeed, the study we have done so far
does not imply that this problem should be complex.

A natural idea to get approximate values is to use the iterative semi-
algorithm designed in [BCFL04]. Indeed, this computation, if it does termi-
nate, computes the optimal cost of the game. However, we have not managed
yet to prove that the values that are computed converge to the optimal cost in
the general case (when the algorithm does not terminate). Furthermore, we
do not quite see how to bound the distance to the optimal cost. We have thus
tried to design another (semi-)algorithm, that would compute an approxima-
tion of the optimal cost from below, but all our attempts so far have failed
(for instance, discretizing and refining the granularity of the discretization
is not correct). This is however a challenging issue, that we should continue
working on. I have started working on that subject with several people in-
cluding Nicolas Markey, Joël Ouaknine, Jean-François Raskin, and James
Worrell.

We now would like to illustrate with an example the kind of results we
would like to obtain. We consider the following weighted timed automaton,
where we use the macro x := y that assigns the value of y to clock x (we
know that this macro can be removed [BDFP04]). Furthermore, we have
seen in page 87 that we can implement many cost functions, for instance
cost1 = 3− 2x + y and cost2 = 3 + 2x− y. We will use these macros in the
example. This game is turn-based (dashed edges are for the environment,
whereas plain edges are for the controller; `0 and `3 are thus uncontrollable
locations). The Goal location is ,.

`0

(x61)

`1 `2�
x61
z62

� `3

(z=0)

-

x61,z:=0

x=1,x:=0

y:=0

x=1,x:=0

z=2,z:=0

z=0,x:=y

z=0,x>1

+3

co
st

1 co
st

2
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The algorithm designed in [BCFL04] does not terminate on that example.
In this game, the environment first chooses a time at which he fires the first
transition, and then the play will loop for some time, until one of the players
decides to reach the goal location ,. In a loop, the controller has a single
choice, which is the delay in `1, all other choices are determined by the clock
constraints.

The optimal cost of that game for the controller is 3, and the controller
has an optimal winning strategy, which consists in delaying in `1 a delay d
such that 2− d is equal to twice the value of x when entering `1. That way,
when entering state `3, the value of y is twice the value of x, and thus the
environment cannot make the controller pay more than 3 (both edges leading
to the winning location , will then have cost 3). On the other hand, if the
controller does not follow this strategy, the environment can reach the goal
location , with a cost strictly larger than 3. Now, if the controller keeps
playing that strategy, the value of clock x will eventually satisfy x 6 1 when
entering state `1, and thus he can escape to the goal location ,, and pay
a cost of 3. Note that this optimal winning strategy is memoryless, but it
generates plays of unbounded length.

Let us consider now almost-optimal winning strategies. Fix an ε > 0. We
will see that the controller has a winning strategy which is ε-optimal and for
which the length of the prefix (up to ,) of all plays have length bounded

by O
�
− log2(ε)

�
. Choose n integer such that 1

2n−1 < ε. Then the strategy

just changes the first time location `1 is visited. If the value of x is smaller
than 1

2n , then take the next transition so that the value of y when entering
state `3 be 1

2n−1 . The controller makes a mistake in doing that (he does not
multiply correctly by 2), but it will not cost that much, because it will cost
no more than 3 + 1

2n−1 , which is smaller than 3 + ε. The strategy for the next
loops is the optimal one (the value of x is now large enough). Following that
strategy, any play will be not longer than k1 + k2 · n (for some fixed value
k1 and k2), and thus k1 + k2 · n iterations of the semi-algorithm of [BCFL04]
will for sure give an ε-optimal strategy.

More accurate energy model. The model of weighted timed automata
that we have studied in this chapter assumes non-negative costs labelling
locations and edges. For some modelling problems, this may not be very ac-
curate, because resources (or energy) can be consumed but also regained: we
can think of autonomous robots that are equipped with solar cells for energy-
harvesting, or also of batteries of laptops that may charge or discharge, de-
pending on whether it is plugged or not. We thus extend the original model
by allowing costs that can be negative or positive. Main challenges are now
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to synthesize schedules or strategies that will ensure indefinite safe operation
with the additional guarantee that energy will always be available, yet never
exceeds a possible maximum storage capacity.

As a basic example, consider the weighted timed automaton below.

`0

−3

`1

+6

`2

−6

x=1x:=0

Globally (x61)

The infinite runs in this automaton repeatedly delay in `0, `1 and `2 for a
total of precisely one time unit. The negative weights (−3 and −6) in `0
and `2 indicate the rates by which energy will be consumed, and the positive
rate (+6) in `1 indicates the rate by which energy will be produced. Thus, for
a given iteration the effect on the amount of energy remaining will depend
highly on the distribution of the one time unit over the three locations. Let us
observe the effect of lower and upper constraints on the energy level on so-
called bang-bang strategies, where the behaviour remains in a given location
as long as permitted by the given bounds. The next picture shows the bang-
bang strategy given an initial energy-level of 1 with no upper bound (dashed
line, U =∞) or 3 as upper bound (solid line, U = 3). In both cases, it may
be seen that the bang-bang strategy yields an infinite behaviour.

cost

0
0

x

1

2

3

1

U=3

U=∞

In the next picture, we consider the upper bound 2 (U = 2). We see
that the bang-bang strategy reduces an initial energy level of 11

2
to 1 (solid

line), and yet another iteration will reduce the remaining energy-level to 0.
In fact, the bang-bang strategy—and it may be argued, any other strategy—
fails to maintain an infinite behaviour for any initial energy-level except for 2
(dashed line).
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cost

0
0

x

1

2

3

1

U=2

In the next picture, we illustrate the case of an upper bound of 1. We
see that the bang-bang strategy—and any other strategy—fails to complete
even one iteration (dashed line, U = 1). We then propose an alternative weak
notion of upper bounds, which does not prevent energy increasing behaviour
from proceeding once the upper bound is reached but merely maintains the
energy level at the upper bound. In this case, as also illustrated in the
picture below (solid line, W = 1), the bang-bang strategy is quite adequate
for yielding an infinite behaviour.

cost

0
0

x

1

2

3

1

W=1

U=1

We have done some preliminary investigations in that direction [BFL+08],
distinguishing between several problems: (i) the game problem, existence of
a strategy that generates plays which satisfy the infinite constraint, (ii) the
existential problem, where the problem consists in synthesizing a schedule
satisfying the constraint, and (iii) the universal problem, where the problem
is to decide whether all infinite runs satisfy the constraint. Also, we consider
three problems that we denote L,8 when the upper bound is infinite (denoted
U = ∞ in the example), L + U when there is also an upper bound, and
L + W when there is also a weak upper bound. The various results that
we have obtained so far are summarized in the following table, and are joint
works with Uli Fahrenberg (Aalborg Universitet, Denmark), Kim G. Larsen,

8This is because we still have the lower bound 0 as a constraint.
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Nicolas Markey, and Jǐŕı Srba (Aalborg Universitet, Denmark). There are
several open problems on which we are currently working.

game problem existential problem universal problem

0 clock 1 clock 0 clock 1 clock 0 clock 1 clock

L
∈ UP ∩ coUP ∈ PTIME ∈ PTIME ∈ PTIME ∈ PTIME
PTIME-hard

L+W
∈ NP ∩ coNP ∈ PTIME ∈ PTIME ∈ PTIME ∈ PTIME
PTIME-hard

L+ U EXPTIME-complete Undecidable
∈ PSPACE ∈ PTIME
NP-hard

Let us mention that the 0-clock game problem with no upper bound is actu-
ally equivalent to the mean-cost game problem, for which the precise com-
plexity is a well-known open problem.
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Chapter 6

Probabilities in timed automata

6.1 Introduction

The initial motivation for that work was the problem of the implementability
of timed systems, and in particular the adequacy of mathematical models like
timed automata to systems with real-time constraints. Then, after the first
developments with that motivation in mind, a second motivation has risen,
that we could actually develop an interesting model for systems with both
timing and probabilistic constraints. We will now explain with some more
details the two motivations.

Timed automata: an idealised (mathematical) model. Timed au-
tomata are a well-established formalism for the modelling and analysis of
timed systems. However, like most models used in model checking, timed
automata are an idealised mathematical model. In particular it has infinite
precision, instantaneous events and communications, etc. In real-life sys-
tems, the precision of digital clocks is finite, events and communications are
not instantaneous, etc. The assumptions made in the mathematical model
would somewhat need to be relaxed if one wants the model be fair with the
real system.

Recently, some research has been devoted to propose alternative seman-
tics to timed automata that provide more realistic operational models for
real-time systems. Let us first mention the Almost ASAP semantics intro-
duced in [DDR04]. This AASAP semantics somewhat relaxes the constraints
and precision of clocks. However, it induces a very strong notion of robust-
ness [DDMR04, ALM05, BMR06, BMR08, DDMR08], interesting and suit-
able for really critical systems (like rockets or X-by-wire systems in cars),
but maybe too strong for less critical systems (like mobile phones or net-
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work applications). In the same vein, another ‘robust semantics’, based on
a notion of tube acceptance, has been proposed in [GHJ97, HR00]. In this
framework, a metric is put on the set of traces of the timed automaton, and
roughly, a trace is robustly accepted if a tube around that trace is accepted
in the classical way. This language-focused notion of acceptance is not com-
pletely satisfactory, because it does not take into account the structure of
the automaton.

Varacca and Völzer proposed in [VV06] a probabilistic framework for
finite-state (time-abstract) systems to overcome side-effects of modelling.
They use probabilities to define the notion of being fairly correct as hav-
ing probability zero to fail, when every non-deterministic choice has been
transformed into a ‘reasonable’ probabilistic choice. In that framework, be-
haviours that are unlikely will be ignored, and we will say that properties
that are unlikely to be violated are actually (almost-surely) satisfied by the
system. Moreover, in their framework, a system is fairly correct with respect
to some property if and only if the set of traces satisfying that property in
the system is topologically large (for the classical Cantor topology defined
over the set of infinite paths), which somehow attests the relevance of this
notion of fair correctness.

In this chapter, we address both motivations, ruling out unlikely se-
quences of transitions (as in the approach of [VV06]) and ruling out un-
likely events (from a time point-of-view, as in the implementability paradigm
discussed above). In order to do so, we propose a probabilistic semantics
to timed automata, that randomises both delays and events, and consider
various model-checking problems for that semantics. The first problem is
the almost-sure model-checking problem, which asks whether a property is
satisfied with probability one in a timed automaton under the probabilis-
tic semantics. In that context, we have already proven that the almost-
sure model-checking problem against ω-regular properties is decidable for
single-clock timed automata. The algorithm that we have proposed in the
one-clock framework is however not correct for two-clock timed automata,
leaving a wide range of open questions. These developments on the almost-
sure model-checking have been published in [BBB+07, BBB+08a], and are
joint works with Christel Baier, Nathalie Bertrand, Thomas Brihaye, and
Marcus Größer. Then we have gone one step further and studied the quan-
titative model-checking problem, which asks what is the probability for a
property to be satisfied in a timed automaton. Also, computing approxi-
mations of that probability, or deciding whether this probability is below or
above a fixed threshold, are interesting questions. They have been addressed
in [BBBM08] and we have proven the computability of these questions in a
restricted subclass of single-clock timed automata. This is joint work with
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Nathalie Bertrand, Thomas Brihaye, and Nicolas Markey.

Probabilistic and real-time systems. The previous probabilistic seman-
tics that we have given to timed automata can be viewed as a new model
with probabilistic and real-time features. We will see later that it actually
extends the classical discrete-time and continuous-time Markov chain mod-
els (we now write DTMC, respectively CTMC for short), intensively studied
both by mathematicians and by computer scientists, see [Fel68]. This raises
another interest for our model (and extensions thereof), because DTMCs
and CTMCs are already an interesting model to represent systems includ-
ing probabilistic aspects [HKMS03]. Furthermore, there are more and more
complex systems involving real-time constraints, probabilistic behaviours,
non-determinism, etc., for instance networks and communication protocols.
Let us mention the IEEE 1394 root contention protocol that has been exten-
sively analysed in the early 21st century, see [Sto03] for a brief overview of
the various models, and which has many of the above-mentioned character-
istics. In all these studies, the proposed model is a trade-off between several
aspects of the protocol. There is thus a hope that our model and several-
player extensions thereof will be expressive enough to capture systems like
the one mentioned above.

There are quite a bunch of models in the literature that mix probabilistic
and real-time aspects. One of the most famous models in the model-checking
community is the probabilistic timed automata model [KNSS02], for which
the tool PRISM is developed [KNP04]. In this model, the time is controlled as
in a classical timed automaton, and discrete distributions are put over edges.
This model is different from the one we propose, as we randomise delays
whereas they do not. However they are able to verify on that model a large
class of properties, including those expressible in PTCTL, the probabilistic
and timed extension of CTL.

The model we are aware of that is the closest to ours is the model of prob-
abilistic real-time systems that has been proposed in [ACD91, ACD92]. In
this model, a clock is associated with an event, and when an event is sched-
uled, its clock is randomly reinitialised within a fixed interval. This event
terminates when the clock (which is ‘count-down’, i.e. decreases) reaches
zero. Our model differs from that model in (i) the way timing constraints
are expressed (we allow the general form of timed automata), and (ii) the
way randomisation of delays is made (in [ACD91, ACD92], variables are ran-
domly reinitialised, whereas in our work, each time a delay has to be chosen,
it is randomly chosen). This yields pretty different properties and results: for
instance, in their model, clocks behave rather independently (see [ACD91,
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page 8]), and this is not the case in our model (see page 114 where a con-
vergence phenomenon is pointed out, that can a priori not be reproduced in
the [ACD91] framework).

The model presented in [KNSS00] generalises both the models of [KNSS02]
and of [ACD91]. As in [ACD91], the randomisation over delays is made when
reinitialising clocks, but a general structure of a timed automaton is allowed
to model constraints over time. An approximation algorithm based on a re-
finement of the region graph is proposed to model-check PTCTL. This is not
quite related to our work, because the properties that are considered are also
different.

Finally, there are tremendously many works on systems that combine tim-
ing constraints and (continuous and discrete) probabilities, in which the moti-
vation is less algorithmic than in the previously mentioned works, but is more
concerned with behavioural equivalences. Those include interactive gen-
eralised semi-Markov processes [BG02], labelled Markov processes [DP03],
stochastic automata [DK05], etc. The motivation of those works are not
the same as ours, even though some of these models have been used as a
very general description language MoDeST [BDHK06] for verification pur-
poses [BHK07]. However, it will clearly be interesting to understand better
the similarities and the differences between these models and ours.

6.2 Adding probabilities to timed automata

6.2.1 Some intuition

In the timed systems verification process, it may be the case that a property
is violated due to really unlikely events. Consider for instance the following
automaton:

`0

(x6100)

`1 (x6100)
x6100

`2

`3

x6100

x=1

The property expressed as the LTL formula ‘G ¬black’ is not satisfied because
there is a way (there are actually several ways) to violate it in that automaton,
namely by taking the transition between `0 and `1 when x = .5 and the
transition from `1 to `3 when x = 1. However, the counter-examples to that
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property are really unlikely, and it does not seem unfair to say that the above
automaton ‘almost-surely’ satisfies the property ‘G ¬black’ (with no formal
meaning for almost-surely for now). From that example, one could say that
we can only remove transitions with equality constraints, but we now give
another example:

`0

(x61)

`1 (x61)
x61

`2

`3

x=1

x=0

In this automaton, from `1, there are only guards with equality constraints,
so should we remove those two transitions? Of course not, because otherwise
the behaviour of the system would really be changed (in particular it would
now be blocking whereas it was non-blocking before). So maybe we can
then keep the transitions with equality constraints in case there are no other
transitions? Why not... but this is maybe not very satisfactory: indeed, in
the above automaton, the only way to be able to take the transition from
`1 to `3 (hence to violate the property ‘G ¬black’) is to take the transition
from `0 to `1 when x = 0. This is very unlikely, and intuitively we would also
like to say that the above automaton ‘almost-surely’ satisfies the property
‘G ¬black’.

Our aim is to formalise these intuitions, and to use probabilities to remove
unlikely (sequences of) events.

For the rest of the section, we assume A = (AP, X, L, `0,Goal, E, Inv,L)
is a non-blocking timed automaton (this non-blocking hypothesis will ensure
in particular the probability measure be well-defined). We will define an al-
ternative semantics to that timed automaton, that will provide a measure on
the set of runs of A. This alternative semantics aims at measuring the likeli-
hood of events and of sets of runs: we will thus assign continuous probability
distributions to delays, and discrete probability distributions to transitions
that can be taken.

6.2.2 Preliminaries

We first define the objects that we will measure, i.e., those objects that will
belong to the σ-algebra on which our probability measure will be defined.
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Let s ∈ L × RX
>0 be a configuration of A and (ei)16i6n be a finite sequence

of edges. If C is a constraint over the n variables (τi)16i6n, the (symbolic)
path starting from s, determined by (ei)16i6n, and constrained by C, is the
following set of finite runs:

πC(s, e1 . . . en) = {s t1,e1−−→ s1 . . .
tn,en−−−→ sn ∈ Runsf(A, s) | (ti)16i6n |= C}

This is the set of runs that can be read from configuration s on the sequence
of edges (ei)16i6p so that the delays between events moreover satisfy the
constraint C. If C is equivalent to ‘true’, we simply write π(s, e1 . . . en). Let
π = πC(s, e1 . . . en) be a finite symbolic path, we define the cylinder generated
by π as:

Cyl(π) = {% ∈ Runs(A, s) | ∃%′ ∈ π such that %′ is a finite prefix of %}

It is the set of infinite runs that have a finite prefix in π. Given s a con-
figuration of A and e an edge, we define I(s, e) = {τ ∈ R>0 | ∃s′ ∈
L × RX

>0 such that s
τ,e−→ s′} the set of delays that enable edge e from s,

and we define I(s) =
[
e∈E

I(s, e) the set of delays from which an edge can be

fired.

6.2.3 The probabilistic semantics

We assume probability distributions are given from every valid configuration
s of A both over delays and over enabled edges. Formally, for every config-
uration s of A, we write µs for the probability measure over possible delays
from s, i.e., over I(s) (R>0 is equipped with the standard Borel σ-algebra).
It must satisfy several natural requirements:

• µs(I(s)) = µs(R>0) = 1;1

• Denoting λ the Lebesgue measure, if λ(I(s)) > 0, µs is equivalent2 to λ
on I(s); Otherwise, µs is equivalent on I(s) to the uniform distribution
over points of I(s). This condition denotes some kind of fairness with
respect to enabled transitions, in that we cannot disallow one transition
by putting a probability 0 to delays enabling that transition;

• There are some other technical requirements that we do not expose
here (see [BBB+08a]).

1Note that this is possible, as we assume A is non-blocking, hence I(s) 6= ∅ for every
configuration s of A.

2Two measures µ and µ′ are equivalent whenever for each measurable set A, µ(A) =
0⇔ µ′(A) = 0.
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Remark 6.1 All the above requirements can be easily satisfied. For instance, a
timed automaton equipped with uniform (respectively exponential) distributions
on bounded (respectively unbounded) intervals satisfy these conditions. If we
assume exponential distributions on unbounded intervals, it is moreover required
that the transition rate be bounded, like in [DP03], to avoid strange phenomena.
We recall some basic and useful vocabulary in probability theory in table 6.1. y

A measure µ over R has density f (with respect to the Lebesgue measure)

if for every Borel-measurable set A, µ(A) =
Z

t∈A
f(t) dt (this requires f to

be a measurable function).
A probability measure µ is said uniform over the interval [a, b] (with a < b)

whenever it has density function t 7→ 1
b− a

over [a, b] and t 7→ 0 over

R \ [a, b]. Hence, if λ denotes the classical Lebesgue measure and if I is an

interval, then µ(I) =
1

b− a
· λ(I ∩ [a, b]).

A probability measure µ is an exponential distribution over the inter-
val [α,+∞) if there exists a rational β > 0 such that µ has density
t 7→ β · e−β(t−α) over [α,+∞) and t 7→ 0 over (−∞, α). The value β is
the rate of the distribution.

Table 6.1: Probabilistic vocabulary

For every valid configuration s of A, we also assume a probability dis-
tribution ps over edges, such that for every edge e, ps(e) > 0 if and only
if e is enabled in s. Moreover, to simplify, we assume that ps is given by
weights on transitions, as it is classically done for resolving non-determinism:
we associate with each edge e a rational weight w(e) > 0, and for every
state s, for every edge e, ps(e) = 0 if e is not enabled in s, and ps(e) =
w(e)/(

P
e′ enabled in sw(e′)) otherwise. As a consequence, if s and s′ are re-

gion equivalent, then for every edge e, ps(e) = ps′(e). We then define a
measure over finite (unconstrained) symbolic paths from configuration s as
PA(π(s)) = 1 for the trivial symbolic path from s, and if π(s, e1 . . . en) is a
finite symbolic path, we let

PA(π(s, e1 . . . en)) =
Z

t∈I(s,e1)
ps+t(e1) · PA(π(se1

t , e2 . . . en)) dµs(t)

where s
t−→ (s + t)

e1−→ se1
t . The intuition behind the formula for PA is the

following: the probability of taking transition e1 after t time units coincides
with the probability of waiting t time units and then choosing e1 among
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the enabled transitions, i.e., ‘ps+t(e1) dµs(t)’. Note that, time passage and
actions are independent events.

The value PA(π(s, e1 . . . en)) is the result of n successive one-dimensional
integrals, but it can also be viewed as the result of an n-dimensional integral.
Hence, we can easily extend the above definition to finite constrained paths
πC(s, e1 . . . en) when C is Borel-measurable. This extension to constrained
paths will allow to express (and thus measure) various and rather complex
sets of paths, for instance Zeno runs (see example 6.2 below). The measure
PA can then be defined on cylinders, letting PA(Cyl(π)) = PA(π) if π is a
finite (constrained) symbolic path. Finally we extend PA in a standard and
unique way to the σ-algebra Ωs

A generated by these cylinders.

Example 6.2 The set of Zeno runs Zeno(s) from configuration s in A is in the
σ-algebra Ωs

A because it can be written as:

Zeno(s) =
[

M∈N

\
n∈N

[
(e1,...,en)∈En

πCM,n
(s, e1 . . . en)

where CM,n is the constraint
nX

i=1

τi 6 M . Indeed, an infinite run % = s0
t1,e1−−−→

s1 · · ·
ti,ei−−→ si · · · is in Zeno(s) if there exists M ∈ N such that

X
i∈N

ti 6 M . y

This non-standard semantics for timed automata enjoys the following basic
property, that justifies its name of probabilistic semantics, but whose proof
requires a careful analysis, see [BBB+08b].

+ Proposition 6.3 ([BBB+08a]) Let A be a timed automaton. For every
configuration s of A, PA is a probability measure over (Runs(A, s),Ωs

A).

Example 6.4 We consider the timed automaton A depicted on the figure below
(we assume atomic propositions are ‘white’, ‘grey’, and ‘black’). We furthermore
assume uniform distributions over edges (each edge has weight 1), uniform distri-
butions over possible delays from all valid configurations with location `0, `2 or
`3, and exponential distribution with density t 7→ e−t over delays from all valid
configurations with location `1.

`0

(x61)

`1 `2

(x61)

`3

(x61)

e2, x≤1

e3, x=1

e4, x≥3, x:=0

e5, x≤1

e6, x=0

e1, x61 e7, x61
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If s0 = (`0, 0) is the initial state, then8><>:
PA(Cyl(π(s0, e1e1))) =

1
4

PA(Cyl(πτ2<5(s0, e2e4))) =
1
2

(1 + e−3 − e−2)

Details of the computations are given in table 6.2. y

PA(Cyl(πτ2<5(s0, e2e4))) =
Z 1

t1=0

1
2

Z 5

t2=3−t1
e−(t2−3+t1) dt2 dt1

=
Z 1

t1=0

1
2

�
−e−(t2−3+t1)

�5
t2=3−t1

dt1

=
Z 1

t1=0

1
2

�
1− e−(2+t1)

�
dt1

=
�1

2

�
t1 + e−(2+t1)

��1
t1=0

=
1
2

�
1 + e−3 − e−2

�
≈ 0.46

From s0 = (`0, 0), the distribution over delays is the uniform probability
measure over interval [0, 1]. The 1

2 term is due to the fact that each edge
e1 and e2 are equally probable. Then, from a state (`1, t1) the distribu-
tion is the exponential distribution on interval [3 − t1,+∞) (because the
constraint x > 3 will be enabled 3− t1 time units later), hence has density
t 7→ e−(t−3+t1). We add the constraint that t2 < 5, which yields the first
line of the equations above.

Table 6.2: Details of the computation for example 6.4

Remark 6.5 We have mentioned in the introduction of the chapter that our
model generalises CTMCs, and we briefly explain why now. A CTMC is noth-
ing else than a single-clock timed automaton in which (i) on all transitions, the
clock constraint is trivial, and the clock is reset, and (ii) for every location `, there
is a rate β` > 0 such that from every configuration with location `, the probability
measure over delays is an exponential distribution with rate β`. y

Given an infinite symbolic path π in A, and an ω-regular property ϕ,
either all concretizations of π (i.e., runs % ∈ π) satisfy ϕ, or they all do
not satisfy ϕ. Hence, the set {% ∈ Runs(A, s0) | % |= ϕ} is measurable (in
Ωs0
A ) [Var85]. In the sequel, we write PA(s0 |= ϕ) or even simply PA(ϕ) if s0

is the initial configuration of A for PA{% ∈ Runs(A, s0) | % |= ϕ}.
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6.2.4 A small example

We assume a (simple) printer receiving pages to be printed. The delay be-
tween two pages that are processed is at least 11 time units, and at most 56
time units (after 56 time units, the printer goes to the out-of-order mode).
The printer needs furthermore to be idle for at least 1 time unit between it
finishes printing a page and can process the next page. Also the time required
for printing one page lies between 8 and 12 time units. When idle, the arrival
time of the next page is given by the density function given on the left. The
time taken to print a page is given by the density function depicted on the
right. Questions that could be asked on this system are for instance: given
a 10-page long paper, (i) what is the probability that it will be printed in
no more than 96 time units? and (ii) is the probability the printer becomes
out-of-order during the printing less than 10%?

Idle Work

(x612)

KO

y>1∧116x656, job, x,y:=0

86x612, done, y:=0

x>56

max(1,11−v(x)) 8 12

density function
from (Idle,v)

(with v(y)=0)

density function
from (Wait,v)

(with v(x)=v(y)=0)

This example is of course a toy example, but we believe we can model in-
teresting phenomena using this semantics, for instance message losses. Of
course, density functions for the distributions are then (a difficult) part of
the modelling work.

In the two next sections, we will be interested in several model-checking
problems under the probabilistic semantics. In section 6.3, we will consider
the qualitative model-checking problem, and in section 6.5, we will extend
our study to some quantitative model-checking problems.
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6.3 The qualitative model-checking problem

In this section, we will be interested in qualitative questions about the prob-
abilistic semantics.

6.3.1 Definition

Definition 6.6 Let ϕ be an ω-regular property and A a timed automaton.
We say that A almost-surely satisfies ϕ, and we then write A |≈P ϕ, whenever
PA(s0 |= ϕ) = 1, where s0 is the initial configuration of A. The almost-sure
model-checking problem asks, given A and ϕ, whether A |≈P ϕ.

Remark 6.7 Note that all other classical qualitative questions (is the probability
of ϕ in A equal to 0? Or positive? Or strictly smaller than 1?) reduce to the
almost-sure question that we have defined. Indeed,8>><>>:

PA(s0 |= ϕ) = 0 ⇔ PA(s0 |= ¬ϕ) = 1
PA(s0 |= ϕ) > 0 ⇔ ¬

�
PA(s0 |= ¬ϕ) = 1

�
PA(s0 |= ϕ) < 1 ⇔ ¬

�
PA(s0 |= ϕ) = 1

�
and if ϕ is ω-regular, then so is ¬ϕ. y

Example 6.8 As a first example, we consider the two examples presented at the
beginning of section 6.2. In the two timed automata, we put uniform distributions
over delays from all valid configurations with location `0 or `1. Then it is not
difficult to check that in both cases, P(s0 |= G ¬black) = 0. y

Example 6.9 Consider again the timed automaton A described in example 6.4
with the same distributions over delays and edges. Let ϕ be the ω-regular property
defined by the LTL formula ‘F (grey ∧ G (grey ⇒ F black))’. Then, A |≈P ϕ.
Indeed, from configuration (`0, ν) with 0 ≤ ν ≤ 1, the probability of firing e2 (after
some delay) is always 0.5 (guards of e1 and e2 are the same, there is thus a uniform
distribution over both edges), thus the location `1 is reached with probability 1.
In `1, the transition e3 will unlikely happen, because its guard x = 1 is much too
“small” compared to the guard x > 3 of the transition e4. The same phenomenon
arises in location `2 between the transitions e5 and e6. In conclusion, the runs of the
timed automaton A (from s0) are almost surely following sequences of transitions
of the form e1

∗e2(e4e5)ω. Hence, with probability 1, the formula ϕ is satisfied.
Note that the previous formula is not satisfied with the classical LTL semantics.
Indeed several counter-examples to the satisfaction of the formula can be found:
‘staying in `0 forever ’, ‘reaching `3’, etc. All these counter-examples are unlikely
and disappear thanks to the probabilistic interpretation. y
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Although the values PA(s0 |= ϕ) depend on the chosen weights ps(e) and
measures µs, we will see that for single-clock timed automata the almost-sure
satisfaction relation is not affected by a (reasonable) choice of the weights
and distributions. This will be crucial for the decidability of the almost-sure
model-checking problem. The way we establish the decidability is to build
a finite Markov chain that will satisfy almost-surely an ω-regular property
if and only if the original timed automaton almost-surely satisfies the initial
property.

6.3.2 The algorithm

The algorithm to decide the qualitative model-checking of timed automata is
described as Algorithm 1. All steps of the algorithm should be clear, except

Algorithm 1: Algorithm for the qualitative model-checking

Data: A timed automaton A, an ω-regular property ϕ
Result: Does A |≈P ϕ?

begin1

Build the region automaton Γ(A) of A;2

Remove unlikely transitions in Γ(A) and non-reachable states;3

Write MC(A) for the resulting structure, interpreted as a finite4

Markov chain (with uniform weights on edges);
if PMC(A)(ϕ) = 1 then5

answer ‘Yes’;6

else7

answer ‘No’;8

end9

end10

line 3. A transition leaving state q of Γ(A) is said unlikely whenever it is
implicitly labelled by a punctual constraint (of the form x = c), whereas tran-
sitions implicitly labelled with non-punctual constraints (like x ∈ (d, d+ 1))
can be taken from q as well. Note that this removal can be done syntactically
on Γ(A). Intuitively, this is because the continuous distribution over delays
will give probability 0 to that ‘unlikely’ transition. Transitions from state
q of Γ(A) that are constrained by a punctual constraint but so that only
punctual constraints label transitions leaving q are not removed because, as
all transitions from q, they are likely to be chosen from q.

Example 6.10 We consider again the automaton A of example 6.4, and the ω-
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regular property ϕ expressed as the LTL formula ‘F (grey ∧G (grey⇒ F black))’.
As already argued in example 6.9, we have that

A 6|= ϕ but A |≈P ϕ

because almost-surely, paths are of the form e∗1e2
�
e4e5

�ω
.

We illustrate Algorithm 1 on this example. First the region automaton Γ(A)
is constructed:

`0,0

`0,(0,1)

`0,1

`1,0

`1,(0,1)

`1,1

`2,0 `3,0

`3,(0,1)

`3,1

e1

e1

e1

e1

e1

e1

e2

e2

e2e2

e2

e2

e3

e4

e 4

e 4
e5

e5

e 5

e6

e7

e7

e7

e7

e7

e1

Then, unlikely transitions are (locally) removed (for instance, transition e2 that
was between (`0, 0) and (`1, 0) in Γ(A) has been removed because it was implicitly
guarded by the punctual constraint x = 0, whereas a larger guard x ∈ (0, 1)
implicitly constrains the transition between (`0, 0) and (`1, (0, 1))):

`0,0

`0,(0,1)

`0,1

`1,0

`1,(0,1)

`1,1

`2,0 `3,0

`3,(0,1)

`3,1

e1

e1 e2

e2

e2

e4

e 4

e 4

e5
e7

e7

e7

Non-reachable states are removed, and we get the following graph, that we will
now interpret as a finite Markov chain MC(A) (with weight 1 on each edge):
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`0,0

`0,(0,1) `1,(0,1)

`2,0

e1

e1 e2

e2

e 4

e5

It is easy to be convinced that almost-surely paths in MC(A) are of the form
e∗1e2(e4e5)ω, and that property ϕ almost-surely holds in MC(A). Thus, Algorithm 1
answers that A almost-surely satisfies property ϕ. y

The correctness of Algorithm 1 relies on the following proposition.

+ Proposition 6.11 ([BBB+08a]) Let A be a single-clock timed automa-
ton, and ϕ an ω-regular property. Then,

A |≈ ϕ ⇔ PMC(A)(ϕ) = 1

The proof of this proposition is non-trivial, we will not give details here. Let
us just mention that it relies on the equivalence with a topological semantics
for timed automata based on the notion of largeness. The topology that is
put on runs of timed automata extends the classical Cantor topology in finite
automata, used for instance in [VV06]. The technicalities heavily rely on the
topological Banach-Mazur games that characterise large sets using winning
strategies [Oxt57].

6.3.3 A two-clock counter-example

Proposition 6.11 does not extend to the class of timed automata with two
clocks, and Algorithm 1, though rather intuitive and natural, is actually
not correct for the class of two-clock timed automata. Indeed, consider the
following timed automaton A (that we had already considered on page 25)
with two clocks and the ω-regular property ϕ given by the LTL formula
‘G F grey ∧G F black’.

`0

(y<2)

`1

(y62)

`2

(y<1)

`3

(y61)

`4

(y<1)

1<y<2

y=2,y:=0

x>2,x
:=

0

0<
y<

1

y=1,y:=0

x>1,x:=0
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We assume uniform distributions over delays from every valid configura-
tion. Using basic mathematical arguments that we will not detail here
(see [BBB+08b]), we can prove that, if s0 = (`0,0X), PA(s0 |= ϕ) < 1
(it is even the case that PA(s0 |= ϕ) = 0). However, the finite Markov chain
MC(A), as constructed in Algorithm 1 is:

`0,x=y=0

`3,0<x=y<1 `1,1<x=y<2

`4,0<x<1,y=0 `2,1<x<2,y=0

`0,x=0,0<y<1

`3,0<x<y<1 `1,1<x<y<2

It is not difficult to check that this finite Markov chain almost-surely satisfies
ϕ, because there is a single BSCC3 (surrounded by the dotted line) that
contains a grey state and a black state. Hence, Algorithm 1 is not correct
for two-clock timed automata.

6.3.4 Summary

The main result of this section can be stated as follows:

+ Theorem 6.12 ([BBB+08a]) The almost-sure model-checking problem of
ω-regular (respectively LTL) properties is NLOGSPACE-complete (respectively
PSPACE-complete) for single-clock timed automata.

Remark 6.13 As a side-result of the correctness of Algorithm 1, we get that the
almost-sure satisfaction of ω-regular is independent of the choice of the probability
distributions! Of course, one needs to be reasonable, and to satisfy the ‘fairness’
hypotheses mentioned in section 6.2. y

6.4 An interesting notion of non-Zenoness

Let A be a timed automaton and s0 the initial configuration of A. We have
already seen that the set of Zeno runs from s0 are measurable (they belong

3BSCC stands for ‘bottom strongly connected component’, and it is an SCC that cannot
be left.
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to the σ-algebra Ωs0
A ). However, the Zenoness is not an ω-regular property,

hence the previous study does not apply. However, for single-clock timed
automata, the finite Markov chain is still of a great help, in that we can
prove that the probability of being Zeno is 0 from the initial configuration s0

if and only if all BSCCs in MC(A) are either unbounded, or reset the clock
at least once (in that case we say that the BSCC is not purely Zeno).4 For
instance, consider the two following timed automata, A and B. We have that
PA(Zeno) = 0 whereas PB(Zeno) = 1. Indeed, the unique BSCC of MC(A) is
not purely Zeno whereas the unique BSCC of MC(B) is purely Zeno. Note
that this somehow coincides with the intuition that only few runs of A are
Zeno, whereas all runs of B are Zeno.

`0A:

x61,x:=0

`0,x=0MC(A):

non-Zeno BSCC

implicitly labelled by 0<x<1,x:=0

`0B:

x61

`0,x=0MC(B):

`0,0<x<1

Zeno BSCC

implicitly labelled by 0<x<1

+ Proposition 6.14 ([BBB+08a]) Given a single-clock timed automaton A
with initial configuration s0, we can decide in NLOGSPACE whether

PA(Zeno(s0)) = 0

This yields an interesting notion of non-Zeno timed automaton A when
PA(Zeno(s0)) = 0. In such an automaton, there may be Zeno runs, but they
are unlikely to happen. Note that any non-Zeno hypothesis encountered in
the literature, like the strongly non-Zenoness assumption of [AMPS98], is
more restrictive than our condition.

4A BSCC of MC(A) resets the clock at least once whenever there is at least a transition
that is implicitly labelled by some constraint implying x > 0 and that resets the clock x.
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6.5 The quantitative model-checking problem

The previous finite Markov chain abstraction is correct for checking qualita-
tive properties in single-clock timed automata, but it does not preserve the
precise values of the probabilities. Thus, in general, it cannot be used for
answering quantitative questions.

6.5.1 Definitions

In this section, we are interested in the following quantitative model-checking
questions. Given a timed automaton A with initial configuration s0 and an
ω-regular property ϕ, we want to compute the value PA(s0 |= ϕ) or/and
for every ε > 0, ε-approximations thereof. Also, we are interested in the
following decision problem, called the threshold problem: given a threshold
c ∈ [0, 1]∩Q and a comparison operator ∼ ∈ {<,6,=,>, >}, decide whether
PA(s0 |= ϕ) ∼ c. All these questions are interesting to measure the quality
of a model with respect to a property. For instance in a network application
modelled as a timed automaton A, if ϕ denotes the property that every
message which is sent is eventually received, we could ask whether PA(s0 |=
ϕ) > 0.95, which says that the probability of ϕ is larger than 95%.

In finite Markov chains (and also in CTMCs), answering all the above
questions are easy, as we know that for every finite Markov chain and for
every ω-regular property, we can build a system of linear equations (with
rational coefficients) so that a solution to that system corresponds to the
probability the ω-regular property be satisfied, see [CY95, Bré99] for details.
The correctness of the method relies on the Markov property, which implies
in particular that, if % = %1 · %2 is the concatenation of two paths, the proba-
bility of % is the product of the probabilities of %1 and of %2 (the probability
over finite paths is multiplicative). In our framework, this is no more the
case, computing the probability of a symbolic path cannot be done by com-
puting ‘the probability of each transition’ separately, and by multiplying the
results. For instance, in example 6.4 on page 108, the probability of the sym-
bolic path πτ2<5(s0, e2e4) has to be computed as two nested integrals, and its
computation cannot be decomposed into the computation of two indepen-
dent integrals, one corresponding to edge e2 and the other corresponding to
edge e4. A way to become ‘multiplicative’ is to restrict to a single clock and
to reset the unique clock, because in that case, the computation of multiple
integrals becomes independent. We will use this idea to develop a method
for solving quantitative model-checking questions.
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6.5.2 Computability results

Following the hypotheses made for the simpler qualitative model-checking
problem, we restrict to the single-clock framework. Let A be a single-clock
timed automaton. We furthermore assume that the following conditions are
met: for every reachable and valid configuration s of A, I(s) = R>0; for every
location ` of A, there exists λ` ∈ Q>0 such that for every configuration s with
location `, the probability over delays from s is an exponential distribution
with rate λ`; every cycle in Γ(A) either resets the clock, or is unbounded
(i.e., all regions encountered along the cycle are unbounded). We denote
these additional assumptions by (†).

+ Theorem 6.15 ([BBBM08]) For an ω-regular property ϕ and a single-
clock timed automaton A satisfying the conditions (†), one can (i) compute
a closed-form expression for PA(ϕ), (ii) compute ε-approximations of PA(ϕ)
for every ε > 0, and (iii) decide the threshold problem.

The idea is the following: in parts of the automaton where the clock is
unbounded, the automaton behaves like a CTMC, hence the only relevant
probabilistic information is given by the weights of the transitions (because
the properties we are considering are untimed, hence the distributions over
delays do not play any role here); in parts of the automaton where the clock
is bounded, we can decompose each run of the automaton into “macro-steps”
where one step corresponds to a sub-run starting with the clock reset to 0,
and finishing with a resetting edge (these macro-steps have bounded length,
due to the assumption that there is no bounded cycle without resets). Given
A a single-clock timed automaton satisfying hypothesis (†), we can thus
construct a finite Markov chain MC′(A) that will basically preserve the
quantitative properties of the initial system. Values labelling the edges of
MC′(A) correspond to the probability of the corresponding symbolic path
in A, and may thus be non-rational, but techniques developed for classical
Markov chains can however still be used. We do not enter into the details
here but better develop an example. Note that the abstraction MC′(A) is
correct for a larger class of timed automata than those satisfying (†), but
that is simpler to focus on that class.

Example 6.16 We consider the timed automaton A depicted on the next page,
in which we assume that the probability over delays from every configuration is an
exponential distribution with rate 1, and that the weight of each transition is 1.
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`0 `1 `2

`3 `4

e1,x61,x:=0

e2,x61

e3,x62,x:=0

e4,x>2,x:=0

e5,x62

e6,x>1

e7,x>2

e8

e9,x:=0

e10,x>2

We abstract this timed automaton into the finite Markov chain MC′(A) that is
depicted below. We explain some of the edges of MC′(A). The self-loop on (`0, 0)
labelled by e2e3 is for all the paths read from (`0, 0) over the sequence e2e3 (e3 is
a resetting edge). The edge labelled e>2

6 between states (`0, 0) and (`3, > 2) are
for those paths starting from the configuration (`0, 0) and taking edge e6, with
the additional constraint that we arrive in `3 with the value of the clock being
larger than 2. The edge between (`3, > 2) and (`4, > 2) labelled by e7 represents
all the paths starting from some (`3, x) with x > 2 to state `4 firing edge e7 (this
part behaves like a CTMC). The values labelling the edges give the probabilities
of paths they represent. We explain the computation of the value labelling the
edge from (`0, 0) to (`3, 0) in table 6.3.

`0,0 `2,0 `2,>2

`3,>2`3,0 `4,>2

e
1

1
2
(1−e−1)

e 2
e 3

1
2
(1−e−1−e−2)

e2e4

1
2
e−2

e5e3
1−3e−2

e 5
e 4

2e−2

e>2
6

e−2
e [1,2]6

e
7

1
2
e−2

e8 1
e91

2e
7 1

2
e−2

e7
1
2

e
9

1− 1
2
e−2

e
[1

,2
]

6

e 9

e−1− 3
2
e−2

e10e−2 e 1
0

1

This finite Markov chain preserves (most of) the quantitative properties of the
original timed automaton. For instance, we have that:

PA(s0 |= F grey) = PMC′(A)((`0, 0) |= F grey)

=
1

2e+ 1
≈ 0.16

yDue to the hypotheses made on the timed automaton A, labels of the
finite Markov chains MC′(A) are polynomials in e−1, and for any ω-regular

119



The edge from (`0, 0) to (`3, 0) in MC′(A), which is labelled by e
[1,2]
6 ,

corresponds to runs in A that start from configuration (`0, 0), take the
transition e6 so that the value of clock x when arriving in `3 is within the
interval [1, 2], and then take transition e9 once (this last move resets the
clock). We label this edge by the probability of these runs, which can be
computed as follows:

PA(πτ162(s0, e6e9)) =Z 2

t1=1
e−t1 ·

�Z 2−t1

t2=0
e−t1 dt2 +

1
2

Z +∞

t2=2−t1
e−t2 dt2

�
dt1

The first integral corresponds to the firing of the edge e6, which has to
be done within the interval [1, 2] from the beginning. There are two cases
for firing the edge e9: either it is taken before the values of x reaches
2 (this corresponds to the first sub-integral, where t2 is in the interval
[0, 2 − t1]), or it is taken when the value of x is larger than or equal to 2
(this corresponds to the second sub-integral, where the factor 1

2 is due to
the fact that edges e7 and e9 are equally probable).

Table 6.3: Details of the computation

property ϕ, the value PA(ϕ) is of the form f(e−1), where f is a rational
function with rational coefficients (we extend classical techniques for finite
Markov chains [CY95, Bré99]). Using the Maclaurin development5 of the
exponential function, one can thus get arbitrary approximations of the value
of the probability. Furthermore deciding the threshold problem becomes then
easy: if f = P

Q
(with P and Q polynomials), and if c ∈ Q>0,

f(e−1) = c ⇔ P (e−1) = c ·Q(e−1)
⇔ P = c ·Q

(because e−1 is a transcendental number)

Then, deciding f(e−1) < c (or f(e−1) > c) can be done using precise enough
approximations of the value f(e−1).

In this section, we have described the development we have made in
the context of quantitative model-checking for our probabilistic semantics.
We have obtained some approximation and decidability results, that are a
first step towards the computation of more complex quantitative measures
in timed automata.

5Or the Taylor development, if we stick to the French terminology.
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6.6 Going further – current developments

We are currently investigating several research directions on that model, that
we briefly discuss.

Expressiveness, comparison with other formalisms As we have men-
tioned in the introduction, multiple formalisms for real-time and probabilistic
systems have been proposed in the literature. It is not clear to us yet how
they really compare to our model. We know that our model is more general
than continuous-time Markov chains, and that the way we randomize delays
is closer to that of interactive generalised semi-Markov processes [BG02],
where clocks are running forward, contrary to formalisms like probabilistic
timed systems [ACD91, ACD92], probabilistic timed automata [KNSS00],
or stochastic automata [DK05] where clocks are ‘count-down’ (i.e. running
backward). We think that makes a difference (properties of models seem
different), but we are not quite sure yet if one can be expressed in the other
one.

Also, we need to investigate further if classical real systems could be
modelled in a more accurate way in our framework, and we think a good
candidate could be the IEEE 1394 RCP protocol (see [Sto03]).

Better understanding the general multi-clock framework. The two-
clock example that we have presented page 114 is rather interesting as it
presents a converging phenomenon (after each loop, in location `0, the value
of clock y becomes closer and closer to 1). Together with Marcin Judziński
(University of Warwick, England) and Thomas Brihaye, we are currently
investigating further the probabilistic semantics, trying to detect the presence
or absence of such convergence phenomenon. In particular we think that
there cannot be any converging phenomenon if we do not bound the values
of the clocks (the example mentioned above then really requires bounded
intervals), and we claim the following:

+ Claim 6.17 (ongoing work) Assume that A is a timed automaton with
arbitrary many clocks, and that for every configuration s of A, I(s) is un-
bounded. Assume furthermore exponential distributions over delays. Then
the qualitative model-checking problem for ω-regular properties is decidable
in PSPACE.

The intuition behind this result is the following: from every configuration,
the probability that the values of the clocks become larger than the maximal
constant of the automaton is bounded from below, hence, in-the-long-run,
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the values of the clocks will almost-surely become larger than the maximal
constant. In the unbounded zone, the automaton behaves (from a proba-
bilistic point-of-view) as a CTMC, because we somehow lose the memory
of the past and become ‘multiplicative’. Using such arguments, we conjec-
ture that the same abstraction as in section 6.3 is correct for the qualitative
model-checking of ω-regular properties.

Model with several players. One of our motivations was to develop a
model that could express real-time constraints as well as probabilistic con-
straints, but also non-determinism. It is thus natural, now that we have pre-
sented a model à la Markov chains (following standard terminology we can
call them 1

2
-player games), to develop models à la Markov decision processes

(or 11
2
-player games) and even 21

2
-player games. This work is in collabora-

tion with Vojtěch Forejt (PhD student at Masaryk University, Brno, Czech
Republic).

We will briefly describe the framework and the results we expect from
our preliminary investigations. Let A = (AP, X, L, `0,Goal, E, Inv,L) be a
timed automaton. We assume that its set of locations L is partitioned into
three subsets: L©, L2, and L3. A location in L© will be probabilistic. A
location in L2 or L3 will be non-probabilistic and will belong respectively
to Player 2 and Player 3. As in classical timed games, the two players
play according to strategies. A strategy λ2 (respectively λ3) for Player 2
(respectively Player 3) is a function that associates to every finite run %
ending in L2 (respectively L3) a pair (t, e) ∈ R>0 × E that describes the
next move to be done after prefix %. In probabilistic locations L©, we assume
distributions over delays and edges are given (as done in Section 6.2). We
write S© (respectively S2, S3) for the set of configurations (`, v) with ` ∈ L©

(respectively ` ∈ L2, ` ∈ L3).
Fixing strategies for the two players, we will define a probability measure

over sets of runs, as it has been done in section 6.2. However, strategies are
arbitrary, and we need to refine the previous definition and use the memory
of what has been done so far. Hence, we fix a finite run % in A and assume
that s = last(%). We also fix a strategy profile Λ = (λ3, λ2), where λ3 (re-
spectively λ2) is a Player 3 (respectively Player 2) strategy. For a sequence
of edges (ei)16i6n, we define the following probability measure after % under
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strategy profile Λ:6

PΛ(π(%, e1 . . . en)) =8>>><>>>:

Z
t∈I(s,e1)

ps+t(e1) · PΛ(π(%′, e2 . . . en)) dµs(t) if s ∈ S©

PΛ(π(%′, e2 . . . en)) if s ∈ S? and (t, e1) = λ?(%)

0 if s ∈ S? and (t, e) = λ?(%) with e 6= e1

where ? ∈ {2,3} represents one of the two players, and %′ = %
t,e1−−→.

Remark 6.18 Compared to classical stochastic games, the form of the strategies
for the two players is rather simple (a single move is specified by the strategy).
We could imagine having a more general definition for strategies, but at first, this
is a reasonable definition. y

The above model is called a 21
2
-player timed game. If L2 = ∅ (respectively

L3 = ∅), this is called an existential (respectively universal) 11
2
-player timed

game. If L2 = L3 = ∅, we recover the model we have studied in this chapter.
All problems that we have considered can be extended to 21

2
-player timed

games (and hence to 11
2
-player timed games) as follows. We fix an ω-regular

property ϕ and a 21
2
-player timed gameA. We also fix a constant c ∈ [0, 1]∩Q

and a comparison operator ∼ ∈ {<,6,=,>, >}. The threshold problem asks
whether there exists a strategy λ3 for Player 3 such that for every strategy
λ2 for Player 2, writing Λ = (λ3, λ2), PΛ(s0 |= ϕ) ∼ c. If c = 1 and ∼ is =,
then this corresponds to the almost-sure model-checking problem.

+ Claim 6.19 (ongoing work) The threshold problem for 21
2
-player timed

games and ω-regular properties is undecidable.

+ Claim 6.20 (ongoing work) The almost-sure model-checking problem for
existential 11

2
-player timed games with a single clock and ω-regular properties

is decidable.

The first claim is now proven, and relies on the simulation of a two-counter
machine, which uses ideas similar to those developed in chapter 5, but proba-
bilities are used instead of costs to check that the operations have been made
according to the rules of the two-counter machine. The proof of the second
claim is not complete yet, and is rather complex. One of the reasons is that
the set of configurations in a timed game is uncountable, and strategies may
have very erratic forms.

6In section 6.2, the probability measure only depended on the current state, and not
on the full history, hence PA was defined in a memoryless way.
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The two results above are somehow extremal, and there is much room
left in between to get interesting decidability results.

Can we compute more involve properties? The work on the quanti-
tative analysis of ω-regular properties that has been presented in section 6.5
is just a first step towards the quantitative analysis of timed automata under
the probabilistic semantics. Indeed, some restrictions are technical and not
completely satisfactory, and this is somehow frustrating not to be able to
relax the most technical ones. Note that this is not obvious as we already
know that our method does not apply in general, even if we use exponential
distributions over delays (an example is given in [BBBM08]).

So far, we have only considered some restricted qualitative and quanti-
tative model-checking problems. Many other properties that measure the
performance of systems are of interest, like the expected time, or the steady-
state distribution, etc. Also, some logics have been considered in the frame-
work of finite Markov chains and CTMCs, for instance PCTL [HJ94] or
CSL [ASSB00, BHHK03], that allows to represent many such properties
of interest, see [BHHK05]. It is often quite difficult to automatically ver-
ify such logics, and approximation algorithms need to be developed (it is
the case of CSL over CTMCs [BHHK03]), but tools can however be im-
plemented [HKMS03]. Developing further algorithms for the quantitative
analysis of timed and probabilistic systems is for sure a challenging direction
of research.
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Chapter 7

Conclusion and perspectives

In this thesis, I have presented some of my recent contributions to the ver-
ification of timed automata, from the developments of algorithms and ab-
stractions for the verification of the most basic properties in timed automata
(chapter 3) to the definition of logics suitable for expressing and verifying
properties with timing constraints (chapter 4), and to the development of
models that take into account other quantitative aspects, like cost variables
in chapter 5 or probabilities in chapter 6.

At the end of each chapter, I have already given some further develop-
ments for the given chapter. I will recall the most important ones, and give
further perspectives, that I have not started investigating yet.

Data structures and algorithms for linear-time timed
properties

As already said at the end of chapter 4, I am quite interested in the devel-
opment of data structures and algorithms for fragments of linear-time timed
temporal logics that have a (relatively) low theoretical complexity. Indeed,
algorithms that we have designed are not really practical and a symbolic
approach needs definitely be developed. We know that DBMs (as they do
exist now) are not appropriate, but we also think that a DBM-like structure
with a dynamic number of variables could be adequate. Also, we think that
channel machines might be used as a data structure as well, as the channel
allows to store an (a priori) unbounded amount of timing information.

The question of the implementation of those developments in a tool nat-
urally arises (such developments would not really make sense without an
implementation supporting the theory). I don’t plan to implement a tool on
my own, but that would be a great opportunity if the Uppaal team was inter-
ested in such developments, and as already done in the past for abstractions
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(see chapter 3), I would enjoy collaborating with them on that topic.

Model-checking quantitative properties

Modelling (and verifying) quantitative properties in timed systems will for
sure be one of my main streams of research in the next few years.

A more accurate model of energy consumption. In the original model
of weighted timed automata, cost variables are non-decreasing, and a more
realistic model is to also allow non-monotonic cost variables. However as
many problems in the initial framework were already undecidable, one needs
to somehow relax the problems we look at, and we propose to use a single
cost variable in a global invariant for the system. We consider at first the
problem of computing possible executions of the system along which the cost
variable always lays within some fixed interval.

We have already proven some preliminary results in that framework (see
the end of chapter 5, or [BFL+08]), but the picture is far from being complete,
and a whole set of problems are open. Note that an untimed model of
systems that consumes and refills (at once) energy has been recently proposed
in [AKY08], but the model is less general, and the problems they have looked
at so far are different from ours.

Computing approximations. Another important research direction is
the idea that the undecidability results that we have obtained either for the
two-player framework or for the various model-checking problems heavily rely
on the precision of the measures, hence this is most likely that we will eg. be
able to design algorithms that computes approximations of the optimal cost
in the two-player framework (even though several of our attempts have failed
so far). However this is for sure a challenging research direction, because this
is almost as interesting to know an approximate value of the optimal cost
(if we know how far we are from the optimal cost) as to precisely know the
optimal cost.

Simplified models for timing constraints. We have seen in chapter 5
many undecidability results. On the positive hand, we have also mentioned
that some of the problems become decidable when we restrict to single-clock
weighted timed automata. Furthermore the complexities are not that high,
compared to classical complexities in the domain of real-time systems.

I think that this is worth pursuing this line of research, which consists
in simplifying the way timing constraints are expressed. This restriction is
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not new, and already basic properties can be verified more efficiently if we
restrict to single-clock timed automata [LMS04]. Also, as mentioned in sub-
section 4.4.2, the emptiness of alternating timed automata is decidable only
if we restrict to a single clock [LW08]. In a similar vein, the idea of using
simplified models of time was mentioned in [Lar05], because it yielded dras-
tic improvements in the theoretical complexities of many problems. I thus
think that this is worth simplifying the way we express timing constraints so
that it becomes possible to express other kinds of quantitative constraints.
For instance, we could consider two-player games over single-clock weighted
timed automata where the objective is to minimise/maximise the mean-cost.
Also, [FL08] has proven that the corner-point abstraction is sound for the
discounted-cost optimisation problem (in the single-player framework). This
is an interesting measure, hence we should study the two-player framework,
in particular for single-clock automata.

One could however say that one clock might not be sufficient to express
properly the timing constraints in a real system. It might indeed be right,
because most of the time, it is easier to model a system in a compositional
manner, each component having its proper timing constraints (see the (sim-
plified) car model in the introduction on page 7). A single clock for such a
system is then probably not powerful enough, and at least one clock per com-
ponent should be allowed. However, with one clock per component and accu-
rate synchronisations, we can probably mimic all the undecidability proofs of
chapter 5. A suggestion would then be to use a softer way for synchronising
components. I have no precise suggestion yet, but [ABG+08] has proposed
a very soft way of synchronising, based on clocks and not on events, and I
think that it would be worth understanding whether this could help getting
classes of weighted networks of single-clock timed automata that would be
decidable and expressive enough for representing real-life systems.

Probabilistic analysis of timed automata. The model of timed au-
tomata with probabilities that we have presented in chapter 6 is rather re-
cent, and only few problems have been investigated so far. We have obtained
decidability and computability results only in a single-clock framework, but
as we have said before, this is not problematic to have a simplified model for
timing constraints if we can express other kinds of quantitative constraints.
We thus plan to try to understand further our model, and as said at the end of
chapter 6, we also investigate extensions of our model with non-determinism
(and several players). We think that it may lead to an interesting model that
allows, non-determinism, probabilistic choices, and timing constraints. We
refer to the end of chapter 6 for more details.
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From real-time models to reality.

Another important issue in the world of real-time systems concerns the ad-
equacy of the timed-automata model with respect to real systems. I will
briefly describe some of the issues.

Few years ago, we have proposed logics to express properties of systems
where transient states are removed, and designed model-checking algorithms
for those logics [BBBL05, BBBL06]. The motivation behind these works
was the modelisation of PLCs (Programmable Logic Controllers) written in
SFC (Sequential Function Chart), used in the area of industrial automation.
Formal models that could be done of such controllers were not accurate, and
the problem came from transient states that were visited but should not have
been taken into account in the verification process.

The first original motivation for our work on timed automata and prob-
abilities (chapter 6) was also the implementability paradigms, with the idea
that unlikely events will actually not happen in a real system. One could
use similar ideas to abstract transient states. For instance, one could ab-
stract a property ‘G ϕ’ (ϕ should always hold) into the requirement that the
probability of not satisfying ϕ along runs be less than 2% (or even 0%).

In an orthogonal way, as already said in the introduction, [DDR04] have
proposed a notion of robustness that ensures the implementability of sys-
tems modelled as timed automata (on a simple model of processor). The
corresponding robust model-checking problem has generated quite a lot of
works [DDMR04, BMR06, DK06, Dim07, SF07, BMR08, DDMR08], with
the development model-checking algorithms for rather large classes of prop-
erties, and the development of zone-based algorithms.

While investigating the robust model-checking of linear-time timed tem-
poral logics [BMR08], we got the impression that we could develop algorithms
based on channel machines for all the properties for which we can decide the
robust model-checking. Indeed, so far, algorithms are really ad-hoc and ded-
icated to specific classes of properties, and the channel machine approach
seems both elegant and unifying.
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[BBBL05] Houda Bel Mokadem, Béatrice Bérard, Patricia Bouyer, and François
Laroussinie. A new modality for almost everywhere properties in
timed automata. In Proc. 16th International Conference on Concur-
rency Theory (CONCUR’05), volume 3653 of Lecture Notes in Com-
puter Science, pages 110–124. Springer, 2005.
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