
TECHNIQUES FOR AUTOMATIC VERIFICATION OF

REAL�TIME SYSTEMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Rajeev Alur

August ����

c� Copyright ���� by Rajeev Alur

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

David Dill
�Principal Advisor�

I certify that I have read this dissertation and that in my

opinion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

Zohar Manna
�Coadvisor�

I certify that I have read this dissertation and that in my

opinion it is fully adequate� in scope and in quality� as a

dissertation for the degree of Doctor of Philosophy�

Moshe Vardi

Approved for the University Committee on Graduate Studies�

Dean of Graduate Studies

iii

Abstract

This thesis proposes formalmethods for speci	cation and automatic veri	cation of �nite�

state real�time systems� The traditional formalisms for reasoning about programs abstract

away from quantitative time and� consequently� are inadequate for reasoning about real

time systems� We extend the methods based on automata and temporal logics to allow

them to model timing delays and to verify real
time requirements�

We introduce timed automata to model the behavior of real
time systems over time�

Our de	nition provides a simple� and yet powerful� way to annotate state
transition graphs

with timing constraints using 	nitely many real
valued clocks � A timed automaton accepts

timed words � strings in which a real
valued time of occurrence is associated with each

symbol� We study timed automata from the perspective of formal language theory� we

consider closure properties� decision problems� and subclasses�

We present two conservative extensions of the existing temporal logics to allow them

to specify timing properties� The metric interval temporal logic �MITL� uses linear
time

semantics� and its syntax allows temporal operators to be subscripted with intervals re

stricting their scope in time� The timed computation tree logic �TCTL� uses branching
time

semantics� and its syntax provides access to time through a novel kind of time quanti	er�

In the proposed veri	cation method� a 	nite
state system is modeled as a composition

of timed automata� and the correctness is speci	ed either as a deterministic timed automa

ton� or as a formula of MITL or TCTL� In each case we develop an algorithm for model

checking � The distinguishing feature of our work is the use of the set of reals to model time�

we argue that the denseness of the time domain is crucial for modeling event
driven asyn

chronous systems� The thesis also clari	es the relationship between di
erent models and

logics for real
time� and answers some basic questions regarding complexity� decidability�

and expressiveness�

iv

Acknowledgments

First of all I thank my advisors� David Dill and Zohar Manna� for o
ering me technical�

	nancial� and moral support during the last four years� My reading committee comprised of

David� Zohar� and Moshe Vardi� and I consider myself fortunate that I had access to valuable

guidance from all three of them� I am also thankful to them for their critical reading

of the draft� Zohar introduced me to temporal logics� and directed me to the relatively

unexplored area of real
time logics� He also made possible an extremely productive visit to

the Weizmann Institute in Israel� Much of the research reported in this thesis is inspired by

my discussions with David about his ideas on coupling automata with timing constraints�

Moshe is one of the leading proponents of the automata
theoretic approach to veri	cation�

and his expertise on the subject has been very useful to me�

It has been a great pleasure for me to work closely with Tom Henzinger� We learned to

do research together� we solved many problems together� it would be futile to pinpoint his

innumerable contributions towards my work� Special thanks also go to my other colleagues�

Costas Courcoubetis and Tomas Feder� Costas�s unbounded enthusiasm to attack new

problems has been a source of inspiration to me� The decision procedure for MITL builds

upon some insightful observations made by Tomas�

I have had the opportunity to discuss my research with many scientists at Stanford� at

IBM Almaden Research Center� and at various conferences and seminars� I thank all of

them for being helpful and encouraging� I am particularly grateful to Joe Halpern� Dinesh

Katiyar� John Mitchell� Amir Pnueli� Howard Wong
Toi� and Mihalis Yannakakis�

My allegiance to computer science is mainly due to the excellent education I received

at the Indian Institute of Technology at Kanpur� and I am thankful to the faculty on

its Computer Science Department� Also this thesis would not exist without the love and

support of my family� especially� my parents� I would also like to use this opportunity to

thank all my friends on Stanford campus� because of them my stay here has been very

enjoyable and memorable�

v

Contents

Abstract iv

Acknowledgments v

� Introduction �

��� Motivation �

��� Background� formalisms for qualitative reasoning � � � � � � � � � � � � � � � �

����� Temporal logics �

����� Automata
theoretic approach �

����� Other approaches �

��� Overview �

����� Veri	cation methodology �

����� Contributions �

��� Related research ��

����� Modeling real
time systems ��

����� Speci	cation languages ��

����� Veri	cation ��

��� Organization of the thesis ��

� Adding Time to Semantics ��

��� Trace semantics ��

��� Timed traces ��

����� Adding timing to traces ��

����� Discrete
time model ��

����� Dense
time model ��

vi

����� Fictitious
clock model ��

��� A case for the dense
time Model ��

����� Correctness ��

����� Expressiveness ��

����� Compositionality ��

����� Complexity ��

� Automata�Theoretic Approach ��

��� �
automata ��

��� Timed automata ��

����� Timed languages ��

����� Transition tables with timing constraints � � � � � � � � � � � � � � � ��

����� Clock constraints and clock interpretations � � � � � � � � � � � � � � ��

����� Timed transition tables ��

����� Timed regular languages ��

����� Properties of timed regular languages � � � � � � � � � � � � � � � � � ��

����� Timed Muller automata ��

��� Checking emptiness ��

����� Restriction to integer constants ��

����� Clock regions ��

����� The region automaton ��

����� The untiming construction ��

����� Complexity of checking emptiness ��

��� Intractable problems ��

����� A ��
�
complete problem ��

����� Undecidability of the universality problem � � � � � � � � � � � � � � � ��

����� Inclusion and equivalence ��

����� Nonclosure under complement ��

��� Deterministic timed automata ��

����� De	nition ��

����� Closure properties ��

����� Decision problems ��

����� Expressiveness ��

vii

��� Variants of timed automata ��

����� Clock constraints ��

����� Timed automata with �
transitions ��

��� Veri	cation ��

����� �
automata and veri	cation ��

����� Veri	cation using timed automata ��

����� Veri	cation example ��

����� Implementation ��

� Linear Temporal Logic 	�

��� Propositional temporal logic� PTL ��

��� Metric interval temporal logic ��

����� Intervals ��

����� Timed state sequences ��

����� Syntax and semantics of MITL ��

����� De	ned operators ��

����� Re	ning the models ��

����� Real versus rational time ���

����� Allowing rational constants ���

����� Avoiding undecidability ���

��� Interval automata ���

��� Deciding MITL ���

����� Restricting the problem ���

����� Intuition for the algorithm ���

����� Witnessing intervals ���

����� Type
� and type
� formulas ���

����� Type
� and type
� formulas ���

����� Constructing the interval automaton � � � � � � � � � � � � � � � � � � ���

����� Complexity of MITL ���

��� Veri	cation using MITL ���

��� Expressiveness ���

����� Comparison with 	ctitious
clock logics � � � � � � � � � � � � � � � � � ���

����� Comparison with interval automata � � � � � � � � � � � � � � � � � � ���

viii

 Branching�Time Logic ���

��� Computation tree logic ���

��� The logic TCTL ���

����� Syntax ���

����� Semantics ���

����� On the choice of syntax ���

����� Undecidability ���

����� Interval automata as TCTL
structures � � � � � � � � � � � � � � � � � ���

��� Model checking ���

����� Introducing formula clocks ���

����� Clock regions ���

����� The region graph ���

����� Labeling algorithm ���

����� Complexity of the algorithm ���

����� Complexity of model
checking ���

����� TCTL with fairness ���

� Concluding Remarks ���

Bibliography ��	

ix

Chapter �

Introduction

��� Motivation

With the increasing use of computers in safety
critical applications there is a pressing need

for designing more reliable systems� As a result� developing formal methods for the design

and analysis of concurrent systems has been an active area of computer science research� The

conventional approach to testing the correctness of a system involves simulation on some

test cases� This method is quite inadequate for developing bug
free complex concurrent

systems� One approach to assure correctness is to employ automatic veri�cation methods�

A veri	cation formalism comprises of

�� A formal semantics which assigns mathematical meanings to system components and

correctness criteria�

�� A language for describing the essential aspects of the system components� and con

structs for combining them�

�� A speci	cation language for expressing the correctness requirements�

�� A veri	cation algorithmto check if the correctness criteria are ful	lled in every possible

execution of the system�

In this thesis we provide formalisms for automatic veri	cation of �nite�state real�time sys�

tems �

The class of systems to which our methods are applicable includes asynchronous circuits�

communication protocols� and controllers �such as a �ight controller� or a controller for a

�

CHAPTER �� INTRODUCTION �

manufacturing plant�� The essential characteristics of such systems are�

� Finite�state� The system can be in one of the 	nitely many discrete states� If we focus

only on the control aspect of the system� ignoring the computational aspect� then this

is an useful abstraction in many cases� State
transitions are triggered by events which

are instantaneous�

� Reactive� The system constantly interacts with the environment reacting to stimuli�

So we are interested in the ongoing behavior over time� This is quite unlike the tra

ditional �transformational� view of the programs where the functional relationship

between the input state and the output state de	nes the meaning of a program� The

system comprises of a collection of components operating concurrently and commu

nicating with each other�

� Real�time� The correctness of the system depends on the actual magnitudes of the

timing delays of the components� This is obviously the case when the system needs

to meet hard real
time deadlines� the system needs to respond to a stimulus within

a certain 	xed time bound� Also there are cases when the logical correctness of the

system depends on the lengths of various delays�

Real
time systems are used in safety
critical applications such as controllers for nuclear

plants� Failures in such systems can be very expensive and even life
threatening� Because

of the intricacies of the timing relationships� real
time systems are quite hard to model�

specify� and design� Consequently� there is a great demand for formal methods applicable

to real
time systems�

��� Background� formalisms for qualitative reasoning

Several di
erent formalisms have been proposed to reason about reactive systems� These

include Petri nets� process algebras� temporal logics� automata
theoretic techniques� and

partial
order models�

These methodologies abstract from time� retaining the information about the causality

and�or the temporal order of occurrence of observable events� Even though there is no gen

eral agreement about what is the right semantics of concurrency� some of these techniques

have provided the foundations for building veri	ers for hardware and communication proto

cols� and some have suggested structured disciplines for writing concurrent programs� We

CHAPTER �� INTRODUCTION �

will brie�y review these approaches� the methods for automatic veri	cation of 	nite
state

systems are of main interest to us�

����� Temporal logics

The use of temporal logic as a formalism for specifying the behavior of a reactive system over

time was 	rst proposed by Pnueli in ���� �Pnu���� The subject has been extensively studied

since then �BMP��� MP��� EC��� OL��� Lam��� MW��� BKP��� CES��� Pnu��� MP���

Lam���� Temporal logic is a modal logic with modalities such as � meaning �eventually��

and � meaning �always� �see �Eme��� for an overview�� Temporal logics provide a succinct

and natural way of expressing the desired temporal requirements� Two types of temporal

logics have been proposed� linear�time and branching�time�

In the linear
time framework� a system is viewed as a set of computations� where each

computation is a sequence of system
states recording all the transitions over the course

of time� A linear temporal logic formula is interpreted over such state sequences �Pnu���

OL���� The branching
time logics� on the other hand� are interpreted over tree models

�BMP��� EC��� EL���� The system is viewed as a 	nitely
branching tree� the paths in the

tree correspond to the possible executions of the system�

In the traditional approach to veri	cation of concurrent programs� the correctness of the

program is expressed by a formula in 	rst
order temporal logic� The veri	cation problem

reduces to proving a theorem in a deductive system� For example� Manna and Pnueli

�MP��� have developed the model of fair transition systems to describe the implementation�

and give a proof system to verify temporal logic speci	cations� Though the technique is

quite general� constructing a proof needs to be done manually and requires a great deal of

understanding of the program� The only extent of automation one can hope for is to have

the proof checked by a machine and possibly to have some limited heuristics in 	nding the

proof�

Model checking provides a di
erent approach to checking properties of 	nite
state sys

tems �CES��� LP��� EL��� BCD���� GW���� In this approach� the global state
transition

graph is viewed as a 	nite Kripke structure �with fairness requirements� if necessary�� The

speci	cation of the system is given as a formula of a propositional temporal logic� The

model
checking algorithm then decides whether the system meets the speci	cation in all

possible scenarios� For the linear
time case� the complexity of model
checking is linear in

the size of the state
transition graph and exponential in the size of the speci	cation� and in

CHAPTER �� INTRODUCTION �

the branching
time case� it is linear both in the size of the state
transition graph and the

length of the temporal logic speci	cation� Various aspects of the model
checking problem

for the logic CTL �EC��� have been studied� This approach has been successfully applied to

verify circuits and protocols� and to 	nd bugs in previously
published� non
trivial protocols

and circuits �CES��� BCDM����

The model
checking approach to program veri	cation is probably the most exciting

advance in the theory of program correctness in recent years� It has been extended to

probabilistic systems �Var��� PZ��� CY���� to real
time systems �EMSS��� AH��� ACD���

Lew��� HLP���� and to probabilistic real
time systems �HJ��� ACD��a� ACD��b��

The main di�culty in using model
checking approach is the state�explosion problem� the

size of the global state
transition graph grows exponentially with the number of components

in the system� This problem has received great attention recently� and di
erent ways to

cope with the problem have been proposed �BCD���� God��� GW����

����� Automata�theoretic approach

A related approach to veri	cation of 	nite
state systems uses �
automata �WVS��� Var����

The computation of a reactive program is viewed as an in	nite word over the alphabet

of events �or states�� This gives rise to an intimate connection between reasoning about

reactive systems and the formal language theory� A system is modeled as an automaton

generating in	nite sequences which correspond to the possible computations of the system�

The automata over in	nite words were 	rst studied by B�uchi in relation to the theory

S�S� the second order monadic theory of natural numbers with successor �B�uc���� B�uchi

automata and their variants have been studied in great detail since then �Cho��� Mul���

McN���� leading to a beautiful theory of �
regular languages �see �Tho��� for an overview��

In the automata
theoretic framework� a system is modeled as a composition of sev

eral automata� The implementation automaton I is the product of these automata� and

acts as a generator � The speci	cation is given as another automaton S which acts as

an acceptor � Alternatively� from a linear temporal logic speci	cation� one can construct

an automaton which accepts all the computations that satisfy the given formula� The

implementation is correct i
 every behavior generated by I is accepted by S� Thus the

veri	cation problem reduces to the language inclusion problem� Consequently the known

e
ective constructions for intersection� complementation� and test for emptiness can be used

CHAPTER �� INTRODUCTION �

as a basis for automatic veri	cation� Checking for language inclusion involves complement

ing the speci	cation automaton which can be expensive� particularly for nondeterministic

automata �SVW��� Saf���� Alternative ways which use simulation relations have been pro

posed �DHW����

Another advantage of automata speci	cations is the possibility of hierarchical veri	ca

tion� Since both implementation and speci	cation are automata� there is no real distinction

between them� they can be viewed as descriptions of the system at di
erent levels of detail�

Consequently veri	cation can be carried out by starting with a high
level model and apply

ing successive re	nements� The system COSPAN developed at Bell Laboratories is based

on the automata based selection�resolution model �AKS���� and has been used successfully

to verify some of the commercially used protocols �HK����

Apart from the automatic veri	cation approach� other automata based techniques also

have been proposed� Lynch et� al� have de	ned input
output automata as a model of com

putation in asynchronous distributed networks� and have developed methods to construct

modular correctness proofs of distributed algorithms �LT���� Alpern and Schneider show

how to derive proof obligations from B�uchi automata speci	cations� and give proof rules for

checking these obligations against a concurrent program �AS����

����� Other approaches

Petri nets provide a succinct and elegant way to model concurrency and causal dependencies

in reactive systems �Pet���� An extensive literature exists on the topic� and the formalism

has been widely used in the speci	cation� modeling and performance evaluation of systems�

Reachability analysis on Petri nets can be used to detect if something �bad� will ever

happen�

Milner introduced CCS �Calculus of Communicating Systems� as a model for concurrent

systems �Mil���� CCS views the system computation as a 	nitely
branching tree� The

calculus provides operators such as nondeterministic choice� parallel composition� and hiding

to build complex terms from simpler ones� with an associated array of algebraic laws� The

veri	cation methodology based on CCS de	nes an equivalence relation on CCS terms� and

the veri	cation problem is to decide whether or not the speci	cation term is equivalent to

the implementation term� Various notions of observational equivalences and preorders have

been proposed and studied�

CHAPTER �� INTRODUCTION �

Another popular formalism for concurrency is Hoare�s theory of Communicating Sequen

tial Processes �Hoa��� Hoa���� CSP provides a small� and yet powerful� set of constructs

for writing concurrent programs� and laws for reasoning with them� In one of the possible

models for CSP� each process is modeled as a collection of sequences called traces � where a

trace records the order of events that may be observed when the process runs�

��� Overview

The thesis extends the 	nite
state veri	cation techniques based on automata and temporal

logics to real
time systems� The techniques discussed in the previous section abstract away

from quantitative time and� hence� are unsuitable for modeling and specifying real
time

systems� We develop real
time extensions of automata which can model timing delays

between system transitions� and real
time extensions of temporal logics which can specify

hard real
time requirements�

����� Veri�cation methodology

Formal semantics

The standard notion of a computation models only the sequencing of events or state

transitions� In the event
based model of automata� we introduce real
time by assigning

a real
valued time to every event occurrence� Similarly� we incorporate real
time in the

model of state sequences by associating an interval of the real number line with every state�

The feature that distinguishes our work from most of the earlier work on formalisms for

real
time reasoning is the use of a dense domain for choosing the time values�

We consider both linear
time and branching
time logic speci	cations� In the linear
time

world� the system is modeled as a set of �dense� linear executions� In the branching
time

world� the system is viewed as a tree over such executions� however� because of the in	nitely

many choices for the time of the next transition� the tree is no longer 	nitely branching�

Modeling the system

To augment the state
transition graph of a system with its timing constraints� we propose

the formalism of timed automata� Our de	nition is inspired by the model introduced by Dill

�Dil���� A timed automaton is a 	nite state
transition graph with a 	nite set of real
valued

CHAPTER �� INTRODUCTION �

clocks � The clocks can be reset to � �independently of each other� with the state
transitions

of the system� and keep track of the time elapsed since the last reset� To express the timing

delays of the system� we associate with the transitions� or alternatively with the states�

constraints that compare clock values with constants� With this mechanism we can model

timing properties such as �the channel delivers every message within � to � time units of

its receipt��

Timed automata can model several interesting aspects of real
time systems� qualitative

features such as liveness� fairness� and nondeterminism� and quantitative features such

as periodicity� bounded response� and timing delays� The model of timed automata is

compositional � and we provide an algorithm to construct the global automaton from the

automata describing the behaviors of di
erent components�

Speci�cation languages

As in the qualitative case� a timed automaton de	nes a formal language� and thus� when

viewed as an acceptor� provides a speci	cation formalism� We propose that deterministic

timed automata� coupled with Muller acceptance conditions� be used as a speci	cation

language�

We also consider real
time extensions of temporal logics� In the linear
time case� we

de	ne the logic metric interval temporal logic �MITL� by extending the linear temporal

logic PTL� In MITL� the temporal modalities are subscripted with time intervals restricting

their scope in time� For instance� ������ means �throughout the interval ��� ���� With this

extension one can express a bounded response requirement that �every p
state is followed

by some q
state within � time units�� by the formula

� � p � ����	
 q ��

In the branching
time case we de	ne the logic timed computation tree logic �TCTL�

by extending the �qualitative� branching
time logic CTL� The syntax of TCTL expresses

timing requirements by using variables ranging over the time domain of reals along with a

novel form of quanti	cation� In this logic� the above bounded response property is written

��x� � p � ��y� �q � y � x �� ��

The time quanti	er �x�� binds the associated variable x to the �current� time�

We address complexity and expressiveness issues relating to these three speci	cation

languages�

CHAPTER �� INTRODUCTION �

Veri�cation

In a typical veri	cation problem the system behavior is described as a timed automaton

I presented as a composition of several smaller automata� The desired requirement S is

speci	ed in one of the following forms�

� Deterministic timed Muller automaton

� Formula of the linear
time logic MITL

� Formula of the branching
time logic TCTL

For the above three speci	cation languages� we present model
checking algorithmswhich

check if the implementation I is correct with respect to the speci	cation S� The complexity

of the algorithm is exponential in the number of components in the system �as is the case

for qualitative veri	cation�� The timing considerations introduce an additional blow
up by

the actual magnitudes of the constants appearing as bounds for the timing delays�

����� Contributions

Automatic veri�cation in dense�time
 decidability and complexity

The main contribution of the thesis is the proposed technique for automatic veri	cation of

timing properties� All the formalisms proposed previously are either undecidable or use a

discrete time domain�

The undecidability results proved for di
erent cases identify the boundary between de

cidability and undecidability for di
erent formalisms for real
time reasoning� For instance�

we show that for the real
time logic MITL� introduction of modalities such as ��	 makes

the satis	ability and model
checking problems undecidable� thus the restriction that the

intervals subscripting the modalities be nonsingular is crucial� Such a restriction is not re

quired if we choose to interpret the logic over one of the discrete models� More surprisingly�

in the branching
time case� the logic TCTL uses the dense
time semantics� allows equality

constraints� and yet has a decidable model
checking problem�

We characterize the complexity classes of all the veri	cation problems de	ned here� For

example� model
checking for the branching
time logic TCTL is PSPACE
complete� Thus

for this problem� the complexity class stays unchanged as we move from the qualitative

case to the discrete
time case to the dense
time case� Introducing real
time considerations

involves an additional blow
up by the actual magnitudes of the constants bounding the

timing delays� This blow
up is observed for all decidable problems considered in this thesis�

CHAPTER �� INTRODUCTION �

Timed automata and theory of timed languages

Timed automata provide a simple� and yet powerful� way of annotating state
transition

graphs with timing constraints� Judging by the response we have received so far� we feel

hopeful that it will provide the �canonical� model for 	nite
state real
time systems�

We study timed automata from the perspective of formal language theory� A timed

language comprises of in	nite words over a 	nite alphabet� in which each symbol has a real

valued time of occurrence� Timed automata de	ne timed regular languages � We consider

closure properties and decision problems for timed automata� The class of nondeterministic

automata is closed under union� intersection� but not under complement� For these au

tomata testing emptiness is PSPACE
complete� but checking for universality is undecidable

� !�
�
hard� On the other hand� the deterministic automata are closed under complement

also� and problems such as universality and language inclusion are solvable in PSPACE� We

have focused on the application of this theory for veri	cation problems� but the theory may

hold interest of its own�

Models for real�time

Several real
time extensions of existing formalisms have been proposed previously� but the

issue of choosing the �right� model for introducing time in semantics has not been addressed

before� We precisely characterize three di
erent models� dense�time� discrete�time and

�ctitious�clock �

The simplest of all these models is the discrete
time model� time is assumed to be

isomorphic with the set of natural numbers� Thus events are assumed to happen syn

chronously with the ticks of a global clock� This assumption is relaxed in the �ctitious�clock

approach� Here time is viewed as a global state variable that ranges over the domain of

natural numbers� and is incremented by one with every tick transition of a global� asyn

chronous� 	ctitious� discrete clock� The timing delay between two events is measured by

counting the number of ticks between them� Finally� there is the possibility of choosing

the real line itself to model time� The occurrence times for events are real numbers in this

model� and consequently it is the most realistic model for asynchronous systems�

We compare these models� and study how the choice of a model a
ects the complexity

of di
erent decision problems� The model of our choice is the dense
time model� in Chapter

� we make a case for our preference�

CHAPTER �� INTRODUCTION ��

��� Related research

The problem of formal methods to deal with the real
time aspect explicitly has received

relatively little attention in the past� However� over the last couple of years there has been

an explosion on the number of papers on this subject� and several real
time logics and real

time algebras have been proposed� In this section we provide an overview of some this work�

the proceedings of a recent REX workshop on the topic �Real Time� Theory in Practice�

will provide an excellent starting point for anybody who wishes to explore the wide range

of research that is under way �dR����

����� Modeling real�time systems

The idea of introducing real
time into qualitative models of behavior by associating a time

of occurrence with every event or state
transition is fairly standard� and is used in most of

the approaches considered here�

Timed automata

Our de	nition of timed automata is a modi	ed version of the formalism of timed automata

introduced by Dill �Dil���� In the original de	nition� the automaton has a 	nite set of

timers � There are two special events associated with every timer� set and expire� A timer

is activated by the set event to an arbitrary value between speci	ed bounds� All the timers

count down at the same rate� and the expire event corresponding to a timer gets 	red

when its value becomes �� To express a constraint on the delay between two events e� and

e�� a timer with appropriate bounds is set along with e�� and the event e� is required to

be synchronized with the expiration of the timer� In our formalism� the automaton has

a 	nite set of clocks which count up showing the elapsed time since the last reset� The

clocks can be reset to � along with the state
transitions� and timing delays are expressed by

annotating the transitions with constraints comparing clock values with constant bounds�

Apart from some technical conveniences in developing the emptiness algorithm and proving

its correctness� the reformulation allows a simple syntactic characterization of determinism

for timed automata�

A model similar to Dill�s was independently proposed and studied by Lewis �Lew����

He de	nes state�diagrams � and gives a way of translating a circuit description to a state

diagram� A state
diagram is a 	nite
state machine where every edge is annotated with a

CHAPTER �� INTRODUCTION ��

matrix of intervals� The machine essentially remembers information about delays between

a 	nite number of transition pairs that have occurred in the past� With every transition

the associated delay matrix is used to check the consistency of previous delays� and the

time of the current transition is used to update the delay information� In essence� like

timed automata� state diagrams also express constant bounds on delays along paths� The

de	nition of timed automata� however� is much simpler�

Transition systems

Perhaps the most standard way of introducing timing information in a process model is

by associating lower and upper bounds with transitions� For example� Ostro
 �Ost��b�

Ost��a� and Henzinger �HMP��� Hen��� de	ne real�time transition systems by extending

the framework of fair transition systems �MP��� by associating lower and upper bounds

with transitions� The timing constraints for a legal computation require that a transition

with lower bound l and upper bound u is continuously enabled for at least l time units

before it is taken� and is never enabled for u time units at a stretch without being taken�

Timed I�O automata �LA��� are a similar extension of I�O automata� As in I�O au

tomata there is a useful distinction between input events and output events� Their semantics

of timed traces is similar to ours� except that the events appearing at the same time are

clustered in a set in our de	nition� and their de	nition considers all possible linearizations�

Aggarwal and Kurshan �AK��� show how to incorporate timing information in their selec

tion�resolution model �based on automata� in a similar way� Jahanian and Stuart describe

a modular and graphical languageModechart for expressing the control and timing informa

tion of a real
time system �JS���� Timing extensions of the Petri net model also have been

considered �Ram��� CR���� In timed Petri nets each transition has an associated real
valued

time �or an interval� giving its duration� a transition is 	red only after it is continuously

enabled for a time period equal to this duration�

The models of transition systems or timed I�O automata have a strong operational

�avor compared to timed automata� In a timed automaton there is no explicit notion of

enabled transitions� lower bounds� or upper bounds� The timing properties of the system are

expressed more abstractly� For 	nite
state systems� transition system style descriptions can

be compiled into timed automata in a straightforward way� In principle� timed automata

can express more complex timing constraints than transition systems�

CHAPTER �� INTRODUCTION ��

Process algebras

The standard way to introduce real
time in algebraic models is to add some form of a

�delay� construct to the calculus �Mil��� RR��� Zwa��� MT��� NRSV��� Wan��� BB����

The following discussion should provide a �avor of these constructs� Reed and Roscoe

�RR��� extend CSP to timed CSP by introducing an additional WAIT construct� The

construct �WAIT t� models the process that terminates successfully after t time units� The

semantics is de	ned in terms of the timed stability model which uses a dense domain� In

this model� with every event its time of occurrence is recorded� along with the earliest time

at which the process can engage in the next action� A similar approach is Zwarico�s model

of timed acceptances �Zwa���� The semantics uses discrete
time� and is an extension of the

acceptance model for CSP� after every event all the possible choices the process may execute

are also recorded�

Milner�s SCCS �Mil��� is a calculus in the style of CCS� It makes the assumption of strong

synchrony � all processes execute in lock
step� performing one event with each passing unit

of time� Sifakis et� al� have de	ned ATP � an algebra for timed processes �NRSV��� based

on the 	ctitious
clock model� The vocabulary of actions contains a distinguished element

corresponding to the tick of a global clock� The syntax of the calculus does not allow

explicit references to this tick event� but has a binary unit
delay operator� For two terms t�

and t�� this operator gives a process that behaves as t� if started before the next tick � and

behaves as t� otherwise� Another timed process algebra is TCCS �Wan���� The syntax of

CCS is extended with a delay construct� ���t��P� represents a process that waits for t time

units and then behaves like P � The set of actions contains a special timeout action� and an

action ��t� for every real value t�

In the untimed case� a few constructs of process algebras are rich enough to model

complex aspects of concurrent systems� However� this does not seem to be the case for the

timing properties� None of the above calculi seem to be able to model all the features such

as lower and upper bounds� timeouts� and periodicity�

����� Speci�cation languages

As far as we know� there has been no other attempt to use automata to specify correctness

of real
time systems� However� a large number of real
time extensions of temporal logics

have been proposed�

CHAPTER �� INTRODUCTION ��

Dense�time

The earliest proposal for specifying real
time requirements is found in a paper by Bernstein

and Harter �BH���� They de	ne an extension of PTL by introducing operators such as

�
�n
�� �� meaning that �every �
state is followed by a �
state within n time units�� The

paper gives some examples of speci	cations and proofs�

Koymans �KVdR��� Koy��� de	nes metric temporal logic as a speci	cation language

for time
critical systems� The logic allows temporal modalities for ��	 to write down

real
time requirements� The logic has a very rich and powerful syntax� and the de	nition

of the semantics makes very weak assumptions about the time domain� His thesis gives

speci	cations for many interesting problems�

In �Lew���� Lewis considers a real
time branching
time logic� The syntax is an extension

of CTL with interval subscripts on temporal operators� The logic is interpreted over state

diagrams � his abstraction for 	nite
state systems�

In �AH��� we showed that the dense
time semantics leads to undecidability of the sat

is	ability problem in the presence of operators such ��	� Later in �AFH��� we found a

decidable subset � the logic MITL which disallows singular interval subscripts� Thus� of

all the temporal logics interpreted over dense models� only MITL is decidable�

Fictitious�clock

One approach to specifying real
time requirements using temporal logic is to employ 	rst

order temporal logic where one of the state variables denotes the value of the global clock�

The logic RTTL of Ostro
 �Ost��b� uses this approach� It is based on the 	ctitious
clock

semantics� The syntax uses a dynamic state variable T to denote the current time� and static

variables over the time domain to express timing constraints� For example� the property

that �every p
state is followed by some q
state within time ��� is expressed by the formula

�� � p � T " x � � � � q � T � x � ���

The logic is undecidable even if we restrict to 	nite
state systems� Consequently� several

di
erent decidable fragments of RTTL have been identi	ed�

In �AH��� we de	ned the logic TPTL� For decidability� TPTL requires that the timing

constraints be of a very simple form� involving only comparisons and addition by constant

values� Secondly� it achieves elementary complexity through a novel form of time quanti	er

�x� � which captures the current time� The notation also provides abstraction from explicit

CHAPTER �� INTRODUCTION ��

references to the time variable� The syntax for TCTL used in this thesis is based upon this

TPTL notation�

Another decidable fragment of RTTL is the logic MTL �AH���� MTL uses Koyman�s

notation of subscripted temporal operators� and is interpreted over 	ctitious
clock models�

Unlike TPTL� MTL also allows past operators such as
��	 meaning �sometime within the

past � time units��

The logic XCTL introduced by Pnueli and Harel �PH��� Har��� is also a restricted

fragment of RTTL� and is decidable� Unlike all the formalisms we consider� XCTL allows

the addition primitive� however it allows only one form of quanti	cation� and consequently�

the logic is not closed under negation�

For a detailed comparison of the above logics see �AH��� or �Hen����

Discrete�time

As an example of a real
time logic with discrete
time semantics consider the branching
time

logic RTCTL of �EMSS���� In this logic one can write formulas such as ���� p� meaning

some p
state is reachable within time �� Since each transition takes unit time� the real
time

operators are merely abbreviations for sequences of next operators of CTL� The paper gives

complexity results on satis	ability and model
checking for RTCTL�

Mok and his group have done extensive work on specifying real
time systems� The logic

RTL is an event
based logic which allows stating relationships between occurrence times of

di
erent events �JM��� JM���� The speci	cation style of RTL is quite di
erent from the

conventional temporal logics� For instance� the RTL formula

�i� � #�b� i� � �#a� i �� �

states the property that �the i
th occurrence of the b event is within � time units of the

i
th occurrence of the a event� for all choices of i�� Theoretically� it is an extension of

Presburger arithmetic with an uninterpreted unary function symbol corresponding to every

event symbol� RTL is undecidable� there seems to be no natural decidable fragment�

����� Veri�cation

Dill �Dil��� gives an algorithm to check qualitative temporal properties of 	nite
state sys

tems� The essential construction involves checking consistency of timing constraints of a

CHAPTER �� INTRODUCTION ��

timed automaton with timers� The untiming construction for timed automata presented in

this thesis has a better worst
case running time�

Lewis also gives an algorithm to check consistency of timing information for a system

modeled by his state diagrams� In �Lew���� he gives an algorithm to check properties written

in a branching
time logic that is a fragment of TCTL� The algorithm is quite di
erent from

ours� and makes the assumption of progressiveness � in a bounded interval of time only

a bounded number of events happen �note that this is not the same as the discrete
time

assumption�� Also the worst
case complexity of our algorithm is better�

Lynch and Attiya �LA��� provide a formal basis for comparing two descriptions� not nec

essarily 	nite
state� presented as timed I�O automata and show how to use it for reasoning

about timing properties of protocols�

Ostro
 �Ost��b� extends the proof system for temporal logic to handle RTTL formu

las� He also gives algorithms for checking a restricted class of RTTL speci	cations against

systems modeled using real
time transition systems �Ost��a��

Henzinger�s thesis �Hen��� studies several aspects of the veri	cation problem based on

	ctitious
clock temporal logics� The model
checking algorithms for the 	nite
state case are

reported in �AH��� AH��� HLP���� He also gives axiomatization for MTL �Hen���� and

proof rules for checking certain types of real
time speci	cations such as bounded response

and bounded invariance �HMP���� With its integration in the existing proof systems for

temporal logic� it provides a general system for reasoning about real
time programs�

The algebraic approaches �Zwa��� RR��� Wan��� NRSV��� provide an array of operators

and laws for reasoning with them� The veri	cation is de	ned using the notions of process

containment and process equivalence� In the context of timed Petri nets �Ram��� CR���

analysis techniques for solving speci	c performance
related problems have been considered

for subclasses� Veri	cation methods based on time Petri nets have been considered in

�BD��� YKT���� Aggarwal and Kurshan �AK��� using their timing extension of the selec

tion�resolution model� show how to compute elapsed time between di
erent events� and

argue that the timing information helps to reduce the number of reachable states�

In the context of RTL� Jahanian and Mok �JM��� show how to do safety analysis of

timing properties� In �JS��� the semantics for Modecharts is de	ned using RTL
formulas�

thus reducing the veri	cation problem to proving a theorem in RTL� For RTL speci	cations

of a speci	c form algorithms for model
checking have been developed�

CHAPTER �� INTRODUCTION ��

��	 Organization of the thesis

In Chapter �� we consider three alternative models for real
time� namely� discrete
time�

dense
time� and 	ctitious
clock� in the context of trace semantics� We give justi	cation for

our choice of model on the basis of issues such as correctness� expressiveness� complexity

and compositionality�

In Chapter �� we develop a theory of timed automata� We de	ne the formalism� and

study its closure properties� We consider automata with both B�uchi and Muller acceptance

conditions� The main results include a product construction for timed automata� a decision

procedure for testing emptiness� the undecidability of language inclusion� and the subclass

of deterministic timed Muller automata for which the language inclusion is solvable� We

also consider extensions� variants� and expressiveness issues� We show how this theory can

be used to model� specify� and verify real
time systems�

In Chapter �� we consider a real
time extension of the linear
time temporal logic PTL�

We de	ne the logic metric interval temporal logic �MITL� by extending the syntax of PTL

with nonsingular interval subscripts for the temporal operators� We also de	ne interval

automata� a state
based variant of timed automata� as a model for 	nite
state systems� We

reduce the satis	ability problem for MITL to the emptiness problem for interval automata�

and show the logic to be EXPSPACE
complete� We also present a model
checking algorithm

for MITL speci	cations� We consider variants of this logic� and show how the choice of

syntax and semantics a
ects decidability� Finally we compare the expressiveness of MITL

to that of the 	ctitious
clock temporal logic MTL�

Chapter � is devoted to the study of the logic timed computation tree logic �TCTL�� a

real
time extension of the branching
time logic CTL� We de	ne the semantics of continuous

computation trees for TCTL� We show that� although the denseness makes the satis	abil

ity problem for TCTL undecidable� the model
checking problem �that is� the problem of

checking TCTL speci	cations against an interval automaton� is decidable in PSPACE�

The concluding chapter indicates some directions for ongoing and future research�

Joint work

Timed automata of Chapter � were 	rst introduced in a joint paper with David Dill pre

sented at the ��th International Colloquium on Automata� Languages� and Programming

CHAPTER �� INTRODUCTION ��

in June ���� �AD���� The results of Chapter � appear in a joint paper with Thomas Hen

zinger and Tomas Feder �AFH��� presented at the Tenth ACM Symposium on Principles of

Distributed Computing in August ���� �AFH���� Chapter � generalizes the de	nition and

the results appearing in a joint paper with Costas Courcoubetis and David Dill at the Fifth

IEEE Symposium on Logic in Computer Science in June ���� �ACD����

Chapter �

Adding Time to Semantics

In this chapter we de	ne three di
erent ways of introducing time in linear trace semantics

for concurrent processes� We compare these models� and justify our preference for the

dense
time model�

��� Trace semantics

In trace semantics� we associate a set of observable events with each process� and model

the process by the set of all its traces � A trace is a �linear� sequence of events that may

be observed when the process runs� For example� an event may denote an assignment of

a value to a variable� or pressing a button on the control panel� or arrival of a message�

All events are assumed to occur instantaneously� Actions with duration are modeled using

events marking the beginning and the end of the action� Hoare originally proposed such a

model for CSP �Hoa���� In our model� we allow several events to happen simultaneously�

Also we consider only in	nite sequences� which model nonterminating interaction of reactive

systems with their environments� This is no serious limitation� a 	nite sequence representing

a terminating behavior can be extended to an in	nite sequence using a su�x comprising of

in	nite repetition of a dummy event�

Formally� given a set A of events� a trace � " ���� � � � is an in	nite word over P
��A�

� the set of nonempty subsets of A� An untimed process is a pair �A�X� comprising of the

set A of its observable events and the set X of its possible traces�

Example ��� Consider a channel P connecting two components� Let a represent the

arrival of a message at one end of P � and let b stand for the delivery of the message at the

��

CHAPTER �� ADDING TIME TO SEMANTICS ��

other end of the channel� The channel cannot receive a new message until the previous one

has reached the other end� Consequently the two events a and b alternate� Assuming that

the messages keep arriving� the only possible trace is

�P � fag � fbg � fag � fbg � � � � �

Often we will denote the singleton set fag by the symbol a� The process P is represented

by �fa� bg� �ab��� ��

Various operations can be de	ned on processes� these are useful for describing complex

systems using the simpler ones� We will consider only the most important of these opera

tions� namely� parallel composition� The parallel composition of a set of processes describes

the joint behavior of all the processes running concurrently� In our framework� processes

synchronize via common events� and concurrency is modeled by all possible interleavings of

the causally independent events�

The parallel composition operator can be conveniently de	ned using the projection op

eration� The projection of � 	 P��A�� onto B
 A �written �dB� is formed by intersecting

each event set in � with B and deleting all the empty sets from the sequence� For instance�

in Example ��� �P dfag is the trace a
�� Notice that the projection operation may result in

a 	nite sequence� but we will consider the projection of a trace � onto B only when �i �B

is nonempty for in	nitely many i�

For a set of processes fPi " �Ai� Xi� j i " �� �� � � �ng� their parallel composition ki Pi is

a process with the event set �iAi and the trace set

f� 	 P���iAi�
� j �i �dAi 	 Xig�

Thus � is a trace of ki Pi i
 �dAi is a trace of Pi for each i " �� � � �n� When there are

no common events the above de	nition corresponds to the unconstrained interleavings of

all the traces� On the other hand� if all event sets are identical then the trace set of the

composition process is simply the set
theoretic intersection of all the component trace sets�

Example ��� Consider another channel Q connected to the channel P of Example ����

The event of message arrival for Q is same as the event b� Let c denote the delivery of the

message at the other end of Q� The process Q is given by �fb� cg� �bc����

�We will use the notation of ��regular expressions freely� The expression e� stands for a �nite repetition

of e� and the expression e� stands for an in�nite repetition of e�

CHAPTER �� ADDING TIME TO SEMANTICS ��

When P and Q are composed we require them to synchronize on the common event b�

and between every pair of b�s we allow the possibility of the event a happening before the

event c� the event c happening before a� and both occurring simultaneously� Thus �P k Q �

has the event set fa� b� cg� and has an in	nite number of traces� An example trace is

fag � fbg � fcg � fag � fbg � fa� cg � fbg � fag � fcg � fbg � � � �

In this framework� the veri	cation question is presented as an inclusion problem� Both

the implementation and the speci	cation are given as untimed processes� The implementa

tion process is typically a composition of several smaller component processes� We say that

an implementation �A�XI� is correct with respect to a speci	cation �A�XS� i
 XI
 XS �

Example ��� Consider the channels of Example ���� The implementation process is �P k

Q �� The speci	cation is given as the process S " �fa� b� cg� �abc���� Thus the speci	cation

requires the message to reach the other end of Q before the next message arrives at P �

In this case� �P k Q� does not meet the speci	cation S� for it has too many other traces�

speci	cally� the trace ab�acb���

��� Timed traces

In this section we explore di
erent possible de	nitions for introducing time in trace seman

tics�

����� Adding timing to traces

An untimed process models the sequencing of events but not the actual times at which the

events occur� Thus the description of the channel in Example ��� gives only the sequencing

of the events a and b� and not the delays between them� Timing can be added to a trace by

coupling it with a sequence of time values� We assume that these values are chosen from a

domain TIME with linear order �� Di
erent choices for TIME will lead to di
erent ways of

modeling the behavior� The examples in this subsection will use the set of natural numbers

as TIME�

A time sequence � " ���� � � � is an in	nite sequence of time values �i 	 TIME with

�i 	 �� satisfying the following constraints�

CHAPTER �� ADDING TIME TO SEMANTICS ��

� Monotonicity� � increases strictly monotonically� that is� �i
 �i�� for all i
 ��

� Progress� For all t 	 TIME � there is some i
 � such that t
 �i�

A timed trace over a set of events A is a pair ��� �� where � is a trace over A� and � is a

time sequence�

In a timed trace ��� ��� each �i gives the time at which the events in �i occur� In

particular� �� gives the time of the 	rst observable event� we always assume �� 	 �� and

de	ne �� " �� Sometimes we will represent the timed trace ��� �� by the in	nite sequence

���� ��� � ���� ��� � ��	� �	� � � � �

Observe that the progress condition implies that only a 	nite number of events can

happen in a bounded interval of time� In particular� it rules out convergent time sequences

such as ���� ���� ���� � � � representing the possibility that the system participates in in	nitely

many events before time ��

A timed process is a pair �A�L� where A is a 	nite set of events� and L is a set of timed

traces over A�

Example ��� Consider the channel P of Example ��� again� Assume that the 	rst message

arrives at time �� and the subsequent messages arrive at 	xed intervals of length � time

units� Furthermore� it takes � time unit for every message to traverse the channel� The

process has a single timed trace

�P " �a� �� � �b� �� � �a� �� � �b� �� � � � �

and it is represented as a timed process PT " �fa� bg� f�Pg��

The operations on untimed processes are extended in the obvious way to timed processes�

To get the projection of ��� �� onto B
 A� we 	rst intersect each event set in � with B

and then delete all the empty sets along with the associated time values� The de	nition

of parallel composition remains unchanged� except that it uses the projection for timed

traces� Thus in parallel composition of two processes� we require that both the processes

should participate in the common events at the same time� This rules out the possibility

of interleaving� parallel composition of two timed traces is either a single timed trace or is

empty�

CHAPTER �� ADDING TIME TO SEMANTICS ��

Example ��
 As in Example ��� consider another channel Q connected to P � For Q� as

before� the only possible trace is �Q " �bc��� In addition� the timing speci	cation of Q

says that the time taken by a message for traversing the channel� that is� the delay between

b and the following c� is always � unit� The timed process QT has in	nitely many timed

traces� and it is given by

� fb� cg� f��bc��� �� j �i� ���i � ��i�� " ��g ��

The description of �PT k QT � is obtained by composing �P with each timed trace of QT �

However only one timed trace of QT is consistent with the timing of b events in �P � The

resulting process has the event set fa� b� cg� and a unique timed trace

�a� �� � �b� �� � �c� �� � �a� �� � �b� �� � �c� �� � � � �

The time values associated with the events can be discarded by the Untime operation�

For a timed process P " �A�L�� Untime��A�L�� is the untimed process with the event set

A and the trace set consisting of traces � such that ��� �� 	 L for some time sequence � �

Note that

Untime�P� k P��
 Untime�P�� k Untime�P���

However� as Example ��� shows� the two sides are not necessarily equal� In other words� the

timing information retained in the timed traces constrains the set of possible traces when

two processes are composed�

Example ��� Consider the channels of Example ���� Observe that Untime�PT � " P and

Untime�QT � " Q� As seen before� �PT k QT � has a unique trace �abc��� On the other hand�

�P k Q � has in	nitely many traces� between every pair of b events all possible orderings of

an event a and an event c are admissible�

The veri	cation problem is again posed as an inclusion problem� Now the implementa

tion is given as a composition of several timed processes� and the speci	cation is also given

as a timed process�

Example ��� Consider the veri	cation problem of Example ��� again� If we model the

implementation as the timed process �PT k QT � then it meets the speci	cation S� The

CHAPTER �� ADDING TIME TO SEMANTICS ��

speci	cation S is now a timed process �fa� b� cg� f��abc��� ��g�� Observe that� though the

speci	cation S constrains only the sequencing of events� the correctness of �PT k QT � with

respect to S crucially depends on the timing constraints of the two channels� Consider

another speci	cation S� which requires� in addition to S� the timing delay between every

event a and the next following c to be at most �� The implementation meets S� also�

����� Discrete�time model

In Section ������ while de	ning timed traces� we did not commit to choosing a speci	c time

domain� Di
erent choices for TIME give us di
erent models of real
time�

Choosing TIME to be the set of natural numbers� N� gives us the discrete�time model�

In this model events can happen only at the integer time values� This describes the behavior

of synchronous systems� where all components are driven by a common global clock� The

duration between the successive clock ticks is chosen as the time unit� The discrete
time

model is the traditional model for synchronous hardware� The processes considered in

Example ��� use this model�

The advantage of this model is its simplicity� In fact� timed traces are not even necessary

to model the behavior� A timed trace ��� �� over a set of events A may be viewed as an

in	nite sequence �� over �A� for all i
 �� let ��i be �j if �j " i� and let ��i be � if for all j
 �

�j �" i� Thus the i
th element of �� gives the events happening at time i� For instance� the

timed trace

�fag� �� � �fbg� �� � �fa� bg� �� � �b� �� � � � �

is represented by the sequence

fag � fbg � � � fa� bg � � � �

Thus a timed process can be modeled as a set of traces over �A� the empty set of events

corresponds to the passage of time� The parallel composition operator can be de	ned

directly within this framework by modifying the de	nition of the projection operation on

traces� the projection of a trace � over �A onto B
 A is formed by simply intersecting

each event set in � with B �that is� empty sets are not deleted��

No substantially new techniques are needed to analyze the timing behavior in this model�

the techniques used in the veri	cation of untimed processes can be modi	ed in a straight

forward way�

CHAPTER �� ADDING TIME TO SEMANTICS ��

����� Dense�time model

Choosing TIME to be the set of real numbers� R� gives the dense�time model� In this

model� we assume that events happen at arbitrary points in time over the real
line� and

with each event we associate its real
valued time of occurrence� As it turns out� with regards

to complexity and expressiveness issues� the crucial aspect of the underlying domain is its

denseness � the property that between every two time values there is a third one� and not

its continuity� we may replace R by some other dense linear order� say� the set of rational

numbers� Q�

The dense
time model is a natural model for asynchronous systems� It allows events to

happen arbitrarily close to each other� that is� there is no lower bound on the separation

between events� This is a desirable feature for representing two causally independent events

in an asynchronous system� While de	ning the semantics of a system� no assumptions

regarding the speed of the environment need to be made�

Example ��� Let us consider the channels P and Q of Example ��� again� We keep the

timing speci	cation of the channel P the same� For channel Q assume that the delay

between the event b and the following c is some real value between � and �� The timed

process QT is now given by

� fb� cg� f��Q� �� j �i� ���i�� �
 ��i
 ��i�� ��g ��

The composition process �PT k QT � has uncountably many timed traces� An example trace

is

�a� �� � �b� �� � �c� ���� � �a� �� � �b� �� � �c� ����� � � � �

����� Fictitious�clock model

In this section we consider an alternative way to introduce time in traces� We assume that

there is an external� discrete clock ticking at a 	xed rate� asynchronously with the other

components in the system� Time is viewed as a discrete counter� and is incremented by

one with every tick of this 	ctitious clock� With each event we associate� instead of its

exact �real� time of occurrence� the value of this counter� Thus events happening between

consecutive ticks have the time
stamp� and only the ordering of their times of occurrences

is known�

CHAPTER �� ADDING TIME TO SEMANTICS ��

We formalize this model using observation traces � An observation trace over a set

of events A consists of a trace � over A and an in	nite sequence � " �����	 � � � over N

satisfying the progress constraint and the weak monotonicity constraint that �i � �i�� for

all i
 �� Thus an observation trace is similar to a timed trace for the discrete
time model�

but instead of requiring the time sequence to be strictly increasing we simply require it to

be nondecreasing� If �i equals �i��� it means that the events in the �i ��
th set happen

after the events in the i
th set� but before the next clock tick� Also �� may be � indicating

that the 	rst event happens before the 	rst clock tick� An alternative way to de	ne the

	ctitious
clock semantics would be to use the model of untimed processes with a special

tick event common to all processes� Thus a timed process with an event set A is modeled

as an untimed process with the event set A � ftickg�

Example ��	 Consider the channel P with alternating events a and b� In addition we know

that an observer with a clock ticking at 	xed intervals observes at most � tick between every

event a and the successive b� and precisely � ticks between every pair of successive a�s� The

timed process PT is given by

�fa� bg� f��ab��� �� j �i� ���i � ��i�� �� � ���i�� " ��i�� ��g��

An example observation trace is

�a� �� � �b� �� � �a� �� � �b� �� � �a� �� � � � �

The process can be represented using tick events also� For instance� the above trace can be

represented by the trace a� b� tick� tick� a� tick � b� tick� a � � �

The projection operation is de	ned for observation traces as in the case of timed traces�

Also the de	nition of the parallel composition operator is unchanged� Thus when composing

two observation traces of two processes� we require synchronization on every successive clock

tick in addition to the common events� As in the qualitative model� we get all possible

interleavings of the events in the two traces between every pair of successive clock ticks�

Consequently� the result of composing two behaviors is not unique as in the discrete
time

or the dense
time model� but is more constrained than the qualitative model because of the

additional synchronization of ticks�

CHAPTER �� ADDING TIME TO SEMANTICS ��

Example ���� Consider another channel Q as in our previous examples� The timing

speci	cation of Q requires precisely � tick between every event b and the next c� An

example observation trace of QT is

�b� �� � �c� �� � �b� �� � �c� �� � � � �

Composing this trace with the observation trace of PT shown in Example ��� allows arbi

trary ordering of the events a and c at time �� For instance� the composition contains the

trace

�a� �� � �b� �� � �c� �� � �a� �� � �b� �� � �a� �� � �c� �� � � � �

In this case Untime�PT k QT � equals �P k Q ��

The 	ctitious
clock model can be considered as a generalization of the discrete
time

model where successive event sets can have the same time� This model allows arbitrarily

many transitions between the successive tick events� and hence� unlike the discrete
time

model� makes no assumptions regarding the speed of the environment� On the other hand� it

can be viewed as an approximation to the dense
time model where the time value associated

with each event set is truncated� The observation traces only record the observations of

the actual behaviors with respect to a discrete clock� Since time is considered discrete�

the veri	cation algorithms based on this model are simpler compared to those based on the

dense
time model� The techniques used in the veri	cation of 	nite
state �untimed� processes

can be adopted to develop veri	cation methods for this model�

However since only incomplete timing information is retained it cannot model the timing

delays of a system accurately� The timing delay between two events is measured by counting

the number of ticks between them� When we require that there be k ticks between two

transitions� we can only infer that the delay between them is larger than k�� time units and

smaller than k � time units� Consequently� it is impossible to state precisely certain simple

requirements on the delays such as �the delay between two transitions equals � seconds��

This leads to some unintuitive properties in the model� For instance� consider the property�

if a precedes b� and c happens � time unit later than a� and d happens � unit

later than b� then c precedes d�

This is a valid property of timed traces in the discrete
time or the dense
time models� but it

is not a valid property of observation traces in the 	ctitious
clock model� The observation

CHAPTER �� ADDING TIME TO SEMANTICS ��

trace

�a� �� � �b� �� � �d� �� � �c� �� � � � �

satis	es all the conditions in the antecedent� but violates the precedence requirement of the

consequent�

��� A case for the dense�time Model

Several researchers have used either the discrete
time or the 	ctitious
clock model saying

that it is good enough for all practical purposes provided the unit for time �the rate at

which the clock ticks� is small enough� However� this argument has not been supported by

any precise mathematical claims� Below we make an attempt to give di
erent justi	cations

to our preference for the dense
time model over the other two�

����� Correctness

For event
driven asynchronous systems the dense
time model gives di
erent results com

pared to the other models� We discuss this issue in context of a reachability problem for

asynchronous circuits with bounded inertial delays� The network model we use and some

of the examples are borrowed from �BS����

A network N consists of single
output gates connected by wires �� �� � � �m� Each gate

can be identi	ed by its unique output wire� Wires are assumed to have no delays� however

each gate is assumed to have a bounded delay� the delay of a gate j can be an arbitrary

real value in the interval �l�j�� u�j��� Thus l�j� gives the lower bound for the delay� and

u�j� gives the upper bound� All the bounds are nonnegative integers� Wires are assumed

to have only binary states� and the changes are assumed to be instantaneous� A state s of

the circuit is an m
tuple over f�� �g giving the values of all the wires� the j
th component

s�j� represents the value of the wire j� The value assigned to the output wire of a gate by

a state may not be consistent with the values assigned to its input wires� For a state s and

a gate j� let out�s� j� denote the required value of the wire j according to the values of the

input wires to gate j in state s and the functional laws for the gate j� For instance� if a

state s assigns the value � to the input wire of an inverter gate j� then out�s� j� is �� If s�j�

di
ers from out�s� j� then the gate j is unstable in state s�

A state sn is reachable from a state s� i
 there exists a sequence of the form

s�
A���
��

s�
A���
��

� � � � � � sn��
An��
�n

sn

CHAPTER �� ADDING TIME TO SEMANTICS ��

1

x

y
1

y
2

y
3

[1,3]

[1,2]

[1,3]

Figure ���� Circuit C�

of states si� increasing time values �i 	 R� and nonempty sets of gates Ai� The state changes

from si�� to si due to the toggling of the output wires of gates in Ai� Hence we require

that si���j� and si�j� di
er i
 j 	 Ai� Note that the states s� through sn can be inferred

from the initial state s� and the sets A�� � � �An� The timing requirements are given by the

following two laws�

�� Lower Bound� Each gate must be unstable for at least l�j� time units before it changes

its value� if the gate j changes its value at time �i �that is� j 	 Ai� then for some k

with �k � �i � l�j�� the gate j is unstable in all the intermediate states during the

time period ��k� �i� �that is� out�sk� � j� �" sk��j� for all k � k�
 i�� and its value stays

unchanged during this period �that is� j �	 Ak� for k
 k�
 i��

�� Upper Bound� A gate cannot be unstable for u�j� time units without changing its

value� for every gate j� and every pair of transition points k� and k� such that �k�

u�j�
 �k� � if the gate j is unstable in all the intermediate states between k� and k�

�that is� out�sk � j� �" sk�j� for all k� � k
 k��� then the gate must have changed its

value sometime during this period �that is� j 	 Ak for all k�
 k
 k���

Given a networkN with an initial state s�� letR�N� s�� denote the set of states reachable

from s�� If s� is stable with respect to every gate then clearly no other state is reachable�

If s� is unstable then R�N� s�� gives all the states the network can possibly visit before

stabilizing�

Example ���� Consider the circuit C� shown in Figure ���� The gates are labeled with

the lower and upper bounds for the delays� The wire x is the input wire� and y�� y� and y	

CHAPTER �� ADDING TIME TO SEMANTICS ��

give the wires corresponding to the three gates� The wire y� is the output of the inverter

gate� y� is the output of the AND
gate� and y	 is the output of the NAND
gate� Consider

the stable state with x " � and y " ������ Now suppose the input changes to x " �� The

stable state is y " ������ However� before this state is reached the gates can change their

values in di
erent orders� A possible behavior of the circuit is shown below �only the values

for y�� y�� and y	 are listed��

�����
fy�g
��
���

�����
fy�g
��
���

�����
fy�g
��
��

�����
fy�g
��
���

�����

In the above behavior� the outputs of the AND
gate and the NAND
gate change before

the output of the inverter changes� The inverter responds with a delay ���� the AND
gate

responds with a delay ���� The NAND
gate responds with a delay of ��� when the wire y�

changes� and with a delay of ��� when the wire y� changes�

Another possible behavior is when the inverter changes its output before the AND
gate

toggles� giving the state ������ which then changes to the stable state ������

The set of reachable states is given by

R�C�� �x " �� y " ����� " f������ ������ ������ ������ ������ �����g�

In the dense
time model� the transition times can be arbitrary real numbers� Clearly� an

analysis based on this model can compute the set R�N� s�� correctly� Note that if we require

all the transition times to be rationals� the set of reachable states will remain unchanged�

The question is whether this set can be computed by other models� if we choose a su�ciently

fast clock�

Consider the discrete
time model with a clock ticking at 	xed intervals of length ���k�

time units� With the assumption that gates can change values only with the ticks of the

clock� this model requires the delays for all gates and the transition times to be multiples of

���k�� Let Rd�N� s�� k� denote the set of reachable states based on this discrete
time model�

It is clear that Rd�N� s�� k�
 Rd�N� s�� k ��
 R�N� s�� for all k
 �� From the examples

given in �BS��� it follows that for all k
 �� there exists a network N with an initial state

s� such that R
d�N� s�� k� �" R�N� s��� Example ���� shows that R

d�N� s�� �� �" R�N� s���

Example ���� �from BS���

CHAPTER �� ADDING TIME TO SEMANTICS ��

y
2

y
3

y
1

y
4

y
5

y
6

7
y

8
y

x

[1,2]

[1,2]

[1][1]

[1]

[1]

[1]

[1,2]

Figure ���� Circuit C�

Consider the circuit C� of Figure ���� The gates �� �� and � are exclusive�or �XOR�

gates� The gates labeled with ��� have delay precisely equal to � time unit�

Initially the cicuit is in the stable state x " �� and y " ��������� Now consider the

behavior of the circuit when the input x changes to �� First observe that a state in which

the output y
 of the OR
gate toggles is reachable if we choose the delays for the inverters

�� �� and � to be �� ���� and � time units� respectively� In this case the XOR
gates � and

� are unstable only for an interval of length ���� and hence do not change their outputs�

On the other hand� the XOR
gate � is unstable for � time unit� and hence� y� changes its

value� Consequently� the gate � is unstable for � time unit� and the wire y� toggles� This

propagates to the OR
gate� and y
 toggles�

On the other hand� if we require the delays for the inverters to be discrete values� either

� or �� it follows that the XOR
gate � is unstable for � time unit i
 at least one of the XOR

gates � or � is unstable for � time unit� This means that the gate �� and consequently the OR

gate �� are never unstable� Thus in every reachable state in Rd�C�� �x " �� y " ���������� ��

the value of y
 is ��

Thus the reachability analysis based on the discrete
time model will not be able to detect

some reachable states if k is 	xed a priori � Notice that for the circuit C� of Example ����

a discrete
time analysis using a time granularity of ��� time units detects all the transient

states� In general� for each network N there is some k for which Rd�N� s�� k� " R�N� s���

CHAPTER �� ADDING TIME TO SEMANTICS ��

Because of this� one may argue that discrete
time model is good enough� provided that the

time unit is not 	xed in advance� But this approach has its own problems� Firstly� this

appropriate value of the granularity k is not obvious� and as far as we know nobody has

proposed an algorithm to 	nd this value� Indeed� the algorithm is likely to be as complex

as the algorithms for the dense
time analysis presented in this thesis� Secondly� increasing

the granularity adversely a
ects the complexity of the veri	cation algorithms� Thirdly�

for properties more complex than reachability� in particular those involving in	nite traces�

such a result does not hold� In Section ��� we show that such a result does not hold for

timed automata� We give an example of a timed automaton whose trace set is empty if the

transition times are required to be multiples of ���k�� irrespective of the choice of k� but is

nonempty with the dense
time semantics�

Now consider the 	ctitious
clock model with a clock ticking at the rate of ���k� time

units� Now the transition times are multiples of ���k� as in the discrete
time model� but the

sequence of time values is required to be only nondecreasing� The lower bound requirement

says that once a gate becomes unstable there need to be at least l�j� ticks before it can

change its state� and the upper bound requirement says that there cannot be more than u�j�

ticks with some gate staying unstable� The actual lower bound on the delay is �l�j�� ��k��

and the upper bound is �u�j� ��k�� Let Rf�N� s�� k� denote the set of reachable states using

the analysis based on this model� It can be shown that Rf �N� s�� k �� � Rf �N� s�� k� �

R�N� s�� for all k
 �� To see the second containment� observe that truncating all the

transition times from a real behavior gives a behavior permitted by the 	ctitious
clock

model� However� since the delays are modeled only imprecisely� the 	ctitious
clock model

admits some extra behaviors also� The following example shows that there are networks for

which Rf �N� s�� k� di
ers from R�N� s�� for all k
 ��

Example ���� Consider the circuit C	 of Figure ��� with two inverter gates each of delay

�� Suppose initially x " � and y " ����� Now if the input x changes to � then in the

dense
time model both the outputs y� and y� will change to � at time �� and hence�

R�C	� �x " �� y " ���� " f����� ����g�

On the other hand� in the 	ctitious
clock model with k " �� the following is an admissible

timed state sequence�

����
fy�g
��
�

����
fy�g
��
�

�����

CHAPTER �� ADDING TIME TO SEMANTICS ��

y
1

y
2

[1,1]

[1,1]

x

Figure ���� Circuit C	

Increasing the value of the parameter k is of no use � independent of its choice� there is

no way to model the fact that the delays of the two inverters are the same� In fact� for all

k
 ��

Rf�C	� �x " �� y " ���� k� " f����� ����� ����� ����g�

Thus for the reachability analysis� the set of reachable states computed using a 	ctitious

clock approximation is a subset of the set computed using the dense
time analysis� For more

complex properties� the relationship between the results given by the two models is not well

understood� Henzinger �Hen��� shows that an analysis based on the 	ctitious
clock model

can be used to solve the dense
time veri	cation problem for systems and speci	cations of a

particular type�

����� Expressiveness

The dense
time model is the most general of all the three�

The discrete
time model is a special case of the dense
time model� While modeling a

discrete
time system within a formalism based on dense
time semantics� we add an extra

clock process that ticks after a 	xed interval� and require events of all other processes

to be synchronized with the ticks� Similarly� in a speci	cation language with dense
time

semantics� if we add the requirement ��i�� " �i � for all i�� we get the discrete
time

models� In all speci	cation formalisms studied in this thesis this requirement is expressible�

The 	ctitious
clock model also can be simulated in the dense
time framework� While

modeling a system� we add an extra clock process that ticks at a 	xed rate� The timing

CHAPTER �� ADDING TIME TO SEMANTICS ��

constraints of the system are modi	ed so that they count ticks instead of the elapsed time�

The same trick can be applied to the speci	cation languages also� In Section ��� we show

that the real
time logic MITL� which uses a dense
time semantics and disallows the use

of equality constraints� is more expressive than the real
time logic MTL which uses the

	ctitious
clock model� irrespective of the choice of the separation between the successive

clock ticks�

����� Compositionality

The main problem in de	ning semantics with the discrete models is that the semantics

cannot be de	ned without 	xing the time unit� but a reasonable choice for the time unit

depends upon the timing constraints of all the components and the property to be veri	ed�

Consequently� a component cannot be given its own semantics independently of the other

components� Furthermore� the semantic de	nition depends on the speci	cation also� This

is because� as Example ���� illustrates� the semantics of timed traces does not have enough

information to re	ne the time unit� The example uses the discrete
time model� but the

	ctitious
clock model has the same problem�

Example ���� Consider a process P with two events a and b which alternate� The timing

speci	cation says that the delay between a and the following b is � second� Consider the

discrete
time semantics for P with time unit equal to � second� P is represented by the set

T �P ��

Consider another process Q with the same alternating events a and b� Its timing speci

	cation says that the delay between every occurrence of a and the following b is � second�

and furthermore� the delay between b and the following a is at least � second� The process

Q is modeled as a set of timed traces T �Q�� It is clear that T �P � " T �Q�� Thus within

trace semantics both P and Q have same properties� This is acceptable as long as the time

unit is � second�

Now suppose we introduce a third process R with time unit ��� second� In order to

compose P and R� one needs to change the semantics of P to re�ect the change of time

unit� Let T ��P � denote the semantics for P with this new time unit� If ��� �� is a timed

trace in T �P � then ��� ��� is a timed trace in T ��P �� All such timed traces require the event

a to happen at even time values� but T ��P � has additional timed traces like

�a� �� � �b� �� � �a� �� � �b� �� � � � �

CHAPTER �� ADDING TIME TO SEMANTICS ��

Thus T ��P � cannot be obtained from T �P �� one needs to refer to the original description of

P to de	ne T ��P ��

Also now T ��Q� is di
erent from T ��P �� above timed trace belongs only to T ��P �� Thus

P and Q are no longer equivalent� This shows that properties need to be reproved when

the time unit is re	ned�

The above example shows that in the discrete models one can reason about a system

only after the descriptions of all the components and all the properties to be veri	ed are

known�

For compositional reasoning� we should be able to de	ne the semantics of a component

and prove its properties without knowing the details of the other parts of the system� Shift

ing to dense
time semantics o
ers a natural and mathematically clean way to this e
ect� In

this model� the composition operator can be de	ned on timed processes describing di
erent

components in a straightforward way� Also the properties proved for one component hold

independently of the speeds of the others�

����� Complexity

Since the dense
time model admits the possibility of an unbounded number of events in

an interval of 	nite time length� some problems related to the veri	cation of 	nite
state

systems turn out to be� unlike the other models� undecidable� For example� the language

inclusion problem for timed automata is undecidable� if we had chosen one of the discrete

models� the problem would have been solvable� However� this problem does not turn out

to be fatal� The thesis shows that checking properties of 	nite
state real
time systems is

possible for several reasonably powerful speci	cation languages based on the dense
time

model� With the availability of these positive results� we hope that more researchers will

explore the dense
time model further�

For the problems that are decidable� the complexity is almost the same for all the three

models� As an example� let us consider the followingmodel
checking problem� The system I

is described as a composition of several components� each with its delay properties� The cor

rectness speci	cation S is given as a formula of a real
time extension of the branching
time

logic CTL� The problem of testing whether I satis	es S is PSPACE
complete irrespective

of the choice of the model� In fact� even for the qualitative case which ignores all the timing

constraints� the complexity is PSPACE in the descriptions of the component processes of

CHAPTER �� ADDING TIME TO SEMANTICS ��

I �though polynomial in S�� The factors contributing to the exponential complexity of the

model
checking algorithm are di
erent in each case� In all cases� the running time is pro

portional to the product of the number of states in individual components� and the length

of the speci	cation formula� When we add real
time� that is� when we account for the

delay properties of the components and allow time bounds in the formula� the complexity

blows up by a factor of the product of all the constants bounding the delays� This factor

is independent of the time model we use� In the case of dense
time� we need to introduce

one clock per each component to model independent simultaneously active delays� and as a

result� the complexity blows up by an additional factor proportional to the factorial of the

number of clocks� In the discrete models� all delays are measured with respect to only one

clock� and hence this factor does not appear� On the other hand� in these models� one may

be forced to choose a smaller time unit to get correct results� This increases the magnitudes

of all the constants blowing up the complexity of the veri	cation algorithm�

Chapter �

Automata�Theoretic Approach

In this chapter we develop a theory of timed automata� and show how it can be used for

formal veri	cation�

��� ��automata

In this section we will brie�y review the relevant aspects of the theory of ��regular languages�

The more familiar de	nition of a formal language is as a set of 	nite words over some

given alphabet �see� for example� �HU����� As opposed to this� an �
language consists of

in	nite words� Thus an �
language over an alphabet � is a subset of �� � the set of

all in	nite words over �� �
automata provide a 	nite representation for certain types of

�
languages� An �
automaton is essentially the same as a nondeterministic 	nite
state

automaton� but with the acceptance condition modi	ed suitably so as to handle in	nite

input words� Various types of �
automata have been studied in the literature �B�uc���

McN��� Cho��� Tho���� We will mainly consider two types of �
automata� B�uchi automata

and Muller automata�

A transition table A is a tuple h�� S� S��Ei� where � is an input alphabet� S is a 	nite

set of automaton states� S�
 S is a set of start states� and E
 S� S�� is a set of edges�

The automaton starts in an initial state� and if hs� s�� ai 	 E then the automaton can change

its state from s to s� reading the input symbol a�

For � 	 ��� we say that

r � s�
���� s�

���� s�
���� � � �

��

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a

a

a,b

0S 1S

Figure ���� B�uchi automaton accepting �a b��a�

is a run of A over �� provided s� 	 S�� and hsi��� si� �ii 	 E for all i
 �� For such a run�

the set inf �r� consists of the states s 	 S such that s " si for in	nitely many i
 ��

Di
erent types of �
automata are de	ned by adding an acceptance condition to the

de	nition of the transition tables� A B�uchi automaton A is a transition table h�� S� S��Ei

with an additional set F
 S of accepting states� A run r of A over a word � 	 �� is an

accepting run i
 inf �r� � F �" �� In other words� a run r is accepting i
 some state from

the set F repeats in	nitely often along r� The language L�A� accepted by A consists of the

words � 	 �� such that A has an accepting run over ��

Example ��� Consider the �
state automaton of Figure ��� over the alphabet fa� bg� The

state s� is the start state and s� is the accepting state� Every accepting run of the automaton

has the form

r � s�
���� s�

���� � � �
�n�� s�

a
�� s�

a
�� s�

a
�� � � �

The automaton accepts all words with only a 	nite number of b�s� that is� the language

L� " �a b��a� �

An �
language is called ��regular i
 it is accepted by some B�uchi automaton� Thus the

language L� of Example ��� is an �
regular language�

The class of �
regular languages is closed under all the Boolean operations� Language

intersection is implemented by a product construction for B�uchi automata �Cho��� WVS����

There are known constructions for complementing B�uchi automata �SVW��� Saf����

When B�uchi automata are used for modeling 	nite
state concurrent processes� the veri

	cation problem reduces to that of language inclusion� The inclusion problem for �
regular

languages is decidable� To test whether the language of one automaton is contained in the

other� we check for emptiness of the intersection of the 	rst automaton with the complement

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a

a

b

b

0S 1S

Figure ���� Deterministic Muller automaton accepting �a b��a�

of the second� Testing for emptiness is easy� we only need to search for a cycle that is reach

able from a start state and includes at least one accepting state� In general� complementing

a B�uchi automaton involves an exponential blow
up in the number of states� and the lan

guage inclusion problem is known to be PSPACE
complete �SVW���� However� checking

whether the language of one automaton is contained in the language of a deterministic

automaton can be done in polynomial time �Kur����

A transition table A " h�� S� S��Ei is deterministic i
 �i� there is a single start state�

that is� jS�j " �� and �ii� the number of a
labeled edges starting at s is at most one for

all states s 	 S and for all symbols a 	 �� Thus� for a deterministic transition table� the

current state and the next input symbol determine the next state uniquely� Consequently�

a deterministic automaton has at most one run over a given word� Unlike the automata

on 	nite words� the class of languages accepted by deterministic B�uchi automata is strictly

smaller than the class of �
regular languages� For instance� there is no deterministic B�uchi

automaton which accepts the language L� of Example ���� Muller automata �de	ned below�

avoid this problem at the cost of a more powerful acceptance condition�

A Muller automaton A is a transition table h�� S� S��Ei with an acceptance family F

�S� A run r of A over a word � 	 �� is an accepting run i
 inf �r� 	 F � That is� a run r is

accepting i
 the set of states repeating in	nitely often along r equals some set in F � The

language accepted by A is de	ned as in case of B�uchi automata�

The class of languages accepted by Muller automata is the same as that accepted by

B�uchi automata� and� more importantly� also equals that accepted by deterministic Muller

automata�

Example ��� The deterministic Muller automaton of Figure ��� accepts the language L�

consisting of all words over fa� bg with only a 	nite number of b�s� The Muller acceptance

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

family is ffs�gg� Thus every accepting run can visit the state s� only 	nitely often�

Thus deterministic Muller automata form a strong candidate for representing �
regular

languages� they are as expressive as their nondeterministic counterpart� and they can be

complemented in polynomial time� Algorithms for constructing the intersection of two

Muller automata and for checking the language inclusion are known �CDK����

��� Timed automata

In this section we de	ne timed words by coupling a real
valued time with each symbol in

a word� Then we augment the de	nition of �
automata so that they accept timed words�

and use them to develop a theory of timed regular languages analogous to the theory of

�
regular languages�

����� Timed languages

Recall the de	nition of timed traces in Section ������ We de	ne timed words so that a timed

trace over the event set A is a timed word over the alphabet P��A�� As in the case of the

dense
time model� the set of nonnegative real numbers� R� is chosen as the time domain� A

word � is coupled with a time sequence � as de	ned below�

De�nition ��� A time sequence � " ���� � � � is an in	nite sequence of time values �i 	 R

with �i 	 �� satisfying the following constraints�

�� Monotonicity� � increases strictly monotonically� that is� �i
 �i�� for all i
 ��

�� Progress� For every t 	 R� there is some i
 � such that �i 	 t�

A timed word over an alphabet � is a pair ��� �� where � " ���� � � � is an in	nite word

over � and � is a time sequence� A timed language over � is a set of timed words over ��

If a timed word ��� �� is viewed as an input to an automaton� it presents the symbol

�i at time �i� If each symbol �i is interpreted to denote an event occurrence then the

corresponding component �i is interpreted as the time of occurrence of �i� Let us consider

some examples of timed languages�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Example ��� Let the alphabet be fa� bg� De	ne a timed language L� to consist of all

timed words ��� �� such that there is no b after time ���� Thus the language L� is given by

L� " f��� �� j �i� ���i 	 ���� � ��i " a��g�

Another example is the language L� consisting of timed words in which a and b alternate�

and the time di
erence between the successive pairs of a and b keeps increasing� L� is given

as

L� " f��ab��� �� j �i� ����i � ��i���
 ���i�� � ��i����g�

The language
theoretic operations such as intersection� union� complementation are de

	ned for timed languages as usual� In addition we de	ne the Untime operation which

discards the time values associated with the symbols� that is� it considers the projection of

a timed trace ��� �� on the 	rst component�

De�nition ��
 For a timed language L over �� Untime�L� is the �
language consisting of

� 	 �� such that ��� �� 	 L for some time sequence � �

For instance� referring to Example ���� Untime�L�� is the �
language �a b��a�� and

Untime�L�� consists of a single word �ab�
��

����� Transition tables with timing constraints

Now we extend transition tables to timed transition tables so that they can read timed

words� When an automaton makes a state
transition� the choice of the next state depends

upon the input symbol read� In case of a timed transition table� we want this choice to

depend also upon the time of the input symbol relative to the times of the previously

read symbols� For this purpose� we associate a 	nite set of �real
valued� clocks with each

transition table� A clock can be set to zero simultaneously with any transition� At any

instant� the reading of a clock equals the time elapsed since the last time it was reset� With

each transition we associate a clock constraint� and require that the transition may be taken

only if the current values of the clocks satisfy this constraint� Before we de	ne the timed

transition tables formally� let us consider some examples�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a, x:=0

b, (x<2)?

0S 1S

Figure ���� Example of a timed transition table

Example ��� Consider the timed transition table of Figure ���� The start state is s��

There is a single clock x� An annotation of the form x �" � on an edge corresponds to the

action of resetting the clock x when the edge is traversed� Similarly an annotation of the

form �x
 ��$ on an edge gives the clock constraint associated with the edge�

The automaton starts in state s�� and moves to state s� reading the input symbol a�

The clock x gets set to � along with this transition� While in state s�� the value of the clock

x shows the time elapsed since the occurrence of the last a symbol� The transition from

state s� to s� is enabled only if this value is less than �� The whole cycle repeats when the

automaton moves back to state s�� Thus the timing constraint expressed by this transition

table is that the delay between a and the following b is always less than �� more formally�

the language is

f��ab��� �� j �i� ���i
 ��i�� ��g�

Thus to constrain the delay between two transitions e� and e�� we require a particular

clock to be reset on e�� and associate an appropriate clock constraint with e�� Note that

clocks can be set asynchronously of each other� This means that di
erent clocks can be

restarted at di
erent times� and there is no lower bound on the di
erence between their

readings� Having multiple clocks allows multiple concurrent delays� as in the next example�

Example ��� The timed transition table of Figure ��� uses two clocks x and y� and accepts

the language

L	 " f��abcd��� �� j �j� ����j�	
 ��j�� �� � ���j�� 	 ��j�� ���g�

The automaton loops between the states s�� s�� s� and s	� The clock x gets set to � each

time it moves from s� to s� reading a� The check �x
 ��$ associated with the c
transition

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a b c

(x<1)?

d, (y>2)?

x:=0 y:=0
0S 1S 2S 3S

Figure ���� Timed transition table with � clocks

from s� to s	 ensures that c happens within time � of the preceding a� A similar mechanism

of resetting another independent clock y while reading b and checking its value while reading

d� ensures that the delay between b and the following d is always greater than ��

Notice that in the above example� to constrain the delay between a and c and between

b and d the automaton does not put any bounds on the time di
erence between a and the

following b� or c and the following d� This is an important advantage of having access to

multiple clocks which can be set independently of each other� The above language L	 is the

intersection of the two languages L�
	 and L

�
	 de	ned as

L�
	 " f��abcd��� �� j �j� ���j�	
 ��j�� ��g�

L�
	 " f��abcd��� �� j �j� ���j�� 	 ��j�� ��g�

Each of the languages L�
	 and L�

	 can be expressed by an automaton which uses just one

clock� however to express their intersection we need two clocks�

We remark that the clocks of the automaton do not correspond to the local clocks of

di
erent components in a distributed system� All the clocks increase at the uniform rate

counting time with respect to a 	xed global time frame� They are 	ctitious clocks invented

to express the timing properties of the system� Alternatively� we can view the automaton

to be equipped with a 	nite number of stop
watches which can be started and checked

independently of one another� but all stop
watches refer to the same clock�

����� Clock constraints and clock interpretations

To de	ne timed automata formally� we need to say what type of clock constraints are

allowed on the edges� The simplest form of a constraint compares a clock value with a time

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

constant� We allow only the Boolean combinations of such simple constraints� Any value

from Q� the set of nonnegative rationals� can be used as a time constant� Later we will show

that allowing more complex constraints� such as those involving addition of clock values�

leads to undecidability�

De�nition ��� For a set X of clocks� the set %�X� of clock constraints
 is de	ned induc

tively by

 �" x � c j c � x j �
 j
� �
��

where x is a clock in X and c is a constant in Q�

Observe that constraints such as true� �x " c�� x 	 ��� �� can be de	ned as abbreviations�

A clock interpretation � for a set X of clocks assigns a real value to each clock� that is�

it is a mapping from X to R� We say that a clock interpretation � for X satis	es a clock

constraint
 over X i

 evaluates to true using the values given by ��

For t 	 R� � t denotes the clock interpretation which maps every clock x to the value

��x� t� and the clock interpretation t � � assigns to each clock x the value t � ��x�� For

Y
 X � �Y �� t�� denotes the clock interpretation for X which assigns t to each x 	 Y � and

agrees with � over the rest of the clocks�

����� Timed transition tables

Now we give the precise de	nition of timed transition tables�

De�nition ��	 A timed transition table is a tuple h�� S� S��C�Ei� where

� � is a 	nite alphabet�

� S is a 	nite set of states�

� S�
 S is a set of start states�

� C is a 	nite set of clocks� and

� E
 S� S��� �C � %�C� gives the set of transitions� An edge hs� s�� a� ��
i

represents a transition from state s to state s� on input symbol a� The set

�
 C gives the clocks to be reset with this transition� and
 is a clock

constraint over C�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Given a timed word ��� ��� the timed transition table A starts in one of its start states at

time � with all its clocks initialized to �� As time advances the values of all clocks change�

re�ecting the elapsed time� At time �i� A changes state from s to s� using some transition of

the form hs� s�� �i� ��
i reading the input �i� if the current values of clocks satisfy
� With

this transition the clocks in � are reset to �� and thus start counting time with respect to

it� This behavior is captured by de	ning runs of timed transition tables� A run records

the state and the values of all the clocks at the transition points� For a time sequence

� " ���� � � � we de	ne �� " ��

De�nition ���� A run r� denoted by �s� ��� of a timed transition table h�� S� S��C�Ei over

a timed word ��� �� is an in	nite sequence of the form

r � hs�� ��i
����
��

hs�� ��i
����
��

hs�� ��i
����
��

� � �

with si 	 S and �i 	 �C � R�� for all i
 �� satisfying the following requirements�

� Initiation� s� 	 S�� and ���x� " � for all x 	 C�

� Consecution� for all i
 �� there is an edge in E of the form hsi��� si� �i� �i�
ii such

that ��i�� �i � �i��� satis	es
i and �i equals ��i �� ����i�� �i � �i����

The set inf �r� consists of s 	 S such that s " si for in	nitely many i
 ��

Example ���� Consider the timed transition table of Example ���� Consider a timed word

�a� �� � �b� ���� � �c� ���� � �d� �� � � � �

Below we give the initial segment of the run� A clock interpretation is represented by listing

the values �x� y��

hs�� ��� ��i
a
��
�

hs�� ��� ��i
b
��
���

hs�� ����� ��i
c
��
��

hs	� ����� ����i
d
��
�

hs�� ��� ����i � � �

Along a run r " �s� �� over ��� ��� the values of the clocks at time t between �i and

�i�� are given by the interpretation ��i t� �i�� When the transition from state si to si��

occurs� we use the value ��i �i����i� to check the clock constraint� however� at time �i���

the value of a clock that gets reset is de	ned to be ��

Note that a transition table A " h�� S� S��Ei can be considered to be a timed transition

table A�� We choose the set of clocks to be the empty set� and replace every edge hs� s�� ai

by hs� s�� a� �� truei� The runs of A� are in an obvious correspondence with the runs of A�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

����� Timed regular languages

We can couple acceptance criteria with timed transition tables� and use them to de	ne

timed languages�

De�nition ���� A timed B�uchi automaton �in short TBA� is a tuple h�� S� S��C�E�Fi�

where h�� S� S��C�Ei is a timed transition table� and F
 S is a set of accepting states�

A run r " �s� �� of a TBA over a timed word ��� �� is called an accepting run i

inf �r�� F �" ��

For a TBA A� the language L�A� of timed words it accepts is de	ned to be the set

f��� �� j A has an accepting run over ��� ��g�

In analogy with the class of languages accepted by B�uchi automata� we call the class of

timed languages accepted by TBAs timed regular languages�

De�nition ���� A timed language L is a timed regular language i
 L " L�A� for some

TBA A�

Example ���� The language L	 of Example ��� is a timed regular language� The timed

transition table of Figure ��� is coupled with the acceptance set consisting of all the states�

For every �
regular language L over �� the timed language f��� �� j � 	 Lg is regular�

A typical example of a nonregular timed language is the language L� of Example ���� It

requires that the time di
erence between the successive pairs of a and b form an increasing

sequence�

Another nonregular language is f�a�� �� j �i� ��i " �i�g�

The automaton of Example ���� combines the B�uchi acceptance condition with the

timing constraints to specify an interesting convergent response property�

Example ���
 The automaton of Figure ��� accepts the timed language Lcrt over the

alphabet fa� bg�

Lcrt " f��ab��� �� j �i� �j
 i� ���j
 ��j�� ��g�

The start state is s�� the accepting state is s�� and there is a single clock x� The

automaton starts in state s�� and loops between the states s� and s� for a while� Then�

nondeterministically� it moves to state s� setting its clock x to �� While in the loop between

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

b

a

b,(x<2)?

a, x:=0

a, x:=0
1S 0S 2

S 3
S

Figure ���� Timed B�uchi automaton accepting Lcrt

a,b,(x<3)?

a,(x=3)?,x:=0

S0

Figure ���� Timed automaton specifying periodic behavior

the states s� and s	� the automaton resets its clock while reading a� and ensures that the

next b is within � time units� Interpreting the symbol b as a response to a request denoted

by the symbol a� the automaton models a system with a convergent response time� the

response time is �eventually� always less than � time units�

The next example shows that timed automata can specify periodic behavior also�

Example ���� The automaton of Figure ��� accepts the following language over the al

phabet fa� bg�

f��� �� j �i� �j� ��j " �i � �j " a�g

The automaton has a single state s�� and a single clock x� The clock gets reset at regular

intervals of period � time units� The automaton requires that whenever the clock equals �

there is an a symbol� Thus it expresses the property that a happens at all time values that

are multiples of ��

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

����	 Properties of timed regular languages

The next theorem considers some closure properties of timed regular languages�

Theorem ���� The class of timed regular languages is closed under �	nite� union and

intersection�

Proof� Consider TBAs Ai " h�� Si� Si� �Ci�Ei�Fii� i " �� �� � � �n� Assume without loss

of generality that the clock sets Ci are disjoint� We construct TBAs accepting the union

and intersection of L�Ai��

Since TBAs are nondeterministic the case of union is easy� The required TBA is simply

the disjoint union of all the automata�

Intersection can be implemented by a trivial modi	cation of the standard product con

struction for B�uchi automata �Cho���� The set of clocks for the product automaton A is

�iCi� The states of A are of the form hs�� � � �sn� ki� where each si 	 Si� and � � k � n� The

i
th component of the tuple keeps track of the state of Ai� and the last component is used

as a counter for cycling through the accepting conditions of all the individual automata�

Initially the counter value is �� and it is incremented from k to �k �� �modulo n� i
 the

current state of the k
th automaton is an accepting state� Note that we choose the value of

n mod n to be n�

The initial states of A are of the form hs�� � � �sn� �i where each si is a start state of Ai�

A transition of A is obtained by coupling the transitions of the individual automata having

the same label� Let fhsi� s�i� a� �i�
ii 	 Ei j i " �� � � �ng be a set of transitions with the same

label a� Corresponding to this set� there is a joint transition of A out of each state of the

form hs�� � � �sn� ki labeled with a� The new state is hs
�
�� � � �s

�
n� ji with j " �k �� mod n if

sk 	 Fk� and j " k otherwise� The set of clocks to be reset with this transition is �i�i� and

the associated clock constraint is �i
i�

The counter value cycles through the whole range �� � � �n in	nitely often i
 the accepting

conditions of all the automata are met� Consequently� we de	ne the accepting set for A to

consist of states of the form hs�� � � �sn� ni� where sn 	 Fn�

In the above product construction� the number of states of the resulting automaton is

n �!ijSij� The number of clocks is �ijCij� and the size of the edge set is n �!ijEij� Note that

jEj includes the length of the clock constraints assuming binary encoding for the constants�

Observe that even for the timed regular languages arbitrarily many symbols can occur

in a 	nite interval of time� Furthermore� the symbols can be arbitrarily close to each other�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

b

(x=1)?

a,x:=0

y:=0

a,(x=1)?,x:=0

b,(y<1)?,y:=0

S0 S1 S2 S3

Figure ���� Timed automaton accepting Lconverge

The following example shows that there is a timed regular language L such that for every

��� �� 	 L� there exists some �
 � such that the sequence f��i�� � �i� j i
 �g converges to

the limit ��

Example ���� The language accepted by the automaton in Figure ��� is

Lconverge " f��ab��� �� j �i� ���i�� " i � ���i � ��i�� 	 ��i�� � ��i����g�

Every word accepted by this automaton has the property that the sequence of time dif

ferences between a and the following b converges� A sample word accepted by the automaton

is

�a� �� � �b� ���� � �a� �� � �b� ����� � �a� �� � �b� ������ � � � �

This example illustrates that the model of reals is indeed di
erent from the discrete
time

model� If we require all the time values �i to be multiples of some 	xed constant �� however

small� the language accepted by the automaton of Figure ��� will be empty�

On the other hand� timed automata do not distinguish between the set of reals R and

the set of rationals Q� Only the denseness of the underlying domain plays a crucial role� In

particular� Theorem ���� shows that if we require all the time values in time sequences to

be rational numbers� the untimed language Untime�L�A�� of a timed automaton A stays

unchanged�

Theorem ���	 Let L be a timed regular language� For every word �� � 	 Untime�L� i

there exists a time sequence � such that �i 	 Q for all i
 �� and ��� �� 	 L�

Proof� Consider a timed automaton A� and a word �� If there exists a time sequence

� with all rational time values such that ��� �� 	 L�A�� then clearly� � 	 Untime�L�A���

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a,(x<5)? a,(x<2)?

b,x:=0 c,x:=0

1S 0
S

2
S

Figure ���� Timed Muller automaton

Now suppose for an arbitrary time sequence � � ��� �� 	 L�A�� Let � 	 Q be such that

every constant appearing in the clock constraints of A is an integral multiple of �� Let

� �� " �� and �� " �� If �i " �j n� for some � � j
 i and n 	 N� then choose � �i " � �j n��

Otherwise choose � �i 	 Q such that for all � � j
 i� for all n 	 N� ��i � �j�
 n� i

�� �i � � �j�
 n�� Note that because of the denseness of Q such a choice of � �i is always

possible�

Consider an accepting run r " �s� �� of A over ��� ��� Because of the construction of

� �� if a clock x is reset at the i
th transition point� then its possible values at the j
th

transition point along the two time sequences� namely� ��j � �i� and ��
�
j � � �i�� satisfy the

same set of clock constraints� Consequently it is possible to construct an accepting run

r� " �s� ��� over ��� � �� which follows the same sequence of edges as r� In particular� choose

� �� " ��� and if the i
th transition along r is according to the edge hsi��� si� �i� �i�
ii� then

set ��i " ��i �� �����i�� � �i � � �i���� Consequently� A accepts ��� � ���

����
 Timed Muller automata

We can de	ne timed automata with Muller acceptance conditions also�

De�nition ���� A timed Muller automaton �TMA� is a tuple h�� S� S��C�E�Fi� where

h�� S� S��C�Ei is a timed transition table� and F
 �S speci	es an acceptance family�

A run r " �s� �� of the automaton over a timed word ��� �� is an accepting run i

inf �r� 	 F �

For a TMA A� the language L�A� of timed words it accepts is de	ned to be the set

f��� �� j A has an accepting run over ��� ��g�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Example ���� Consider the automaton of Figure ��� over the alphabet fa� b� cg� The

start state is s�� and the Muller acceptance family consists of a single set fs�� s�g� So any

accepting run should loop between states s� and s� only 	nitely many times� and between

states s� and s� in	nitely many times� Every word ��� �� accepted by the automaton

satis	es� ��� � 	 �a�b c����ac��� and ��� for all i
 �� the di
erence ���i�� � ��i��� is less

than � if the ��i�
th symbol is c� and less than � otherwise�

Recall that B�uchi automata and Muller automata have the same expressive power� The

following theorem states that the same holds true for TBAs and TMAs� Thus the class

of timed languages accepted by TMAs is the same as the class of timed regular languages�

The proof of the following theorem closely follows the standard argument that an �
regular

language is accepted by a B�uchi automaton i
 it is accepted by some Muller automaton�

Theorem ���� A timed language is accepted by some timed B�uchi automaton i
 it is

accepted by some timed Muller automaton�

Proof� Let A " h�� S� S��C�E�Fi be a TBA� Consider the TMA A
� with the same timed

transition table as that of A� and with the acceptance family F " fS�
 S � S� � F �" �g� It

is easy to check that L�A� " L�A��� This proves the �only if� part of the claim�

In the other direction� given a TMA� we can construct a TBA accepting the same

language using the simulation of Muller acceptance condition by B�uchi automata� Let

A be a TMA given as h�� S� S��C�E�Fi� First note that L�A� " �F�FL�AF� where

AF " h�� S� S��C�E� fFgi� so it su�ces to construct� for each acceptance set F� a TBA

A�
F which accepts the language L�AF�� Assume F " fs�� � � �skg� The automaton A

�
F uses

nondeterminism to guess when the set F is entered forever� and then uses a counter to make

sure that every state in F is visited in	nitely often� States of A�
F are of the form hs� ii�

where s 	 S and i 	 f�� �� � � �kg� The set of initial states is S� � f�g� The automaton

simulates the transitions of A� and at some point nondeterministically sets the second com

ponent to �� For every transition hs� s�� a� ��
i of A� the automaton A�
F has a transition

hhs� �i� hs�� �i� a� ��
i� and� in addition� if s� 	 F it also has a transition hhs� �i� hs�� �i� a� ��
i�

While the second component is nonzero� the automaton is required to stay within the

set F� For every A
transition hs� s�� a� ��
i with both s and s� in F� for each � � i � k� there

is an A�
F
transition hhs� ii� hs

�� ji� a� ��
i where j " �i �� mod k� if s equals si� else j " i�

The only accepting state is hsk � ki�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

��� Checking emptiness

In this section we develop an algorithm for checking the emptiness of the language of a

timed automaton� The existence of an in	nite accepting path in the underlying transition

table is clearly a necessary condition for the language of an automaton to be nonempty�

However� the timing constraints of the automaton rule out certain additional behaviors�

We will show that a B�uchi automaton can be constructed that accepts exactly the set of

untimed words that are consistent with the timed words accepted by a timed automaton�

����� Restriction to integer constants

Recall that our de	nition of timed automata allows clock constraints which involve com

parisons with rational constants� The following lemma shows that� for checking emptiness�

we can restrict ourselves to timed automata whose clock constraints involve only integer

constants� For a timed sequence � and t 	 R� let t � � denote the timed sequence obtained

by multiplying all �i by t�

Lemma ���� Consider a timed transition table A� a timed word ��� ��� and t 	 R� �s� �� is

a run of A over ��� �� i
 �s� t��� is a run of At over ��� t���� where At is the timed transition

table obtained by replacing each constant d in each clock constraint labeling the edges of

A by t � d�

Proof� The lemma can be proved easily from the de	nitions using induction�

Thus there is an isomorphism between the runs of A and the runs of At� If we choose t

to be the least common multiple of all the constants appearing in the clock constraints of A�

then the clock constraints for At use only integer constants� In this translation� the values

of the individual constants grow with the product of the denominators of all the original

constants� We assume binary encoding for the constants� Let us denote the length of the

clock constraints of A by j
�A�j� It is easy to prove that j
�At�j is bounded by j
�A�j��

Observe that this result depends crucially on the fact that we encode constants in binary

notation� if we use unary encoding then j
�At�j can be exponential in j
�A�j�

Observe that L�A� is empty i
 L�At� is empty� Hence� to decide the emptiness of L�A�

we consider At� Also Untime�L�A�� equals Untime�L�At��� In the remainder of the section

we assume that the clock constraints use only integer constants�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

����� Clock regions

At every point in time the future behavior of a timed transition table is determined by its

state and the values of all its clocks� This motivates the following de	nition�

De�nition ���� For a timed transition table h�� S� S��C�Ei� an extended state is a pair

hs� �i where s 	 S and � is a clock interpretation for C�

Since the number of such extended states is in	nite �in fact� uncountable�� we cannot

possibly build an automaton whose states are the extended states of A� But if two extended

states with the same A
state agree on the integral parts of all clock values� and also on

the ordering of the fractional parts of all clock values� then the runs starting from the

two extended states are very similar� The integral parts of the clock values are needed

to determine whether or not a particular clock constraint is met� whereas the ordering of

the fractional parts is needed to decide which clock will change its integral part 	rst� For

example� if two clocks x and y are between � and � in an extended state� then a transition

with clock constraint �x " �� can be followed by a transition with clock constraint �y " ���

depending on whether or not the current clock values satisfy �x
 y��

The integral parts of clock values can get arbitrarily large� But if a clock x is never

compared with a constant greater than c� then its actual value� once it exceeds c� is of no

consequence in deciding the allowed paths�

Now we formalize this notion� For any t 	 R� fract�t� denotes the fractional part of t�

and btc denotes the integral part of t� that is� t " btc fract�t�� We assume that every

clock in C appears in some clock constraint�

De�nition ���
 Let A " h�� S� S��C�Ei be a timed transition table� For each x 	 C� let cx

be the largest integer c such that �x � c� or �c � x� is a subformula of some clock constraint

appearing in E�

The equivalence relation � is de	ned over the set of all clock interpretations for C� ����

i
 all the following conditions hold�

�� For all x 	 C� either b��x�c and b���x�c are the same� or both ��x� and ���x� are

greater than cx�

�� For all x� y 	 C with ��x� � cx and ��y� � cy � fract���x�� � fract���y�� i

fract����x�� � fract����y���

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

�

��
�

�
�

� � �

�

y

x

� Corner points� e�g� �������

�� Open line segments� e�g� ��
 x " y
 ��

� Open regions� e�g� ��
 x
 y
 ��

Figure ���� Clock regions

�� For all x 	 C with ��x� � cx� fract���x�� " � i
 fract����x�� " ��

A clock region for A is an equivalence class of clock interpretations induced by ��

We will use ��� to denote the clock region to which � belongs� Each region can be

uniquely characterized by a �	nite� set of clock constraints it satis	es� For example� consider

a clock interpretation � over two clocks with ��x� " ��� and ��y� " ���� Every clock

interpretation in ��� satis	es the constraint ��
 x
 y
 ��� and we will represent this

region by ��
 x
 y
 ��� The nature of the equivalence classes can be best understood

through an example�

Example ���� Consider a timed transition table with two clocks x and y with cx " � and

cy " �� The clock regions are shown in Figure ����

Note that there are only a 	nite number of regions� Also note that for a clock constraint

� if ���� then � satis	es
 i
 �� satis	es
� We say that a clock region � satis	es a clock

constraint
 i
 every � 	 � satis	es
� Each region can be represented by specifying

��� for every clock x� one clock constraint from the set

fx " c j c " �� �� � � �cxg � fc� �
 x
 c j c " �� � � �cxg � fx 	 cxg�

��� for every pair of clocks x and y such that c� �
 x
 c and d � �
 y
 d

appear in ��� for some c� d� whether fract�x� is less than� equal to� or greater

than fract�y��

By counting the number of possible combinations of equations of the above form� we get

the upper bound in the following lemma�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Lemma ���� The number of clock regions is bounded by �jCj& � �jCj �!x�C��cx ����

Henceforth� we assume that the number of regions is O��j
�A�j�� remember that
�A�

stands for the length of the clock constraints of A assuming binary encoding� Note that if

we increase
�A� without increasing the number of clocks or the size of the largest constants

the clocks are compared with� then the number of regions does not grow with j
�A�j� Also

observe that a region can be represented in space linear in j
�A�j�

����� The region automaton

The 	rst step in the decision procedure for checking emptiness is to construct a transition

table whose paths mimic the runs of A in a certain way� We will denote the desired transition

table by R�A�� the region automaton of A� A state of R�A� records the state of the timed

transition table A� and the equivalence class of the current values of the clocks� It is of

the form hs� �i with s 	 S and � being a clock region� The intended interpretation is that

whenever the extended state of A is hs� �i� the state ofR�A� is hs� ���i� The region automaton

starts in some state hs�� ����i where s� is a start state of A� and the clock interpretation ��

assigns � to every clock� The transition relation of R�A� is de	ned so that the intended

simulation is obeyed� It has an edge from hs� �i to hs�� ��i labeled with a i
 A in state s

with the clock values � 	 � can make a transition reading a to the extended state hs�� ��i

for some �� 	 ���

The edge relation can be conveniently de	ned using a time�successor relation over the

clock regions� The time
successors of a clock region � are all the clock regions that will be

visited by a clock interpretation � 	 � as time progresses�

De�nition ���� A clock region �� is a time
successor of a clock region � i
 for each � 	 ��

there exists a positive t 	 R such that � t 	 ���

Example ���	 Consider the clock regions shown in Figure ��� again� The time
successors

of a region � are the regions that can be reached by moving along a line drawn from some

point in � in the diagonally upwards direction �parallel to the line x " y�� For example�

the region ���
 x
 ��� ��
 y
 x � ��� has� other than itself� the following regions as

time
successors� ��x " ��� ��
 y
 ���� ��x 	 ��� ��
 y
 ���� ��x 	 ��� �y " ��� and

��x 	 ��� �y 	 ����

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Now let us see how to construct all the time
successors of a clock region� Recall that a

clock region � is speci	ed by giving ��� for every clock x� a constraint of the form �x " c�

or �c� �
 x
 c� or �x 	 cx�� and ��� for every pair x and y such that �c � �
 x
 c�

and �d� �
 y
 d� appear in ���� the ordering relationship between fract�x� and fract�y��

To compute all the time
successors of � we proceed as follows� First observe that the

time
successor relation is a transitive relation� We consider di
erent cases�

First suppose that � satis	es the constraint �x 	 cx� for every clock x� The only

time
successor of � is itself� This is the case for the region ��x 	 ��� �y 	 ��� in Figure ����

Now suppose that the set C� consisting of clocks x such that � satis	es the constraint

�x " c� for some c � cx� is nonempty� In this case� as time progresses the fractional

parts of the clocks in C� become nonzero� and the clock region changes immediately� The

time
successors of � are same as the time
successors of the clock region � speci	ed as below�

��� For x 	 C�� if � satis	es �x " cx� then � satis	es �x 	 cx�� otherwise if �

satis	es �x " c� then � satis	es �c
 x
 c ��� For x �	 C�� the constraint

in � is the same as that in ��

��� For clocks x and y such that �c� �
 x
 c� and �d� �
 y
 d� appear in

���� the ordering relationship in � between their fractional parts is same as

in ��

For instance� in Figure ���� the time
successors of ��x " ��� ��
 y
 ��� are same as the

time
successors of ��
 x
 y
 ���

If both the above cases do not apply� then let C� be the set of clocks x with maximal

fractional part� that is� for all y 	 C� fract�y� � fract�x� is a constraint of �� In this case� as

time progresses� the clocks in C� assume integer values� Let � be the clock region speci	ed

by

��� For x 	 C�� if � satis	es �c��
 x
 c� then � satis	es �x " c�� For x �	 C��

the constraint in � is same as that in ��

��� For clocks x and y such that �c� �
 x
 c� and �d� �
 y
 d� appear in

���� the ordering relationship in � between their fractional parts is same as

in ��

In this case� the time
successors of � include �� �� and all the time
successors of �� For

instance� in Figure ���� time
successors of ��
 x
 y
 �� include itself� ���
 x
 ��� �y "

���� and all the time
successors of ���
 x
 ��� �y " ����

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Now we are ready to de	ne the region automaton�

De�nition ���� For a timed transition table A " h�� S� S��C�Ei� the corresponding region

automaton R�A� is a transition table over the alphabet ��

� The states of R�A� are of the form hs� �i where s 	 S and � is a clock region�

� The initial states are of the form hs�� ����i where s� 	 S� and ���x� " � for all x 	 C�

� R�A� has an edge hhs� �i� hs�� ��i� ai i
 there is an edge hs� s�� a� ��
i 	 E and a region

��� such that ��� ��� is a time
successor of �� ��� ��� satis	es
� and ��� �� " �� �� ������

Example ���� Consider the timed automaton A� shown in Figure ����� The alphabet

is fa� b� c� dg� Every state of the automaton is an accepting state� The corresponding

region automaton R�A�� is also shown� Only the regions reachable from the initial region

hs�� �x " y " ��i are shown� Note that cx " � and cy " �� The timing constraints of

the automaton ensure that the transition from s� to s	 is never taken� The only reachable

region with state component s� satis	es the constraints �y " �� x 	 ��� and this region has

no outgoing edges� Thus the region automaton helps us in concluding that no transitions

can follow a b
transition�

From the bound on the number of regions� it follows that the number of states in R�A�

is O�jSj � �j
�A�j�� An inspection of the de	nition of the time
successor relation shows that

every region has at most �x�C� �cx � � successor regions� The region automaton has at

most one edge out of hs� �i for every edge out of s and every time
successor of �� It follows

that the number of edges in R�A� is O�jEj ��j
�A�j�� Note that computing the time
successor

relation is easy� and can be done in time linear in the length of the representation of the

region� Constructing the edge relation for the region automaton is also relatively easy� in

addition to computing the time
successors� we also need to determine whether the clock

constraint labeling a particular A
transition is satis	ed by a clock region� The region graph

can be constructed in time O��jSj jEj� � �j
�A�j��

Now we proceed to establish a correspondence between the runs of A and the runs of

R�A��

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

0 1

2

a
3

y:=0

b,(y=1)? c,(x<1)?

d,(x>1)?c,(x<1)?

S S

S

S

a,(y<1)?,y:=0

0S

x=y=0

3S

0<y<x<1
3S

0<y<1<x
3S

1=y<x
3S

x>1,y>1

2S

1=y<x
1S

0=y<x<1

1S

y=0,x=1
1S

y=0,x>1

a
a

a

b

b

b

d
d

d

d
d

c a a a
a

d

d

d

Figure ����� Automaton A� and its region automaton

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

De�nition ���� For a run r " �s� �� of A of the form

r � hs�� ��i
����
��

hs�� ��i
����
��

hs�� ��i
����
��

� � �

de	ne its projection �r� " �s� ���� to be the sequence

�r� � hs�� ����i
���� hs�� ����i

���� hs�� ����i
���� � � �

From the de	nition of the edge relation for R�A�� it follows that �r� is a run of R�A� over

�� Since time progresses without bound along r� every clock x 	 C is either reset in	nitely

often� or from a certain time onwards it increases without bound� Hence� for all x 	 C�

for in	nitely many i
 �� ��i� satis	es ��x " �� � �x 	 cx��� This prompts the following

de	nition�

De�nition ���� A run r " �s� �� of the region automaton R�A� of the form

r � hs�� ��i
���� hs�� ��i

���� hs�� ��i
���� � � �

is progressive i
 for each clock x 	 C� there are in	nitely many i
 � such that �i satis	es

��x " �� � �x 	 cx���

Thus for a run r of A over ��� ��� �r� is a progressive run of R�A� over �� From

Lemma ���� it follows that progressive runs of R�A� precisely correspond to the projected

runs of A� Before we prove the lemma let us consider the region automaton of Example ����

again�

Example ���� Consider the region automaton R�A�� of Figure ����� Every run r of R�A��

has a su�x of one of the following three forms� �i� the automaton loops between the

regions hs�� �y " �
 x
 ��i and hs	� ��
 y
 x
 ��i� �ii� the automaton stays in the

region hs	� ��
 y
 �
 x�i using the self
loop� or �iii� the automaton stays in the region

hs	� �x 	 �� y 	 ��i�

Only the case �iii� corresponds to the progressive runs� For runs of type �i�� even though

y gets reset in	nitely often� the value of x is always less than �� For runs of type �ii�� even

though the value of x is not bounded� the clock y is reset only 	nitely often� and yet� its

value is bounded� Thus every progressive run of A� corresponds to a run of R�A�� of type

�iii��

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Lemma ���
 If r is a progressive run of R�A� over � then there exists a time sequence �

and a run r� of A over ��� �� such that r equals �r���

Proof� Consider a progressive run r " �s� �� of R�A� over �� We construct the run

r� and the time sequence � step by step� As usual� r� starts with hs�� ��i� Now suppose

that the extended state of A is hsi� �ii at time �i with �i 	 �i� There is an edge in R�A�

from hsi� �ii to hsi��� �i��i labeled with �i��� From the de	nition of the region automaton

it follows that there is an edge hsi� si��� �i��� �i���
i��i 	 E and a time
successor ��i�� of

�i such that �
�
i�� satis	es
i�� and �i�� " ��i�� �� ����i��� From the de	nition of time

successor� there exists a time �i�� such that ��i �i�� � �i� 	 ��i��� Now it is clear the

next transition of A can be at time �i�� to an extended state hsi��� �i��i with �i�� 	 �i���

Using this construction repeatedly we get a run r� " �s� �� over ��� �� with �r�� " r�

The only problem with the above construction is that � may not satisfy the progress

condition� Suppose that � is a converging sequence� We use the fact that r is a progressive

run to construct another time sequence � � satisfying the progress requirement and show

that the automaton can follow the same sequence of transitions as r� but at times � �i �

Let C� be the set of clocks reset in	nitely often along r� Since � is a converging sequence�

after a certain position onwards� every clock in C� gets reset before it reaches the value ��

Since r is progressive� every clock x not in C�� after a certain position onwards� never gets

reset� and continuously satis	es x 	 cx� This ensures that there exists j
 � such that ���

after the j
th transition point each clock x �	 C� continuously satis	es �x 	 cx�� and each

clock x 	 C� continuously satis	es �x
 ��� and ��� for each k 	 j� ��k� �j� is less than ����

Let j
 k�
 k�� � � � be an in	nite sequence of integers such that each clock x in C�

is reset at least once between the ki
th and ki��
th transition points along r� Now we

construct another sequence r�� " �s� ��� with the sequence of transition times � � as follows�

The sequence of transitions along r�� is same as that along r�� If i �	 fk�� k� � � �g then we

require the �i ��
th transition to happen after a delay of ��i����i�� otherwise we require the

delay to be ���� Observe that along r�� the delay between the ki
th and ki��
th transition

points is less than �� Consequently� in spite of the additional delays� the value of every

clock in C� remains less than � after the j
th transition point� So the truth of all the clock

constraints and the clock regions at the transition points remain unchanged �as compared

to r��� From this we conclude that r�� satis	es the consecution requirement� and is a run of

A� Furthermore� �r��� " �r�� " r�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Since � � has in	nitely many jumps each of duration ���� it satis	es the progress require

ment� Hence r�� is the run required by the lemma�

����� The untiming construction

For a timed automaton A� its region automaton can be used to recognize Untime�L�A���

The following theorem is stated for TBAs� but it also holds for TMAs�

Theorem ���� Given a TBA A " h�� S� S��C�E�Fi� there exists a B�uchi automaton over

� which accepts Untime�L�A���

Proof� We construct a B�uchi automaton A� as follows� Its transition table is R�A�� the

region automaton corresponding to the timed transition table h�� S� S��C�Ei� The accepting

set of A� is F� " fhs� �i j s 	 Fg�

If r is an accepting run of A over ��� ��� then �r� is a progressive and accepting run of

A� over �� The converse follows from Lemma ����� Given a progressive run r of A� over ��

the lemma gives a time sequence � and a run r� of A over ��� �� such that r equals �r��� If

r is an accepting run� so is r�� It follows that � 	 Untime�L�A�� i
 A� has a progressive�

accepting run over it�

For x 	 C� let Fx " fhs� �i j � j" ��x " �� � �x 	 cx��g� Recall that a run of A� is

progressive i
 some state from each Fx repeats in	nitely often� It is straightforward to

construct another B�uchi automaton A�� such that A� has a progressive and accepting run

over � i
 A�� has an accepting run over ��

The automaton A�� is the desired automaton� L�A��� equals Untime�L�A���

Example ���� Let us consider the region automaton R�A�� of Figure ���� again� Since all

states of A� are accepting� from the description of the progressive runs in Example ���� it

follows that the transition table R�A�� can be changed to a B�uchi automaton by choosing

the accepting set to consist of a single region hs	� �x 	 �� y 	 ��i� Consequently

Untime�L�A��� " L�R�A��� " ac �ac�� d��

Theorem ���� says that the timing information in a timed automaton is �regular� in

character� its consistency can be checked by a 	nite
state automaton� An equivalent for

mulation of the theorem is

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

If a timed language L is timed regular then Untime�L� is ��regular	

Furthermore� to check whether the language of a given TBA is empty� we can check for

the emptiness of the language of the corresponding B�uchi automaton constructed by the

proof of Theorem ����� The next theorem follows�

Theorem ���� Given a timed B�uchi automaton A " h�� S� S��C�E�Fi the emptiness of

L�A� can be checked in time O��jSj jEj� � �j
�A�j��

Proof� Let A� be the B�uchi automaton constructed as outlined in the proof of The

orem ����� Recall that in Section ����� we had shown that the number of states in A� is

O�jSj � �j
�A�j�� the number of edges is O�jEj � �j
�A�j��

The language L�A� is nonempty i
 there is a cycle C in A� such that C is accessible from

some start state of A� and C contains at least one state each from the set F� and each of

the sets Fx� This can be checked in time linear in the size of A� �SVW���� The complexity

bound of the theorem follows�

Recall that if we start with an automaton A whose clock constraints involve rational

constants� we need to apply the above decision procedure on At for the least common

denominator t of all the rational constants �see Section ������� This involves a blow
up in

the size of the clock constraints� we have
�At� " O�
�A����

The above method can be used even if we change the acceptance condition for timed

automata� In particular� given a timed Muller automaton A we can e
ectively construct

a Muller �or� B�uchi� automaton which accepts Untime�L�A��� and use it to check for the

emptiness of L�A��

����� Complexity of checking emptiness

The complexity of the algorithm for deciding emptiness of a TBA is exponential in the

number of clocks and the length of the constants in the timing constraints� This blow

up in complexity seems unavoidable� we reduce the acceptance problem for linear bounded

automata� a known PSPACE
complete problem �HU���� to the emptiness question for TBAs

to prove the PSPACE lower bound for the emptiness problem� We also show the problem

to be PSPACE
complete by arguing that the algorithm of Section ����� can be implemented

in polynomial space�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Theorem ���	 The problem of deciding the emptiness of the language of a given timed

automaton A� is PSPACE
complete�

Proof� �PSPACE
membership� First we show that the problem is in PSPACE� Since

the number of states of the region automaton is exponential in the number of clocks of A�

we cannot construct the entire transition table� We give a nondeterministic version of the

algorithm which uses only polynomial space� the trick involved is fairly standard�

Let l be the length of the representation of A� As observed earlier� each state of the region

automaton can be represented in space O�l�� and all its successors in the region automaton

can be generated easily� Recall that the language L�A� is nonempty i
 the region automaton

has a cycle that is accessible from some start state and meets all the acceptance criteria�

The procedure nondeterministically guesses an initial region v�� another region vn� and a

path

v� � � � � � vn � vn�� � � � � � vm " vn�

The path is guessed vertex by vertex� at each step checking that the newly guessed state

is connected by an edge from the previous one� In addition� the procedure checks that the

cycle vn � � � � � vm satis	es all the acceptance criteria� If L�A� is nonempty then this

nondeterministic algorithm succeeds� The algorithm only uses space O�l�� hence check

ing nonemptiness of L�A� requires nondeterministic polynomial space� It follows that the

emptiness can be checked in PSPACE from Savitch�s theorem�

�PSPACE
hardness� The question of deciding whether a given linear bounded automaton

accepts a given input string is PSPACE
complete �HU���� A linear bounded automatonM

is a nondeterministic Turing machine whose tape head cannot go beyond the end of the

input markers� We construct a TBA A such that its language is nonempty i
 the machine

M halts on a given input�

Let ' be the tape alphabet of M and let Q be its states� Let � " ' � �' � Q�� and

let a�� a�� � � �ak denote the elements of �� A con	guration of M in which the tape reads

���� � � � �n� and the machine is in state q reading the i
th tape symbol� is represented by

the string ��� � � ��n over � such that �j " �j if j �" i and �i " h�i� qi�

The acceptance corresponds to a special state qf � after which the con	guration stays

unchanged� The alphabet of A includes �� and in addition� has a symbol a�� A computation

of M is encoded by the word

���a� � � � �
�
na��

�
�a� � � ��

�
na� � � � �

j
�a� � � � �

j
na� � � �

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

such that �j� � � ��
j
n encodes the j
th con	guration according to the above scheme� The

time sequence associated with this word also encodes the computation� we require the time

di
erence between successive a��s to be k �� and if �
j
i " al then we require its time to be

l greater than the time of the previous a�� The encoding in the time sequence is used to

enforce the consecution requirement�

We want to construct A which accepts precisely the timed words encoding the halting

computations of M according to the above scheme� We only sketch the construction� A

uses �n � clocks� The clock x is reset with each a�� While reading a� we require �x " k ��

to hold� and while reading ai we require �x " i� to hold� These conditions ensure that the

encoding in the time sequence is consistent with the word� For each tape cell i� we have

two clocks xi and yi� The clock xi is reset with �ji � for odd values of j� and the clock

yi is reset with �ji � for even values of j� Assume that the automaton has read the 	rst j

con	gurations� with j odd� The value of the clock xi represents the i
th cell of the j
th

con	guration� Consequently� the possible choices for the values of �j��i are determined by

examining the values of xi��� xi and xi�� according to the transition rules for M � While

reading the �j ��
th con	guration� the y
clocks get set to appropriate values� these values

are examined while reading the �j ��
th con	guration� This ensures proper consecution of

con	gurations� Proper initialization and halting can be enforced in a straightforward way�

The size of A is polynomial in n and the size of M �

Note that the source of this complexity is not the choice of R to model time� The

PSPACE
hardness result can be proved if we leave the syntax of timed automata unchanged�

but use the discrete domain N to model time� Also this complexity is insensitive to the

encoding of the constants� the problem is PSPACE
complete even if we encode all constants

in unary�

��� Intractable problems

In this section we show the universality problem for timed automata to be undecidable�

The universality problem is to decide whether the language of a given automaton over

� comprises of all the timed words over �� Speci	cally� we show that the problem is

!�
�
hard by reducing a !

�
�
hard problem of �
counter machines� The class !�

� consists of

highly undecidable problems� including some nonarithmetical sets �for an exposition of the

analytical hierarchy consult� for instance� �Rog����� Note that the universality problem

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

is same as deciding emptiness of the complement of the language of the automaton� The

undecidability of this problem has several implications such as nonclosure under complement

and undecidability of testing for language inclusion�

����� A ��
��complete problem

A nondeterministic ��counter machine M consists of two counters C and D� and a sequence

of n instructions� Each instruction may increment or decrement one of the counters� or

jump� conditionally upon one of the counters being zero� After the execution of a nonjump

instruction� M proceeds nondeterministically to one of the two speci	ed instructions�

We represent a con	guration of M by a triple hi� c� di� where � � i � n� c
 �� and

d
 � give the values of the location counter and the two counters C and D� respectively�

The consecution relation on con	gurations is de	ned in the obvious way� A computation of

M is an in	nite sequence of related con	gurations� starting with the initial con	guration

h�� �� �i� It is called recurring i
 it contains in	nitely many con	gurations in which the

location counter has the value ��

The problem of deciding whether a nondeterministic Turing machine has� over the empty

tape� a computation in which the starting state is visited in	nitely often� is known to be

��
�
complete �HPS���� Along the same lines we obtain the following result�

Lemma ���� The problem of deciding whether a given nondeterministic �
counter machine

has a recurring computation� is ��
�
hard�

Proof� Every ��
�
formula is equivalent to a �

�
�
formula � of the form

�f� �f��� " � � �x� g�f�x�� f�x �����

for a recursive predicate g �HPS���� For any such � we can construct a nondeterministic

�
counter machine M that has a recurring computation i
 � is true�

Let M start by computing f��� " �� and proceed� inde	nitely� by nondeterministically

guessing the next value of f � At each stage� M checks whether f�x� and f�x �� satisfy

g� and if �and only if� so� it jumps to instruction �� Such an M exists� because �
counter

machines can� being universal� compute the recursive predicate g� It executes the instruction

� in	nitely often i
 a function f with the desired properties exists�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

����� Undecidability of the universality problem

Now we proceed to encode the computations of �
counter machines using timed automata�

and use the encoding to prove the undecidability result�

Theorem ���� Given a timed automaton over an alphabet � the problem of deciding

whether it accepts all timed words over � is !�
�
hard�

Proof� We encode the computations of a given �
counter machine M with n instruc

tions using timed words over the alphabet fb�� � � � bn� a�� a�g� A con	guration hi� c� di is

represented by the sequence bia
c
�a

d
�� We encode a computation by concatenating the se

quences representing the individual con	gurations� We use the time sequence associated

with � to express that the successive con	gurations are related as per the requirements

of the program instructions� We require that the subsequence of � corresponding to the

time interval �j� j �� encodes the j
th con	guration of the computation� Note that the

denseness of the underlying time domain allows the counter values to get arbitrarily large�

To express that the number of a� �or a�� symbols in two intervals encoding the successive

con	gurations is the same �or that the number is one less or one greater� we require that

every a� in the 	rst interval has a matching a� at distance � and vice versa�

De	ne a timed language Lundec as follows� ��� �� is in Lundec i

� � " bi�a
c�
� a

d�
� bi�a

c�
� a

d�
� � � � such that hi�� c�� d�i� hi�� c�� d�i � � � is a recurring computation

of M �

� For all j
 �� the time of bij is j�

� For all j
 ��

� if cj�� " cj then for every a� at time t in the interval �j� j �� there is an a� at

time t ��

� if cj�� " cj � then for every a� at time t in the interval �j �� j �� except

the last one� there is an a� at time t � ��

� if cj�� " cj � � then for every a� at time t in the interval �j� j �� except the

last one� there is an a� at time t ��

Similar requirements hold for a��s�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Clearly� Lundec is nonempty i
 M has a recurring computation� We will construct a timed

automaton Aundec which accepts the complement of Lundec � Hence Aundec accepts every

timed word i
 M does not have a recurring computation� The theorem follows from

Lemma �����

The desired automaton Aundec is a disjunction of several TBAs�

Let A� be the TBA which accepts ��� �� i
 for some integer j
 �� either there is no b

symbol at time j� or the subsequence of � in the time interval �j� j �� is not of the form

a��a
�
�� It is easy to construct such a timed automaton�

The subsequence of a timed word ��� �� in Lundec should encode the initial con	guration

over the interval ��� ��� Let Ainit be the TBA which requires that the subsequence of

� corresponding to the interval ��� �� is not b�� it accepts the language f��� �� j ��� �"

b�� � ��� �" �� � ���
 ��g�

For each instruction � � i � n we construct a TBA Ai� Ai accepts ��� �� i
 the timed

word has bi at some time t� and the con	guration corresponding to the subsequence in

�t �� t �� does not follow from the con	guration corresponding to the subsequence in

�t� t �� by executing the instruction i� We give the construction for a sample instruction�

say� �increment the counter D and jump nondeterministically to instruction � or ��� The

automaton Ai is the disjunction of the following six TBAs A
�
i � � � �A

�
i�

Let A�
i be the automaton which accepts ��� �� i
 for some j
 �� �j " bi� and at time

�j � there is neither b	 nor b�� It is easy to construct this automaton�

Let A�
i be the following TBA�

b
i 1a

x:=0

,x:=0

x<1?

1a ,x=1?

0
S

1S 2S x 1= ?

In this 	gure� an edge without a label means that the transition can be taken on every

input symbol� While in state s�� the automaton cannot accept a symbol a� if the condition

�x " �� holds� Thus A�
i accepts ��� �� i
 there is some bi at time t followed by an a� at

time t�
 �t �� such that there is no matching a� at time �t
� ���

Similarly we can construct A�
i which accepts ��� �� i
 there is some bi at time t� and

for some t�
 �t �� there is no a� at time t
� but there is an a� at time �t

� ��� The

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

complements of A�
i and A

�
i together ensure proper matching of a��s�

Along similar lines we ensure proper matching of a� symbols� Let A
	
i be the automaton

which requires that for some bi at time t� there is an a� at some t
�
 �t �� with no match at

�t� ��� Let A

i be the automaton which says that for some bi at time t there are two a��s

in �t �� t �� without matches in �t� t ��� Let A�
i be the automaton which requires that

for some bi at time t the last a� in the interval �t �� t �� has a matching a� in �t� t ���

Now consider a word ��� �� such that there is bi at some time t such that the encoding of

a��s in the intervals �t� t �� and �t �� t �� do not match according to the desired scheme�

Let the number of a��s in �t� t �� and in �t �� t �� be k and l respectively� If k 	 l then

the word is accepted by A	
i � If k " l� then either there is no match for some a� in �t� t ���

or every a� in �t� t �� has a match in �t �� t ��� In the former case the word is accepted

by A	
i � and in the latter case it is accepted by A

�
i� If k
 l the word is accepted by A

i �

The requirement that the computation be not recurring translates to the requirement

that b� appears only 	nitely many times in �� Let Arecur be the B�uchi automaton which

expresses this constraint�

Putting all the pieces together we claim that the language of the disjunction of A�� Ainit �

Arecur � and each of Ai� is the complement of Lundec �

This result is not unusual for systems for reasoning about dense real
time� Later we

will show the undecidability of certain real
time logics with dense semantics� Obviously� the

universality problem for TMAs is also undecidable� We have not been able to show that the

universality problem is !�
�
complete� an interesting problem is to locate its exact position

in the analytical hierarchy� In the following subsections we consider various implications of

the above undecidability result�

����� Inclusion and equivalence

Recall that the language inclusion problem for B�uchi automata can be solved in PSPACE�

However� it follows from Theorem ���� that there is no decision procedure to check whether

the language of one TBA is a subset of the other� This result is an obstacle in using

timed automata as a speci	cation language for automatic veri	cation of 	nite
state real

time systems�

Corollary ���� Given two TBAs A� and A� over an alphabet �� the problem of checking

L�A��
 L�A�� is !
�
�
hard�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Proof� We reduce the universality problem for a given timed automaton A over � to

the language inclusion problem� Let Auniv be an automaton which accepts every timed

word over �� The automaton A is universal i
 L�Auniv �
 L�A��

Now we consider the problem of testing equivalence of two automata� A natural de	

nition for equivalence of two automata uses equality of the languages accepted by the two�

However alternative de	nitions exist� We will explore one such notion�

De�nition ���� For timed B�uchi automataA� andA� over an alphabet �� de	ne A���A�

i
 L�A�� " L�A��� De	ne A� ��A� i
 for all timed automata A over �� L�A�� L�A��

is empty precisely when L�A� � L�A�� is empty�

For a class of automata closed under complement the above two de	nitions of equivalence

coincide� However� these two equivalence relations di
er for the class of timed regular

languages because of the nonclosure under complement �to be proved shortly�� In fact�

the second notion is a weaker notion� A���A� implies A���A�� but not vice versa�

The motivation behind the second de	nition is that two automata �modeling two 	nite

state systems� should be considered di
erent only when a third automaton �modeling the

observer or the environment� composed with them gives di
erent behaviors� in one case

the composite language is empty� and in the other case there is a possible joint execution�

The proof of Theorem ���� can be used to show undecidability of this equivalence also�

Note that the problems of deciding the two types of equivalences lie at di
erent levels of

the hierarchy of undecidable problems�

Theorem ���� For timed B�uchi automata A� and A� over an alphabet ��

�� The problem of deciding whether A� ��A� is !
�
�
hard�

�� The problem of deciding whether A� ��A� is complete for the co
r�e� class�

Proof� The language of a given TBA A is universal i
 A��Auniv � Hence the !
�
�

hardness of the universality problem implies !�
�
hardness of the 	rst type of equivalence�

Now we show that the problem of deciding nonequivalence� by the second de	nition� is

recursively enumerable� If the two automata are inequivalent then there exists an automaton

A over � such that only one of L�A� � L�A�� and L�A� � L�A�� is empty� Consider the

following procedure P � P enumerates all the TBAs over � one by one� For each TBA A�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

it checks for the emptiness of L�A��L�A�� and the emptiness of L�A��L�A��� If P ever

	nds di
erent answers in the two cases� it halts saying that A� and A� are not equivalent�

Finally we prove that the problem of deciding the second type of equivalence is unsolv

able� We use the encoding scheme used in the proof of Theorem ����� The only di
erence

is that we use the halting problem of a deterministic �
counter machine M instead of the

recurring computations of a nondeterministic machine� Recall that the halting problem for

deterministic �
counter machines is undecidable� Assume that the n
th instruction is the

halting instruction� We obtain A�
undec by replacing the disjunct Arecur by an automaton

which accepts ��� �� i
 bn does not appear in �� The complement of L�A�
undec� consists of

the timed words encoding the halting computation�

We claim that Auniv ��A�
undec i
 the machine M does not halt� If M does not halt

then A�
undec accepts all timed words� and hence� its language is the same as that of Auniv � If

M halts� then we can construct a timed automaton Ahalt which accepts a particular timed

word encoding the halting computation ofM � IfM halts in k steps� then Ahalt uses k clocks

to ensure proper matching of the counter values in successive con	gurations� The details

are very similar to the PSPACE
hardness proof of Theorem ����� L�Ahalt � � L�Auniv � is

nonempty whereas L�Ahalt��L�A
�
undec� is empty� and thus Auniv and A

�
undec are inequivalent

in this case� This completes the proof�

����� Nonclosure under complement

The !�
�
hardness of the inclusion problem implies that the class of TBAs is not closed under

complement�

Corollary ���
 The class of timed regular languages is not closed under complementation�

Proof� Given TBAs A� and A� over an alphabet �� L�A��
 L�A�� i
 the intersec

tion of L�A�� and the complement of L�A�� is empty� Assume that TBAs are closed under

complement� Consequently� L�A�� �
 L�A�� i
 there is a TBA A such that L�A���L�A�

is nonempty� but L�A�� � L�A� is empty� That is� L�A�� �
 L�A�� i
 A� and A� are

inequivalent according to ��� From Theorem ���� it follows that the complement of the in

clusion problem is recursively enumerable� This contradicts the !�
�
hardness of the inclusion

problem�

The following example provides some insight regarding the nonclosure under comple

mentation�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a a a

a a

x=1?x:=0
0S 1S 2S

Figure ����� Noncomplementable automaton

Example ���� The language accepted by the automaton of Figure ���� over fag is

f�a�� �� j �i
 �� �j 	 i� ��j " �i ��g�

The complement of this language cannot be characterized using a TBA� The complement

needs to make sure that no pair of a�s is separated by distance �� Since there is no bound

on the number of a�s that can happen in a time period of length �� keeping track of the

times of all the a�s within past � time unit� would require an unbounded number of clocks�

��	 Deterministic timed automata

The results of Section ��� show that the class of timed automata is not closed under com

plement� and one cannot automatically compare the languages of two automata� In this

section we de	ne deterministic timed automata� and show that the class of deterministic

timed Muller automata �DTMA� is closed under all the Boolean operations�

����� De�nition

Recall that in the untimed case a deterministic transition table has a single start state� and

from each state� given the next input symbol� the next state is uniquely determined� We

want a similar criterion for determinism for the timed automata� given an extended state

and the next input symbol along with its time of occurrence� the extended state after the

next transition should be uniquely determined� So we allow multiple transitions starting

at the same state with the same label� but require their clock constraints to be mutually

exclusive so that at any time only one of these transitions is enabled�

De�nition ���� A timed transition table h�� S� S��C�Ei is called deterministic i

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

b,(x>2)?

b,(x<2)?-

a,x:=0

a,x:=0

a,x:=0

1S

0S

3S2S

Figure ����� Deterministic timed Muller automaton

�� it has only one start state� jS�j " �� and

�� for all s 	 S� for all a 	 �� for every pair of edges of the form hs��� a���
�i and

hs��� a���
�i� the clock constraints
� and
� are mutually exclusive �i�e��
� �
� is

unsatis	able��

A timed automaton is deterministic i
 its timed transition table is deterministic�

Note that in absence of clocks the above de	nition matches with the de	nition of deter

minism for transition tables� Thus every deterministic transition table is also a deterministic

timed transition table� Let us consider an example of a DTMA�

Example ���� The DTMA of Figure ���� accepts the language Lcrt of Example ����

Lcrt " f��ab��� �� j �i� �j
 i� ���j�� � ��j�� ��g

The Muller acceptance family is given by ffs�� s	gg� The state s� has two mutually

exclusive outgoing transitions on b� The acceptance condition requires that the transition

with the clock constraint �x 	 �� is taken only 	nitely often�

Deterministic timed automata can be easily complemented because of the following

property�

Lemma ���	 A deterministic timed transition table has at most one run over a given

timed word�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Proof� Consider a deterministic timed transition table A� and a timed word ��� ���

The run starts at time � with the extended state hs�� ��i where s� is the unique start state�

Suppose the extended state of A at time �j�� is hs� �i� and the run has been constructed

up to �j � �� steps� By the deterministic property of A� at time �j there is at most one

transition hs� s�� �j�
� �i such that the clock interpretation at time �j � � �j � �j��� satis	es

� If such a transition does not exist then A has no run over ��� ��� Otherwise� this choice

of transition uniquely extends the run to the j
th step� and determines the extended state

at time �j � The lemma follows by induction�

����� Closure properties

Now we consider the closure properties for deterministic timed automata� Like deterministic

Muller automata� DTMAs are also closed under all Boolean operations�

Theorem ��
� The class of timed languages accepted by deterministic timed Muller au

tomata is closed under union� intersection� and complementation�

Proof� We de	ne a transformation on DTMAs to make the proofs easier� for every

DTMA A " h�� S� s��C�E�Fi we construct another DTMA A� by completing A as follows�

First we add a dummy state q to the automaton� From each state s� for each symbol a�

we add an a
labeled edge from s to q� The clock constraint for this edge is the negation of

the disjunction of the clock constraints of all the a
labeled edges starting at s� We leave

the acceptance condition unchanged� This construction preserves determinism as well as

the set of accepted timed words� The new automaton A� has the property that for each

state s and each input symbol a� the disjunction of the clock constraints of the a
labeled

edges starting at s is a valid formula� Observe that A� has precisely one run over any timed

word� We call such an automaton complete� In the remainder of the proof we assume each

DTMA to be complete�

Let Ai " h�� Si� s�i�Ci�Ei�Fii� for i " �� �� be two complete DTMAs with disjoint sets

of clocks� First we construct a timed transition table A using a product construction� The

set of states of A is S� � S�� Its start state is hs�� � s��i� The set of clocks is C� � C��

The transitions of A are de	ned by coupling the transitions of the two automata having

the same label� Corresponding to an A�
transition hs�� t�� a� ���
�i and an A�
transition

hs�� t�� a� ���
�i� A has a transition hhs�� s�i� ht�� t�i� a� �� � ���
� �
�i� It is easy to check

that A is also deterministic� A has a unique run over each ��� ��� and this run can be

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

obtained by putting together the unique runs of Ai over ��� ���

Let F� consist of the sets F
 S� � S� such that the projection of F onto the 	rst

component is an accepting set of A�� that is�

F� " fF
 S� � S� j fs 	 S� j �s
� 	 S�� hs� s

�i 	 Fg 	 F�g�

Hence a run r of A is an accepting run for A� i
 inf �r� 	 F�� Similarly de	ne F� to

consist of the sets F such that fs� j �s 	 S�� hs� s
�i 	 Fg is in F�� Now coupling A with the

Muller acceptance family F��F� gives a DTMA accepting L�A���L�A��� whereas using

the acceptance family F� � F� gives a DTMA accepting L�A�� � L�A���

Finally consider complementation� Let A be a complete DTMA h�� S� s��C�E�Fi� A

has exactly one run over a given timed word� Hence� ��� �� is in the complement of L�A� i

the run of A over it does not meet the acceptance criterion of A� The complement language

is� therefore� accepted by a DTMA which has the same underlying timed transition table

as A� but its acceptance condition is given by �S �F �

Now let us consider the closure properties of DTBAs� Recall that deterministic B�uchi

automata �DBA� are not closed under complement� The property that �there are in	nitely

many a�s� is speci	able by a DBA� however� the complement property� �there are only

	nitely many a�s� cannot be expressed by a DBA� Consequently we do not expect the class

of DTBAs to be closed under complementation� However� since every DTBA is also a

DTMA� the complement of a DTBA
language is accepted by a DTMA� The next theorem

states the closure properties�

Theorem ��
� The class of timed languages accepted by DTBAs is closed under union

and intersection� but not closed under complement� The complement of a DTBA language

is accepted by some DTMA�

Proof� For the case of union� we construct the product transition table as in case of

DTMAs �see proof of Theorem ������ The accepting set is fhs� s�i j s 	 F� � s� 	 F�g�

A careful inspection of the product construction for TBAs �see proof of Theorem �����

shows that it preserves determinism� The closure under intersection for DTBAs follows�

The nonclosure of deterministic B�uchi automata under complement leads to the non

closure for DTBAs under complement� The language f��� �� j � 	 �b�a��g is speci	able by

a DBA� Its complement language f��� �� j � 	 �a b��b�g is not speci	able by a DTBA�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

This claim follows from Lemma ���� �to be proved shortly�� and the fact that the language

�a b��b� is not speci	able by a DBA�

Let A " h�� S� s��C�E�Fi be a complete deterministic automaton� ��� �� is in the com

plement of L�A� i
 the �unique� run of A over it does not meet the acceptance criterion of

A� The complement language is� therefore� accepted by a DTMA with the same underlying

timed transition table as A� and the acceptance family �S�F�

����� Decision problems

In this section we examine the complexity of the emptiness problem and the language

inclusion problem for deterministic timed automata�

The emptiness of a timed automaton does not depend on the symbols labeling its edges�

Consequently� checking emptiness of deterministic automata is no simpler� it is PSPACE

complete�

Since deterministic automata can be complemented� checking for language inclusion is

decidable� In fact� while checking L�A��
 L�A��� only A� need be deterministic� A� can

be nondeterministic� The problem can be solved in PSPACE�

Theorem ��
� For a timed automaton A� and a deterministic timed automaton A�� the

problem of deciding whether L�A�� is contained in L�A�� is PSPACE
complete�

Proof� PSPACE
hardness follows� even when A� is deterministic� from the fact that

checking for the emptiness of the language of a deterministic timed automaton is PSPACE

hard� Let Aempty be a deterministic automaton which accepts the empty language� Now

for a deterministic time automaton A� L�A� is empty i
 L�A�
 L�Aempty ��

Observe that L�A��
 L�A�� i
 the intersection of L�A�� with the complement of

L�A�� is empty� Recall that complementing the language of a deterministic automaton cor

responds to complementing the acceptance condition� First we construct a timed transition

table A from the timed transition tables of A� and A� using the product construction

�see proof of Theorem ������ The size of A is proportional to the product of the sizes

of Ai� Then we construct the region automaton R�A�� L�A�� �
 L�A�� i
 R�A� has a

cycle which is accessible from its start state� meets the progressiveness requirement� the

acceptance criterion for A�� and the complement of the acceptance criterion for A�� The

existence of such a cycle can be checked in space polynomial in the size of A� as in the proof

of PSPACE
solvability of emptiness �Theorem ������

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

����� Expressiveness

In this section we compare the expressive power of the various types of timed automata�

Every DTBA can be expressed as a DTMA simply by rewriting its acceptance condi

tion� However the converse does not hold� First observe that every �
regular language is

expressible as a DMA� and hence as a DTMA� On the other hand� since deterministic B�uchi

automata are strictly less expressive than deterministic Muller automata� certain �
regular

languages are not speci	able by DBAs� The next lemma shows that such languages cannot

be expressed using DTBAs either� It follows that DTBAs are strictly less expressive than

DTMAs� In fact� DTMAs are closed under complement� whereas DTBAs are not�

Lemma ��
� For an �
language L� the timed language f��� �� j � 	 Lg is accepted by

some DTBA i
 L is accepted by some DBA�

Proof� Clearly if L is accepted by a DBA� then f��� �� j � 	 Lg is accepted by the

same automaton considered as a timed automaton�

Now suppose that the language f��� �� j � 	 Lg is accepted by some DTBA A� We

construct another DTBA A� such that L�A�� " f��� �� j �� 	 L� � �i� ��i " i�g� A� requires

time to increase by � at each transition� The automaton A� can be obtained from A by

introducing an extra clock x� We add the conjunct x " � to the clock constraint of every

edge in A and require it to be reset on every edge� A� is also deterministic�

The next step is the untiming construction for A�� Observe that Untime�L�A��� " L�

While constructing R�A�� we need to consider only those clock regions which have all clocks

with zero fractional parts� Since the time increase at every step is predetermined� and A�

is deterministic� it follows that R�A�� is a deterministic transition table� We need not

check the progressiveness condition also� It follows that the automaton constructed by the

untiming procedure is a DBA accepting L�

From the above discussion one may conjecture that a DTMA language L is a DTBA

language if Untime�L� is a DBA language� To answer this let us consider the convergent

response property Lcrt speci	able using a DTMA �see Example ������ This language in

volves a combination of liveness and timing� We conjecture that no DTBA can specify this

property�

Along the lines of the above proof we can also show that for an �
language L� the timed

language f��� �� j � 	 Lg is accepted by some DTMA �or TMA� or TBA� i
 L is accepted

by some DMA �or MA� or BA� respectively��

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Class of timed languages Operations closed under

TMA " TBA union� intersection
�

DTMA union� intersection� complement
�

DTBA union� intersection

Figure ����� Classes of timed automata

Class of �
languages Operations closed under

MA " BA " DMA union� intersection� complement
�

DBA union� intersection

Figure ����� Classes of �
automata

Since DTMAs are closed under complement� whereas TMAs are not� it follows that the

class of languages accepted by DTMAs is strictly smaller than that accepted by TMAs� In

particular� the language of Example ����� ��some pair of a�s is distance � apart�� is not

representable as a DTMA� it relies on nondeterminism in a crucial way�

We summarize the discussion on various types of automata in the table of Figure ����

which shows the inclusions between various classes and the closure properties of various

classes� Compare this with the corresponding results for the various classes of �
automata

shown in Figure �����

��
 Variants of timed automata

In this section we consider some of the ways to modify our de	nition of timed automata and

indicate how these decisions a
ect the expressiveness and complexity of di
erent problems�

��	�� Clock constraints

Recall that our de	nition of the clock constraints allows Boolean combinations of atomic

formulas which compare clock values with �rational� constants� With this vocabulary� timed

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

�

��
�

�
�

�
�

� � �

�

y

x

� Corner points� e�g� �������

�� Open line segments� e�g� ��
 x " y ��

�� Open regions� e�g� ��
 x
 y
 ��

Figure ����� Clock regions for extended clock constraints

automata can express only constant bounds on the delays between transitions� We consider

two extensions� one allows comparisons between two clock values� and the other allows clock

values to be added�

Comparing two clocks

First we extend the de	nition of clock constraints to allow subformulas involving two clocks

such as �x � y c�� In particular� in De	nition ��� of the set %�X� of clock constraints� we

allow� as atomic constraints� the conditions �x � y c� and �x c � y�� for x� y 	 X and

c 	 Q� Thus the allowed clock constraints are quanti	er
free formulas using the primitives

of comparison ��� and addition by rational constants � c��

The untiming construction can handle this extension very easily� We need to re	ne the

equivalence relation on clock interpretations� Now� in addition to the previous conditions�

we require that two equivalent clock interpretations agree on all the subformulas appearing

in the clock constraints� Instead of giving the details we only consider the regions in

Example ���� again�

Example ��
� As before the timed transition table has two clocks x and y with cx " �

and cy " �� Suppose the formula �x � y �� appears as a clock constraint labeling one

of the edges� and this is the only condition involving both the clocks� The clock regions

are shown in Figure ����� Comparing it to the clock regions in Figure ��� notice that the

region ��x 	 ��� �y 	 ��� is split into three regions according to the relationship between x

and �y ���

The region graph is constructed as before� The complexity of the algorithm for testing

emptiness remains the same�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

This extension of clock constraints does not add to the expressiveness of timed automata�

We can get rid of the constraints of the form �x � y c� or �x c � y� in a systematic

fashion� For instance� consider the constraint �x � y ��� First we tag each state of the

automaton with the truth value of this constraint� In the initial states� the constraint is

true� Now consider an edge e from state s to s�� If x gets reset along e� then �x � y ��

must be true in s�� If only y gets reset along e� then we add one of the conjuncts �x � ��

and �x 	 �� to the clock constraint of e depending on whether �x � y �� is true or false

in s�� If none of the clocks x and y are reset along e� then the tag of s� must be the same

as that of s� Once all the states are tagged in the above manner� we can simplify the clock

constraint of every edge e by replacing the formula �x � y �� by true or false depending

upon the tag of the source state of e�

Introducing the addition primitive

Next we allow the primitive of addition in the clock constraints� Now we can write clock

constraints such as �x y � x� y�� which allow the automaton to compare various delays�

This greatly increases the expressiveness of the formalism� The language of the automaton

in the following example is not timed regular�

Example ��

 Consider the automaton of Figure ���� with the alphabet fa� b� cg� It ex

presses the property that the symbols a� b� and c alternate� and the delay between b and c

is always twice the delay between the last pair of a and b� The language is de	ned by

f��abc��� �� j �j� ���	j � �	j��� " ���	j�� � �	j����g�

Intuitively� the constraints involving addition are too powerful and cannot be imple

mented by 	nite
state systems� Even if we constrain all events to occur at integer time

values �i�e�� discrete
time model�� to check that the delay between 	rst two symbols is same

as the delay between the next two symbols� an automaton would need an unbounded mem

ory� Thus with 	nite resources� an automaton can compare delays with constants� but

cannot remember delays� In fact� we can show that introducing addition in the syntax of

clock constraints makes the emptiness problem for timed automata undecidable�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

2x=3y

c

b,y:=0a,x:=0

1S

2S0S

Figure ����� Automaton with clock constraints using

Theorem ��
� Allowing the addition primitive in the syntax of clock constraints makes

the emptiness problem for timed automata !�
�
hard�

Proof� As in the proof of Theorem ���� we reduce the problem of recurring computa

tions of nondeterministic �
counter machines to the emptiness problem for time automata

using the primitive � The alphabet is fa� b�� � � � bng� We say that a timed word ��� �� en

codes a computation hi�� c�� d�i� hi�� c�� d�i � � � of the �
counter machine i
 � " bi�abi�abi� � � �

with ��j � ��j�� " cj � and ��j�� � ��j " dj for all j
 �� Thus the delay between b and the

following a encodes the value of the counter C� and the delay between a and the following b

encodes the value of D� We construct a timed automaton which accepts precisely the timed

words encoding the recurring computations of the machine� The primitive of is used to

express a consecution requirement such as the value of the counter C remains unchanged�

The details of the proof are quite straightforward�

��	�� Timed automata with ��transitions

The de	nition of nondeterministic 	nite
state automata sometimes allows the automaton

to make transitions without consuming any input �see� for instance� �HU����� We can allow

such silent transitions for timed automata also� Thus now we allow the edges to be labeled

with ��

Before we de	ne these automata precisely� let us consider an example�

Example ��
� The automaton of Figure ���� accepts a timed word over fag i
 there is

some a at time t with no a at time t �� The language is given by

f�a�� �� j �i� �j� ��j �" �i ��g�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a a a

a

x=1?x:=0
0S 1S 2S

Figure ����� Timed automaton with �
transitions

If we view the automaton of Figure ���� as accepting timed words over the alphabet

fa� �g� no new de	nitions are required� However� we want to eliminate ��s from the timed

words accepted by the automaton� Consequently we need to account for the possibility that

there may be only 	nitely many visible transitions along the run� This calls for changing

the de	nition of the timed languages to allow timed words of 	nite length also� In fact� it is

useful to develop the entire theory of timed languages allowing both 	nite and in	nite words�

We avoided this for the sake of simplicity of presentation� rede	ning all the constructions

to handle such languages poses no extra problems�

De�nition ��
� The pair ��� �� is a 	nite timed word over � i
 � is a 	nite sequence over

�� and � is 	nite sequence over positive real numbers such that

� both � and � are of the same length�

� � satis	es monotonicity� for each i
 j� j� ��i�
 ��i ���

A mixed timed language over � consists of both in	nite and 	nite timed words over ��

The Boolean operations are de	ned on mixed timed languages the usual way� In addition

we can de	ne a projection operation also� The result of projecting a timed word ��� ��� 	nite

or in	nite� over �� onto a subset �� of �� is obtained by deleting from � the symbols not in

��� and discarding the associated times from the time sequence�

De�nition ��
	 Let ��� �� be a 	nite or in	nite timed word over �� and let ��
 �� Let

� " i�� i�� � � � be the �	nite or in	nite� increasing sequence of integers such that j 	 � i

�j 	 �
� for all j � j� j�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

The projection of ��� �� on ��� denoted by ��� ��d��� is the �	nite or in	nite� timed word

���� � �� with j��j " j� �j " j�j� such that ��j " �ij and �
�
j " �ij for all j � j�j�

For a mixed timed language L over �� the projection is de	ned by

Ld�� " f��� ��d�� j ��� �� 	 Lg�

Observe that from an in	nite timed word we may get a 	nite one using projection� For

instance� after projecting the timed word

�a� �� � �b� ���� � �b� �� � �a� �� � �a� �� � �a� �� � � � �

onto fbg we get the 	nite timed word �b� �����b� ���

The timed automata with �
transitions accept mixed timed languages�

De�nition ���� An �
TBA over � is a timed B�uchi automaton A over the alphabet ��f�g�

The mixed timed language accepted by A is de	ned to be the projection onto � of the

language of in	nite timed words over � � f�g accepted by A�

If an �
TBA has no cycles consisting entirely of �
labeled edges then its language has

only in	nite words� Observe that in an �
TBA� putting a self
loop with the �
label �and no

resets or clock constraints� on a nonaccepting state does not change its language�

Similarly we can de	ne �
TMAs� Along the lines of Theorem ���� we can show that

�
TMAs and �
TBAs accept the same class of mixed timed languages� This is the class of

mixed timed regular languages � The next theorem considers the closure properties for this

class�

Theorem ���� The class of mixed timed languages accepted by �
TBAs is closed under

union� intersection� and projection�

Proof� The case of union is obvious�

Closure under intersection can be shown by modifying the product construction for

TBAs �see proof of Theorem ������ As before� while constructing the intersection of �

TBAs Ai� i " �� � � � �n� the product automaton has states of the form hs�� � � �sn� ki� where

each si is a state of Ai and k is the counter handling the acceptance criteria� For a 	 ��

all the a
labeled transitions of the product automaton are obtained as before by coupling

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

a
labeled transitions of the individual automata� However not all the component automata

need to participate in the �
labeled transitions� Let J be some subset of f�� � � � �ng� and let

fhsi� s�i� �� �i�
ii 	 Ei j i 	 Jg be a set of transitions� Then the product automaton A has

an �
transition out of hs�� � � �sn� ki to hs��� � � �s
�
n� k

�i with s�i " si if i �	 J � The new counter

value k� is �k �� mod n if sk 	 Fk and k 	 J � otherwise k� equals k�

Given an �
TBA A over �� to project its language onto ��� we simply change every edge

label not in �� to ��

It should be obvious that testing for emptiness is no harder for �
TBAs� and the problem

is PSPACE
complete� The lower bound of !�
�
hardness for checking universality of TBAs

applies to �
TBAs also� Also like TBAs� these automata are not closed under complement�

In the untimed case� it is known that allowing �
transitions does not add to the expressive

power of the automata� The same question can be asked for timed automata also� namely�

given an �
TBA A does there always exist a TBA that accepts all the in	nite timed words

in L�A�$ We conjecture that this indeed is the case� however� we do not have a construction

to eliminate �
transitions from a given timed automaton�

��� Veri�cation

In this section we discuss how to use the theory of timed automata to prove correctness

of 	nite
state real
time systems� We start with an overview of the application of B�uchi

automata to verify untimed processes �VW��� Var����

��
�� ��automata and veri�cation

We review veri	cation in the untimed case to set a base for the extension to the timed

case� Recall� from Section ���� that an untimed process is a pair �A�X�� where A is the

set of its observable events and X is the set of its possible traces� Observe that L is an

�
language over the alphabet P��A�� If it is a regular language it can be represented by a

B�uchi automaton�

We model a 	nite
state �untimed� process P with event set A using a B�uchi automaton

AP over the alphabet P��A�� The states of the automaton correspond to the internal states

of the process� The automaton AP has a transition hs� s
�� ai� with a
 A� if the process can

change its state from s to s� participating in the events from a� The acceptance conditions

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

of the automaton correspond to the fairness constraints on the process� The automaton

AP accepts �or generates� precisely the traces of P � that is� the process P is given by

�A�L�AP��� Such a process P is called an ��regular process �

The user describes a system consisting of various components by specifying each indi

vidual component as a B�uchi automaton� In particular� consider a system I comprising of

n components� where each component is modeled as an �
regular process Pi " �Ai� L�Ai���

The implementation process is �ki Pi�� We can automatically construct the automaton for

I using the construction for language intersection for B�uchi automata� Since the event sets

of various components may be di
erent� before we apply the product construction� we need

to make the alphabets of various automata identical� Let A " �iAi� From each Ai� we con

struct an automatonA�
i over the alphabet P

��A� such that L�A�
i� " f� 	 P��A�� j �dAi 	

L�Ai�g� Now the desired automaton AI is the product of the automata A
�
i� The details of

the construction will be given only for the timed case�

The speci	cation is given as an �
regular language S over P��A�� The implementation

meets the speci	cation i
 L�AI�
 S� The property S can presented as a B�uchi automaton

AS � In this case� the veri	cation problem reduces to checking emptiness of L�AI��L�AS�c�

The veri	cation problem is PSPACE
complete� The size of AI is exponential in the

description of its individual components� If AS is nondeterministic� taking the comple

ment involves an exponential blow
up� and thus the complexity of veri	cation problem is

exponential in the size of the speci	cation also� However� if AS is deterministic� then the

complexity is only polynomial in the size of the speci	cation� Speci	cations can be written

as formulas of linear temporal logic PTL also� If the formula � of PTL gives the speci	

cation� we construct a B�uchi automaton A�� which accepts all traces that do not satisfy

�� The next step is checking for the emptiness of L�AI� � L�A���� This method is also

exponential in the size of the formula�

Even if the size of the speci	cation and the sizes of the automata for the individual

components are small� the number of components in most systems of interest is large� and

in the above method the complexity is exponential in this number� Thus the product

automaton AI has prohibitively large number of states� and this limits the applicability of

this approach� Alternative methods which avoid enumeration of all the states in AI have

been proposed� and shown to be applicable to veri	cation of some moderately sized systems

�BCD���� GW����

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

��
�� Veri�cation using timed automata

Recall the de	nition of a timed process from Section ������ We use the dense
time model

with TIME " R� Thus� a timed process is a pair �A�L� where A is a 	nite set of events�

and L is a timed language over P��A�� A timed regular process is the one for which the set

L is a timed regular language� and can be represented by a timed automaton�

Finite
state systems are modeled by TBAs� The underlying transition table gives the

state
transition graph of the system� We have already seen how the clocks can be used

to represent the timing delays of various physical components� As before� the acceptance

conditions correspond to the fairness conditions� Notice that the progress requirement

imposes certain fairness requirements implicitly� Thus� with a 	nite
state process P � we

associate a TBA AP such that L�AP� consists of precisely the timed traces of P �

Typically� an implementation is described as a composition of several components� Each

component should be modeled as a timed regular process Pi " �Ai� L�Ai��� The 	rst step

in the veri	cation process is to construct a TBA AI which represents the composite process

�ki Pi�� To implement this� 	rst we need to make the alphabets of various automata identical�

and then take the intersection� Combining the two steps� however� reduces the size of the

implementation automaton�

Theorem ���� Given timed processes Pi " �Ai� L�Ai��� i " �� � � �n� represented by timed

automata Ai� there is a TBA A over the alphabet P
���iAi� which represents the timed

process �ki Pi��

Proof� The construction is very similar to the one for Theorem ����� The main dif

ference is that for a joint transition of the product automaton� the event sets labeling the

transitions of the individual automata need not be the same� In fact� for an event set a such

that a �Ai " �� the i
th automaton does not participate at all in a transition labeled with

a� In addition to checking the acceptance criteria of all the automata� we need to ensure

that every automaton participates in in	nitely many transitions along an accepting run of

A� This calls for some modi	cations in the strategy for the counter update�

The states of the product automaton A are of the form hs�� � � �sn� ki� where si 	 Si� and

� � k � �n ��� Initially the counter value is �� and it is incremented from k to �k ��

when Ak participates in a transition to one of its accepting states� When the counter reaches

�n �� it is reset to �� A state is an accepting state i
 the counter value is �n ��� Now

we de	ne the transitions of A labeled with an event set a
 �iAi� Let J " fi j Ai � a �" �g�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Consider a family of transitions fhsi� s�i� a � Ai� �i�
ii 	 Ei j i 	 Jg� Corresponding to

this family� there is a joint transition of A labeled with a out of each state of the form

hs�� � � �sn� ki� The new state is hs��� � � �s
�
n� ji� where� for i �	 J � s�i " si� If k " �n �� then

j " �� Otherwise if k 	 J and s�k 	 Fk then j " �k �� else j " k� The set of clocks to be

reset is �i�J�i� and the clock constraint is �i�J
i�

The number of states in AI is ��n �� �!ijSij�� The number of clocks for AI is �ijCij�

and for all clocks x� the value of cx� the largest constant it gets compared with� remains the

same�

The speci	cation of the system is given as another timed regular language S over the

alphabet P��A�� The system is correct i
 L�AI� � S� If S is given as a TBA� then in

general� it is undecidable to test for correctness� However� if S is given as a DTMA AS �

then we can solve this as outlined in Section ������

Putting together all the pieces� we conclude�

Theorem ���� Given timed regular processes Pi " �Ai� L�Ai��� i " �� � � �n� modeled

by timed automata Ai� and a speci	cation as a deterministic timed automaton AS � the

inclusion of the trace set of �ki Pi� in L�AS� can be checked in PSPACE�

The veri	cation algorithm checks for a cycle with several desired properties in the region

graph of the product of all the automata� The number of states in the product automaton

is O�jAS j �!ijAij�� The number of clock regions for the product is exponential in the total

number of clocks and linear in product of all the constants� Thus the number of vertices in

this region graph is O�jAS j �!ijAij � �
j
�AS�j��ij
�Ai�j��

There are mainly three sources of exponential blow
up�

�� The complexity is proportional to the number of states in the global timed automaton

describing the implementation �ki Pi�� This is exponential in the number of compo

nents�

�� The complexity is proportional to the product of the constants cx� the largest constant

x is compared with� over all the clocks x involved�

�� The complexity is proportional to the number of permutations over the set of all

clocks�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

in

out

approach

exit

(x>2)?

id T

(x>5)?

x:=0
0S 1S

2S3
S

Figure ����� TRAIN

The 	rst factor is present in the simplest of veri	cation problems� even in the untimed

case� Since the number of components is typically large� this exponential factor has been a

major obstacle in implementing model
checking algorithms�

The second factor is typical of any formalism to reason about quantitative time� The

blow
up by actual constants is observed even for simpler� discrete models� Note that if the

bounds on the delays of di
erent components are relatively prime then this factor leads to

a major blow
up in the complexity�

Lastly� in constructing the regions� we need to account for all the possible orderings of

the fractional parts of di
erent clocks� and this is the source of the third factor� We remark

that switching to a simpler� say discrete
time� model will avoid this blow
up in complexity�

However since the total number of clocks is linear in the number of independent components�

this blow
up is same as contributed by the 	rst factor� namely� exponential in the number

of components�

��
�� Veri�cation example

We consider an example of a gate controller at a railroad crossing� The system is composed

of three components� TRAIN� GATE and CONTROLLER�

The automaton modeling the train is shown in Figure ����� The event set is fapproach�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

id
G

id
G

lower

raise

downup

(y<1)?(y>1) >(y<2)?

y:=0

y:=0

3
S

0S 1S

2S

Figure ����� GATE

exit� in� out� idTg� The train starts in state s�� The event idT represents its idling event�

the train is not required to enter the gate� The train communicates with the controller with

two events approach and exit � The events in and out mark the events of entry and exit of

the train from the railroad crossing� The train is required to send the signal approach at

least � minutes before it enters the crossing� Thus the minimum delay between approach

and in is � minutes� Furthermore� we know that the maximum delay between the signals

approach and exit is � minutes� This is a liveness requirement on the train� Both the timing

requirements are expressed using a single clock x�

The automaton modeling the gate component is shown in Figure ����� The event set

is fraise� lower� up� down� idGg� The gate is open in state s� and closed in state s�� It

communicates with the controller through the signals lower and raise� The events up and

down denote the opening and the closing of the gate� The gate responds to the signal lower

by closing within � minute� and responds to the signal raise within � to � minutes� The

gate can take its idling transition idG in states s� or s� forever�

Finally� Figure ���� shows the automaton modeling the controller� The event set is

fapproach� exit� raise� lower� idCg� The controller idle state is s�� Whenever it receives the

signal approach from the train� it responds by sending the signal lower to the gate� The

response time is � minute� Whenever it receives the signal exit � it responds with a signal

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

id
C

approach

lower

exit

raise

(z=1)?(z<1)?

z:=0

z:=0

0S 1S

2S3
S

Figure ����� CONTROLLER

raise to the gate within � minute�

The entire system is then

� TRAIN k GATE k CONTROLLER ��

The event set is the union of the event sets of all the three components� In this example� all

the automata are particularly simple� they are deterministic� and do not have any fairness

constraints �every run is an accepting run�� The timed automaton AI specifying the entire

system is obtained by composing the above three automata�

The correctness requirements for the system are the following�

�� Safety� Whenever the train is inside the gate� the gate should be closed�

�� Real�time Liveness� The gate is never closed at a stretch for more than �� minutes�

The speci	cation refers to only the events in� out� up� down� The safety property is

speci	ed by the automaton of Figure ����� An edge label in stands for any event set

containing in� and an edge label �in� � out� means any event set not containing out � but

containing in� The automaton disallows in before down� and up before out � All the states

are accepting states�

The real
time liveness property is speci	ed by the timed automaton of Figure ����� The

automaton requires that every down be followed by up within �� minutes�

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

out,~up

in,~updown,~in

~in,~down

up,~in

~in,~up

0S 1S 2S

Figure ����� Safety property

~down

up,(x<10)?

(x<10)?

1S0S

down, x:=0

Figure ����� Real
time liveness property

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Note that the automaton is deterministic� and hence can be complemented� Further

more� observe that the acceptance condition is not necessary� we can include state s� also

in the acceptance set� This is because the progress of time ensures that the self
loop on

state s� with the clock constraint �x
 ��� cannot be taken inde	nitely� and the automaton

will eventually visit state s��

The correctness of AI against the two speci	cations can be checked separately as out

lined in Section ���� Observe that though the safety property is purely a qualitative property�

it does not hold if we discard the timing requirements�

��
�� Implementation

We have implemented the veri	cation algorithm in LISP� We brie�y discuss some aspects

of the implementation�

The input to the program consists of a list of timed B�uchi automata A� through An�

The automaton A� is the speci	cation automaton� and is required to be deterministic� The

implementation automaton is the product of the automata A�� � � �An� The output of the

program is �yes� or �no� depending on whether or not the language of the implementation

automaton is contained in that of the speci	cation automaton�

Recall that the veri	cation procedure involves three steps� ��� constructing the product

automaton A from the automata A�� � � �An� ��� constructing the region automaton R�A��

and ��� searching for a cycle meeting all the desired acceptance requirements� Step ��� can

be implemented by 	nding all the strongly connected components of R�A�� and testing each

component for the desired properties� Because of the constraints on the available memory

space� the above three steps cannot be carried out separately� In the implemented procedure�

neither the product automaton nor the region automaton is constructed explicitly� and all

the three steps are performed simultaneously�

Each vertex is represented by a list

�s�� � � �sn� �x�� x�� � � ��� ��y�� n��� �y�� n��� � � ��� ��z
�
�� m

�
��� �z

�
�� m

�
��� � � ��� ��z

�
�� m

�
��� � � ��� � � ��

Each si gives the state of the automaton Ai� and the remaining components represent the

clock region� In the region corresponding to the above vertex the value of each clock yi

equals ni� The value of each clock xi is greater than its maximum value of interest� that

is� cxi� The value of each clock z
i
j is between mi

j and mi
j � such that �i� the fractional

parts of zij and z
i
k are the same� and �ii� the fractional part of z

i
j is less than that of z

i��
k �

CHAPTER �� AUTOMATA�THEORETIC APPROACH ��

Given such a representation� all its successors in the region automaton are obtained in a

straightforward way by examining the transitions starting at each of the states si�s�

The procedure performs a depth 	rst search starting from the initial vertex of the region

automaton� Whenever a new vertex is visited� it is assigned its own depth 	rst number

�DFN�� The search for strongly connected components uses Tarjan�s algorithm �Tar����

The global data structures include

�� a hash
table mapping vertex representations to their respective DFNs�

�� an array mapping DFNs to the representations of the corresponding vertices�

�� an array storing the DFN of the parent for each vertex�

�� an array which gives for every vertex the least vertex that can be reached using forward

edges and at most one back edge�

�� a stack storing the strongly connected component currently being explored� and

�� an array giving the number of already explored edges from each vertex�

Observe that we do not store the edges of the region automaton� Consequently� the program

needs to generate all the edges starting from a vertex� not only the 	rst time the vertex is

visited� but every time the depth 	rst search backtracks to it�

Whenever a strongly connected component is found� the procedure checks if it contains

an accepting state of each of the automataA�� � � �An and contains no accepting state of A�

and meets the progress requirement� If so� the programhalts saying that the implementation

does not meet the speci	cation� Otherwise when the depth 	rst search terminates� the

program halts saying that the implementation meets the speci	cation�

The example of railroad crossing of Section ����� was given as an input to our program�

The region automaton has about ���� vertices and about ����� edges� The program ter

minated giving the correct answer �yes� �the running time was approximately � minutes

on DEC station ������ Thus the program can handle small examples� The state
explosion

problem prevents its application to bigger systems� In future� we intend to try out some

heuristics to improve its e�ciency�

Chapter �

Linear Temporal Logic

In this chapter we study real
time extensions of linear temporal logics as speci	cation for

malisms for real
time systems� We introduce the speci	cation language MITL� and study its

complexity and expressiveness� We de	ne interval automata� a variant of timed automata�

to model 	nite
state systems� and develop an algorithm for model checking�

��� Propositional temporal logic� PTL

In this section we will brie�y review the de	nition and the complexity results about PTL�

PTL is a modal logic interpreted over in	nite state sequences� The modal operator �

is interpreted as �henceforth�� and its dual � is interpreted as �eventually�� We consider

the logic with the next operator � and the until operator U �

We assume that we are given a set of atomic propositions AP� The formulas � of PTL

are built from the atomic propositions using logical connectives and temporal operators as

de	ned below�

� �" p j �� j �� � �� j � � j �� U ���

Intuitively� a formula�� holds at some state i
 � holds in the next state� �� U �� holds

at some state i
 �� holds at some later state and �� holds at all intermediate states� We

will use �� as an abbreviation for true U �� and �� for �����

The semantics of PTL is de	ned with respect to state sequences� A state sequence�

denoted by �� is an in	nite sequence ��� ��� � � � of states� where each state �i is a subset of

AP� Thus each state assigns truth values to all the atomic propositions� p is true in state

�i i
 p 	 �i�

��

CHAPTER �� LINEAR TEMPORAL LOGIC ��

Now we formally de	ne the semantics of PTL� For a state sequence � " ��� ��� � � � let

�j denote its su�x �j � �j��� � � � The satisfaction relation � j" � �that is� � is a model of ��

is de	ned inductively below�

� j" p i
 p 	 ��

� j" �� i
 � �j" �

� j" �� � �� i
 � j" �� and � j" ��

� j"�� i
 �� j" �

� j" �� U �� i
 �j j" �� for some j
 �� and �k j" �� for all � � k
 j�

The formula � is satis�able i
 some state sequence is a model of ��

The set of models of a formula � can be viewed as a property of state sequences speci	ed

by �� let L��� denote the set of state sequences � such that � j" �� PTL
formulas can specify

several interesting properties such as termination� fairness� mutual exclusion� guaranteed

response� precedence �OL��� Pnu��� MP���� A typical response property that �every p
state

is followed by some q
state�� is speci	ed by the following PTL
formula�

� � p � �q ��

There is a tableau
based decision procedure for testing satis	ability of PTL
formulas

�BMP���� the problem is known to be PSPACE
complete �SC����

In one approach to veri	cation using PTL� 	nite
state systems are modeled as 	nite

Kripke structures� A Kripke structure is given asM " �S� S�� ��E�� where S is a 	nite set

of states� S�
 S is a set of initial states� � � S� �AP gives an assignment of truth values to

propositions in each state� and E is a binary relation over S giving the possible transitions�

The in	nite paths throughM give the set L�M� of state sequences generated byM� This

set consists of state sequences ���s��� ��s�� � � �� such that s� 	 S�� and hsi� si��i 	 E for

all i
 �� A system modeled as a Kripke structureM satis	es the PTL
speci	cation � i

every state sequence generated by the system satis	es the formula �� that is� M j" � i

L�M�
 L��� ��

The model
checking problem is to decide whether a Kripke structureM satis	es a PTL

formula �� The model
checking algorithm 	rst constructs a tableauM�� which generates

precisely the models of ��� and then uses the product construction to check if the inter

section of L�M� and L�M��� is empty �LP��� VW���� The complexity of the algorithm

�Be warned that the notation M j� � is somewhat nonstandard in logic� M is not a single model for the

PTL�formula �� but represents a set of models for ��

CHAPTER �� LINEAR TEMPORAL LOGIC ��

is exponential in the size of the PTL
speci	cation� and linear in the size of the Kripke

structure� The problem is PSPACE
complete�

Notice the similarity between the veri	cation of �untimed� processes using �
automata

of Chapter � and using temporal logic� A process is modeled as a set of traces in Chapter ��

whereas now a process is modeled as a set of state sequences� The basic di
erence is only

in the notion of what is observable� In trace semantics� only the events are observable�

and thus we focus only on the transition points without any reference to the state of the

system between the transition points� In semantics of state sequences� the emphasis is on

the state of the system� and the observable aspect of the state is modeled using a set of

propositions� Thus in one case a system is an �
language over the alphabet P��A�� where

A is the set of events� and in the other case it is an �
language over the alphabet �AP� The

two approaches are very similar� the only reason we are using both of them is that it is

conventional and technically convenient to develop automata theory using an event
based

model� and temporal logics using a state
based model�

In Chapter � we used �
automata to model 	nite
state systems� now we use Kripke

structures� Kripke structures are similar to transition tables� in transition tables edges

are labeled with alphabet symbols� whereas in Kripke structures states are labeled with

propositions� The language L�M�� for a Kripke structureM� is an �
regular language� As

in case of transition tables� we can couple Kripke structures with acceptance conditions�

There is a close connection between B�uchi automata and PTL� For every PTL
formula

�� the language L��� is an �
regular language over the alphabet �AP� and hence� can be

recognized by a B�uchi automaton� On the other hand� PTL does not have the full expressive

power of �
regular languages� it needs to be extended with right
linear grammar operators

or automata connectives to attain the full expressive power of B�uchi automata �Wol����

Along the same lines� for modeling and verifying timed processes we will shift from the

semantics of timed traces to that of timed state sequences � Accordingly we will modify the

de	nition of timed automata so that they generate timed state sequences�

��� Metric interval temporal logic

To reason about quantitative time requirements we need to add time explicitly in the syntax

and semantics of PTL� To de	ne the syntax and semantics we use intervals of the real line�

CHAPTER �� LINEAR TEMPORAL LOGIC ��

����� Intervals

An interval is a convex subset of nonnegative real numbers R� Intervals may be open� half

open� or closed� bounded or unbounded� Each interval is of one of the following forms�

�a� b�� �a� b�� �a���� �a� b�� �a� b�� �a���� where a � b� a� b 	 R� For an interval of the above

form� a is its left end
point� and b is its right end
point� The left end
point of I is denoted

by l�I� and the right end
point� for bounded I � is denoted by r�I��

An interval I is singular i
 it is of the form �a� a�� that is� I is closed and l�I� " r�I��

Two intervals I and I � are called adjacent i

�� the right end
point of I is the same as the left end
point of I �� and

�� either I is right open and I � is left closed� or I is right closed and I � is left open�

For instance� the intervals ��� �� and ��� ���� are adjacent�

We will freely use intuitive pseudo
arithmetic expressions to denote intervals� For exam

ple� the expressions such as � b and 	 a denote the intervals ��� b� and �a���� respectively�

and the expression
 I denotes the interval ft j �t� 	 I� �t
 t��g� The expression I t� for

t 	 R� denotes the interval ft� t j t� 	 Ig� Similarly� I � t and t�I stand for the intervals

ft� � t j t� 	 I and t�
 tg and ft�t� j t� 	 Ig� respectively�

����� Timed state sequences

Let AP be a set of atomic propositions� We assume that� at any point in time� the global

state of a �	nite
state� system can be modeled by an interpretation �or truth
value assign

ment� for AP� We therefore identify states s with subsets of AP� that is� s j" p i
 p 	 s

�for p 	 AP��

We add time to state sequences by associating an interval with each state� this gives us

timed state sequences � If the interval associated with state s is I � then the state at each

time t 	 I is s� We require that the intervals associated with the consecutive states in a

state sequence be adjacent�

De�nition ��� A state sequence � " ������ � � � is an in	nite sequence of states� each state

�i is a subset of AP�

An interval sequence I " I�I�I� � � � is an in	nite sequence of intervals that partitions R

such that

CHAPTER �� LINEAR TEMPORAL LOGIC ��

�i� �adjacency � the intervals Ii and Ii�� are adjacent for all i
 �� and

�ii� �progress � every time value t 	 R belongs to some interval Ii�

A timed state sequence � " ��� I� is a pair consisting of a state sequence � and an

interval sequence I�

Sometimes we will denote a timed state sequence � " ��� I� by the in	nite sequence of

pairs of states and intervals�

���� I�� � ���� I�� � ���� I�� � � � �

A timed state sequence � " ��� I� can be viewed as a map �� from the time domain R

to the states �AP �let ���t� " �i if t 	 Ii�� Thus a timed state sequence provides complete

information about the global state of a system at each time instant� Timed state sequences

obey the �nite�variability condition� between any two points in time there are only 	nitely

many state changes� This assumption is adequate for modeling discrete systems�

Given a timed state sequence ��� I�� the i
th transition point� denoted by ti� is de	ned

to be the left end
point of the interval Ii� that is� ti " l�Ii�� Note that the state at time ti

is �i�� if Ii is left
open� and is �i if Ii is left
closed�

Our de	nition allows transient states� which occur only at isolated points in time� If Ii

is a singular interval �ti� ti�� then the state at time ti is �i� but the state just before ti is

�i��� and the state just after ti is �i��� Observe that in such a case neither �i�� nor �i��

can be transient� because the interval Ii�� must be right
open and the interval Ii�� must

be left
open� The transient states are useful for modeling the truth of propositions that are

true only at the transition points�

We de	ne the su
x of a timed state sequence at every t 	 R below�

De�nition ��� For a timed state sequence � " ��� I�� and time t 	 Ij � the su�x �t is

de	ned to be the timed state sequence

��j� Ij � t� � ��j��� Ij�� � t� � ��j��� Ij�� � t� � � � �

The su�x operator has been de	ned such that ��t���t�� " ���t t�� for all t� 	 R� In

particular �� " ��

Another useful operation is the re	nement operation�

CHAPTER �� LINEAR TEMPORAL LOGIC ��

De�nition ��� A re�nement of a timed state sequence � " ��� I� is a timed state sequence

obtained by replacing each pair ��i� Ii� by a 	nite sequence

��i� I
�
i � � ��i� I

�
i � � � � ���i� I

ni
i �

such that ���j�niI
j
i " Ii� and I

j
i and I

j��
i are adjacent for � � j
 ni�

Observe that if �� is a re	nement of � then the associated maps �� and ��� are identical�

����� Syntax and semantics of MITL

We introduce an extension of linear temporal logic�metric interval temporal logic �orMITL��

that is interpreted over timed state sequences� A fairly standard way of introducing real

time in the syntax is to replace the unrestricted temporal operators of PTL by their time

bounded versions� Thus we introduce operators such as ������ meaning �eventually within

� to � time units� �EMSS��� AH��� Koy����

As before let AP be a set of atomic propositions� The formulas of MITL are built from

propositions by boolean connectives and time
bounded versions of the until operator U � The

until operator may be subscripted with any nonsingular interval with integer end
points�

De�nition ��� The formulas of MITL are inductively de	ned as follows�

� �" p j �� j �� � �� j �� UI ��

where p 	 AP� and I is a nonsingular interval with integer end
points�

Notice that we require the end
points of intervals subscripting MITL
operators to be

integers� We will later show that all our results easily extend to the case when rational

end
points are allowed� the restriction to integer end
points is mainly to simplify the pre

sentation� The formulas of MITL are interpreted over timed state sequences� which provide

an interpretation for the atomic propositions at each time instant� Informally �� UI �� holds

at time t in a timed state sequence i
 there is a later time instant t� 	 I t such that ��

holds at time t� and �� holds throughout �t� t��� The formal de	nition follows�

De�nition ��
 For an MITL
formula �� and a timed state sequence � " ��� I�� the satis

faction relation � j" � is de	ned inductively as follows�

CHAPTER �� LINEAR TEMPORAL LOGIC ��

� j" p i
 p 	 ���

� j" �� i
 � �j" ��

� j" ��� � ��� i
 � j" �� and � j" ���

� j" �� UI �� i
 for some t 	 I � �t j" ��� and �t
�
j" �� for all t� 	 ��� t��

For an MITL
formula �� the set L��� consists of timed state sequences � such that � j" ��

An MITL
formula � is called satis�able i
 L��� is nonempty�

Note that MITL has no next�time operator �� because with the dense time domain

there is no unique next time� Also observe that the until operator is strict in its 	rst

argument� for �� UI �� to hold in the current state �� need not hold now�

����� De�ned operators

Now let us introduce some standard abbreviations for additional temporal operators� The

de	ned operators �I� �constrained eventually� and �I� �constrained always� stand for

trueUI � and ��I��� respectively� It follows that the formula �I� �or �I�� holds at time

t 	 R of a timed state sequence i
 � holds at all times �at some time� respectively� within

the interval t I �

We usually suppress the interval ����� as a subscript� Thus the MITL
operators ��

�� and U coincide with the conventional unconstrained strict eventually� strict always� and

strict until operators of temporal logic� This is because the until operator of MITL is

implicitly strict in its 	rst argument� The corresponding nonstrict operators are de	nable

in MITL� For instance�

�� � ��� � �� U ���

corresponds to the conventional unconstrained non
strict until operator �� U ��� Note that�

on the other hand� the MITL
operator UI cannot be de	ned in terms of an until operator

that is not strict in its 	rst argument� this is why we have chosen the strict versions of

temporal operators to be primitive�

Example ��� In MITL� we can specify that a particular proposition always holds only

instantaneously� The following formula states that the proposition p is true in in	nitely

many transient states and nowhere else�

p � ����p � ��p�U p��

CHAPTER �� LINEAR TEMPORAL LOGIC ��

Such formulas can be used to distinguish events from state constraints� Such a property

cannot be expressed if the until
operator is de	ned to be nonstrict in its left argument�

We also de	ne a constrained unless operator as the dual of the until operator�

�� IU�� stands for �������UI �������

It follows that the formula �� IU�� holds in a timed state sequence i
 either �� is true

throughout the interval I � or there is a time instant t 	 � such that �� is true at time t and

�� holds at all instants t
� � t within the interval I �

Let us consider a few examples of MITL properties now� Observe that all the qualitative

temporal properties speci	able in PTL are already de	nable in MITL�

Example ��� A typical bounded response property that �every p
state is followed by some

q
state within time ��� is expressed by the MITL
formula

�� p � ����	� q ��

Example ��� We consider a time�out property now� Suppose p is some state constraint�

and q is the time
out event� The property we want to specify is that whenever p ceases to

hold� either within next � time units it becomes true again� or at time � the time
out event

q happens� This property is speci	ed by the formula�

���� �p � �������p� � ��������q � �����
q ���

More examples of specifying interesting systems using real
time temporal logics can be

found in �Koy��� and �Ost��b��

����� Re�ning the models

In this section� we present some results that will be useful in developing the decision pro

cedure for MITL�

Observe that the logic MITL is insensitive to stuttering � For a timed state sequence

� " ��� I�� and an MITL
formula �� the satisfaction relation � j" � depends on the map ���

and not on the particular choice of the interval sequence I � This follows trivially from the

semantic de	nition� In particular� the next lemma holds�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

Lemma ��	 If a timed state sequence �� is a re	nement of a timed state sequence � then

for every MITL
formula �� � j" � i
 �� j" ��

Hence� if for a timed state sequence � " ��� I�� the state does not change after the j
th

transition point� that is� �i " �j for all i
 j� then we represent � by the 	nite sequence

���� I�� � ���� I�� � � � � � ��j��� Ij��� � ��j ��i�jIi��

Also the satisfaction relation has another nice property� the truth value of a given

MITL
formula does not change more than � times over �� Thus the models satisfy the

	nite
variability property� not only with respect to the truth of atomic propositions� but

also with respect to more complex MITL properties�

De�nition ���� For an MITL
formula �� a timed state sequence � " ��� I� is called �
�ne

i
 for all i
 �� for all subformulas � of �� for all t� t� 	 Ii� �
t j" � i
 �t

�
j" ��

Thus in a �
	ne timed state sequence ��� I� the truth of all the subformulas of � stays

invariant over every interval of I� The following lemma states that every timed state se

quence can be re	ned into a �
	ne timed state sequence� It follows that a formula � is

satis	able i
 it has some �
	ne model�

Lemma ���� Let � be an MITL
formula and � be a timed state sequence� There exists a

�
	ne timed state sequence �� which re	nes ��

Proof� The proof is by induction on the structure of the formula� For an atomic

proposition p� take �p to be the same as �� For a negated formula ��� take ��� to be the

same as ���

In case of the conjunction �� � ��� the sequence ���
�� is constructed by re	ning the

sequence ��� � Let I�� " J�J� � � �We split each interval Ji into a 	nite sequence J�i � � � �J
ni
i

so that each Jji is fully contained in some interval of I�� �

Now let us consider the case � " �� UI ��� First we construct the re	nement ���
���

Let I��
�� " J�J� � � �We construct a re	nement I� " J ��J
�
� � � � of I��
�� such that whenever

t and t� are in the same interval J �i � then both t l�I� and t� l�I� belong to the same

interval Jk for some k
 i� and� if I is bounded� both t r�I� and t� r�I� belong to the

same interval Jl for some l
 k� It is clear that such a sequence can be constructed by a

	nite splitting of each interval Ji� Furthermore� it is easy to check that �
t j" � i
 �t

�
j" �

whenever t and t� are in the same interval J �i �

CHAPTER �� LINEAR TEMPORAL LOGIC ���

����	 Real versus rational time

While timed state sequences are de	ned by choosing the set of �nonnegative� reals to model

time� for interpreting formulas of MITL� the crucial property of the time domain R is not

its continuity� but only its denseness� Choosing some other dense linear order to de	ne

semantics leaves the complexity and expressiveness results unchanged� In particular� we

show that replacing the time domain R with the set of nonnegative rational numbers� Q�

when de	ning the semantics of MITL does not change the satis	ability �and validity� of

any MITL
formula�

De�nition ���� A timed state sequence ��� I� is called rational i
 the end
points of all

intervals in I are rational�

Let � be an MITL
formula� and let � be a rational timed state sequence� � Q
satis	es

� i
 � j" �� where the satisfaction relation j" �De	nition ���� is rede	ned so that all time

quanti	ers range over Q only�

A formula � is called Q
satis	able i
 � Q
satis	es � for some rational timed state se

quence ��

We show that this new notion of satis	ability is the same as the old one� In other

words� MITL
formulas cannot distinguish the time domain R from the time domain Q�

This equivalence of real and rational models follows from the following two lemmas�

Lemma ���� Let � be an MITL
formula and � a rational �
	ne timed state sequence�

Then � Q
satis	es � i
 � satis	es ��

Proof� We use induction on the structure of �� Let us consider only the interesting

case� that � has the form �� UI ���

Suppose � " ��� I� is rational� and �
	ne timed state sequence� Suppose � Q
satis	es

�� that is� �t Q
satis	es �� for some rational t 	 I � and �t
�
Q
satis	es �� for all rationals

�
 t�
 t� By the induction hypothesis� we may conclude that �t j" �� and �t
�
j" �� for all

rationals �
 t�
 t� Hence� to show that � j" �� UI ��� it su�ces to show that �
t�� j" �� for

all reals �
 t��
 t� Consider an arbitrary real �
 t��
 t� and assume that t�� 	 Ii� If Ii

is singular then� since � is rational� t�� must be rational� Otherwise� Ii is nonsingular� and

there is also a rational t� 	 Ii with �
 t�
 t� We know that �t
�
j" �� and� since � is �
	ne�

it follows that �t
��
j" ���

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The second direction� that every rational �
	ne model of � Q
satis	es �� follows by a

similar argument�

Lemma ���� Let � " ��� I� and �� " ��� I
�
� be two timed state sequences such that for all

t 	 R� if t " ti m for some left end
point ti of an interval Ii in I and some m 	 N� then

t 	 Ij i
 t 	 I �j � For all MITL
formulas � j" � i
 �� j" ��

Proof� The proof is by induction on the structure of �� The only interesting case is

� " �� UI ��� Suppose � j" �� UI ��� Let t 	 Ii be such that �t j" �� and �t
��
j" �� for all

�
 t��
 t� We can 	nd t� 	 I �i such that for all t
�� 	 R� if t�� " t m for some m 	 N�

then t�� 	 Ij i
 t
�� 	 I �j � The integer part of t

� should be the same as that of t� and for all i�

fract�t� � fract�ti� i
 fract�t�� � fract�t�i�� Now by applying the induction hypothesis to �
t

and ��t
�
� we get that ��t

�
j" ��� By a similar argument� we can show that for all �
 t��
 t��

��t
��
j" ��� and hence� �

� j" �� UI ���

Lemma ���� classi	es timed state sequences into equivalence classes such that the mem

bers of a class cannot be distinguished by formulas of MITL� It implies� in particular� the

following theorem�

Theorem ���
 A formula � of MITL is Q
satis	able i
 it is satis	able�

Proof� Suppose that � is Q
satis	able in a rational model �� By Lemmas ��� and �����

there is a rational �
	ne re	nement of � that Q
satis	es �� By Lemma ����� this re	nement

is a �real� model of ��

The proof of the second direction uses Lemma ����� Consider a �real� model � " ��� I�

of �� We construct another timed state sequence �� " ��� I
�
� as follows� We adjust the

interval boundaries in I so that no interval is adjusted across integers� and the ordering of

the fractional parts of all interval boundaries is not altered� The denseness of Q allows us to

adjust all boundaries to be rational numbers� In particular� for all i
 �� the interval I �i is

left
open i
 Ii is left
open� and I
�
i is right
open i
 Ii is right
open� Let ft

�
i 	 ��� �� j i
 �g be

a sequence of rational numbers such that for every pair i� j� t�i � t�j i
 fract�ti� � fract�tj��

Set the left end
point of I �i to be the integral part of ti plus t
�
i� The timed state sequences

� and �� satisfy the requirements of Lemma ����� and hence �� j" �� By Lemma ��� and

Lemma ���� the �
re	nement of �� Q
satis	es ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

����
 Allowing rational constants

While de	ning the syntax of MITL we required the boundaries of the intervals subscripting

the until operator to be integers� We can relax this condition� and allow intervals with

rational end
points� For example� we can allow formulas such as ����������p� which says that

p holds over the interval ����� �����

All our results can be easily adopted to accommodate this extension� This is because of

the following obvious property of the models of MITL�

Lemma ���� Let � be a formula of MITL possibly with arbitrary rational constants� and

let � " ��� I� be a timed state sequence� For c 	 Q� let �c denote the formula � obtained by

replacing every interval subscript I by c�I � similarly� let �c denote the timed state sequence

obtained from � by replacing every interval Ii in I by c�Ii� � j" � i
 �c j" �c�

The lemma can be proved by a straightforward induction on the structure of �� Conse

quently� there is an isomorphism between the models of � and the models of �c�

In particular� to test the satis	ability of � with rational constants� we test the formula

�c for satis	ability� where c is the least common multiple of all the constants appearing in

�� Note that �c has only integer constants� and the size of �c is bounded by j�j
��

����� Avoiding undecidability

In MITL� we cannot write formulas such as

��p � ��� q��

since intervals such as ��� �� are not allowed as subscripts� We will show that there is� in

fact� no MITL
formula that expresses this condition� and that the restriction of MITL to

nonsingular intervals is essential for decidability� Note that some forms of equality are

expressible in MITL� we de	ne ����U�t � as an abbreviation for

�����t���� � �����t
���

Thus the stronger condition that �for every p
state the next following q
state is after exactly

� time units��

��p � ��q�U�� q��

is expressible in MITL�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

We show that allowing singular intervals as subscripts for the temporal operators makes

MITL undecidable� The denseness of the underlying time domain allows us to encode

Turing machine computations� Notice that the undecidability result depends on the choice

of dense
time semantics� the problem is decidable for the discrete models �AH���� The proof

of the next theorem is similar to the proof of Theorem �����

Theorem ���� If singular intervals are allowed as subscripts for temporal operators in the

syntax of MITL then the satis	ability problem is ��
�
complete�

Proof� ���
�
hardness�� Recall that the problem of deciding whether a nondeterministic

�
counter machine has a recurring computation is ��
�
hard �Lemma ������ We construct a

formula � such that � is satis	able i
 the given machine has a recurring computation�

Let A be a �
counter machine with counters C and D� and n program instructions� As

before� a con	guration of the machine is represented by a triple hi� c� di� where i gives the

instruction to be executed next and c� d give the contents of the counters� A computation

of the machine is an in	nite sequence of triples starting at h�� �� �i�

We encode the computations of A in the logic using the propositions pC � pD� and

p�� � � �pn� First we require that all propositions are true only in singular intervals of a

timed state sequence� The following MITL
formula speci	es this constraint for the propo

sition pC �

����pC � ��pC�U pC��

Let us say that a timed state sequence � encodes a con	guration hi� c� di over the interval

�a� b�� a
 b� i
 following hold�

�� The proposition pC holds at exactly c time instants in the interval �a� b� along ��

�� The proposition pD holds at exactly d time instants in the interval �a� b� along ��

�� Each proposition pj � j �" i� is false everywhere in the interval �a� b� along ��

�� The proposition pi is true over �a� a� and false during the interval �a� b� along ��

We construct a formula � such that � j" � i
 there exists a computation fhij � cj� dji � j
 �g

of A such that � encodes the j
th con	guration over the interval �j� j �� for all j
 ��

The nature of the initial con	guration is expressed by the formula�

p� � �������p� � ��������pC � �pD �
�

��i�n

�pi ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

To relate one con	guration to the next� we establish a one
to
one correspondence be

tween the states separated by distance �� The formula � has one conjunct for each program

instruction� For instance� if the second instruction is to increment D �and goto instruction

��� � has the following conjunct�

���

�
����p� �

�
BBB�
��� p	 � �������p	 � ����������i�n�i��	 �pi� �

������ copy�pC� �

copy�pD�U����pD � ��� pD � copy�pD�U p	�

�
CCCA

�
			

We have used the abbreviation copy�p� for �p � ��� p�� The 	rst conjunct requires the

propositions representing the instruction counter change according to the desired scheme�

The second conjunct makes sure that the number of pC
states is the same in the next

con	guration as in the current one� The third conjunct holds at time t� i
 the number of

pD
states in the interval �t �� t �� is precisely one greater than the corresponding number

for the interval �t� t ���

The recurrence requirement is expressed by the conjunct �� p�� It follows that the

satis	ability question for the extended logic is ��
�
hard�

���
�
containment�� Let � be a formula of MITL possibly using singular interval subscripts

also� First observe that Theorem ���� holds even in presence of singular interval subscripts�

Hence if � has a model� then it has a model with rational interval end
points� Now the

satis	ability of � can be phrased as a ��
�
sentence� asserting that some timed state sequence

with rational transition times is a model of �� It is routine to encode a rational model by a

set of natural numbers� and to express the satisfaction relation in 	rst
order arithmetic�

Another possible extension of the syntax is to permit time bounds for both arguments

of the until operator� The intended semantics of ��� I �UI ��� is that it holds in a timed

state sequence � provided �� holds at some time instant t 	 I and �� holds throughout

��� t� � I �� However such an extension leads to undecidability� A close inspection of the

proof of Theorem ���� shows that the only operator using the equality subscript is ����

The formula ���� can be replaced by false��U�� ��

��� Interval automata

In this section we de	ne interval automata as a model for 	nite
state real
time systems�

Just as Kripke structures are the 	nite models for PTL
speci	cations� interval automata

CHAPTER �� LINEAR TEMPORAL LOGIC ���

will be the 	nite models for MITL
speci	cations�

Interval automata are similar to timed transition tables� The main di
erence is that

in a timed transition table� the transitions are labeled with events and clock constraints�

whereas in a timed states are labeled with atomic propositions and clock constraints� With

this modi	cation interval automata now generate timed state sequences� instead of timed

traces�

A interval automaton operates with 	nite control � a 	nite set of states and a 	nite set

of real
valued clocks� All clocks proceed at the same rate and measure the amount of time

that has elapsed since they were started �or reset�� Each transition of the automaton may

reset some of the clocks� and each state of the automaton puts certain constraints on the

values of the atomic propositions as well as on the values of the clocks� the control of the

automaton can reside in a particular state only if the values of the propositions and clocks

satisfy the corresponding constraints�

Recall that for a set X of clocks� %�X� denotes the set of allowed clock constraints�

Each clock constraint is a Boolean combination of atomic conditions which compare clock

values with constants�

De�nition ���� A interval automaton is a tupleM " hS� S�� ��C�(�Ei� where

� S is a 	nite set of states�

� S�
 S is a set of initial states�

� � � S� �AP is a labeling function assigning to each state the set of atomic propositions

true in that state�

� C is a 	nite set of clocks�

� (� S � %�C� is a labeling function assigning to each state the clock constraint that

should hold in that state�

� E
 S�S��C is a set of edges� An edge hs� s�� �i� also denoted as s
�
�� s�� represents

a transition from state s to state s�� and � gives the set of clocks to be reset with this

transition�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The runs of an interval automaton de	ne timed state sequences� At any time instant

during a run� the con	guration of the system is completely determined by the state in which

the control resides and the values of all clocks� The values of all clocks are given by a clock

interpretation �� which is a map from C to R� for any clock x 	 C� the value of x under the

interpretation � is ��x� 	 R�

Assume that� at time t 	 R� the interval automaton is in state s and the clock values are

given by the clock interpretation �� Suppose the state of the automaton remains unchanged

during the time interval I with l�I� " t� All clocks proceed at the same rate as time elapses�

at any time t� 	 I the value of any clock x is ��x� t� � t� so the clock interpretation is

� t� � t� During all this time the value of the clock interpretation satis	es the clock

constraint that is associated with s� that is� �� t� � t� j" (�s�� Now suppose that the

automaton changes its state at time r�I� " t�� via the transition s
�
�� s�� This state change

happens in one of the possible two ways� If I is right
closed� then the state at time t�� is

still s� otherwise the state at time t�� is s�� The clocks in � get reset to � at time t��� Let

� �� be the clock interpretation �� �� ���� t�� � t�� which gives the valuation for the clocks

at the beginning of the next interval� The clock interpretation at the transition time t���

however� depends on whether the state at time t�� is s or s�� If I is right
closed� then the

clock interpretation at time t�� is �� t��� t� and should satisfy (�s�� If I is right
open then

the clock values at the transition point are given by ���� and should satisfy (�s��� The state

s� stays unchanged over some interval adjacent to I � and the same cycle repeats�

Let '�M� denote �C �� R�� the set of clock interpretations for the clocks of M� The

behavior of the system is formally de	ned below�

De�nition ���	 A run r of an interval automaton M " hS� S�� ��C�(�Ei is an in	nite

sequence

r � ��
��

�s�� I��
����
��
�s�� I��

����
��
�s�� I��

����
��

� � �

of states si 	 S� intervals Ii� clock sets �i
 C� and clock interpretations �i 	 '�M�

satisfying the following constraints�

� Initiality� s� 	 S��

� Consecution�

� the sequence I " I�I�I� � � � forms an interval sequence�

� for all i
 � either hsi� si��� �ii 	 E or si�� " si with �i " ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

� �i�� " ��i�� �� ����i r�Ii�� l�Ii�� for all i
 ��

� Timing� for all t 	 Ii� the clock interpretation �i t� l�Ii�� denoted by �r�t�� satis	es

(�si��

Note that� according to this de	nition� the clocks may start at any real values that

satisfy the clock constraints of an initial state� Requiring the initial values of all the clocks

to be � would complicate the presentation of the model
checking algorithm for MITL �to be

presented in Section ����� A run r gives a map �r from R to '�M� giving the clock values

at every instant of time�

Note that the above de	nition assumes that there are implicit self
loops on every state

of the automaton� that is� introducing an edge s
�
�� s does not change the set of runs of

the interval automaton�

We can associate timed state sequences with the runs� and use them to interpret MITL

formulas�

De�nition ���� The timed state sequence �r associated with a run r is

�r � ���s��� I�� � ���s��� I�� � ���s��� I�� � ���s	�� I	� � � � �

L�M� denotes the set of all timed state sequences �r that correspond to the runs of the

interval automaton M�

An interval automaton M satis	es an MITL
speci	cation � i
 L�M�
 L����

We say that M generates �or accepts� the timed state sequences in L�M�� The set

L�M� gives the set of all possible behaviors of the real
time system modeled by M�

Observe that the above de	nition allows transient or instantaneous states along a run�

This corresponds to conditions �such as propositions denoting occurrence of events� that

hold only during state
transitions� Such states can be forced along a run by associating

clock constraints involving equality with the state� Also there is no commitment to de	ning

the state at the point of transition� we only require that the clock interpretation consistent

with this choice should satisfy the corresponding clock constraint�

Let us consider some examples�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

p

S0

S1

S2

S3

p

pp

x=0 x=3

x<3

x<3

x:=0

x:=0

Figure ���� Interval automatonM�

Example ���� The interval automatonM� of Figure ��� has four states s� to s	� a single

clock x� and a single proposition p�

The automaton starts in state s� with the clock x set to � and the proposition p true�

During the time interval ��� �� the automaton loops between states s� and s�� and thus� the

proposition p may have any value� At time � the automaton moves to state s	 to check that

p holds� The clock is reset at this point� and the whole cycle repeats� ThusM� requires p

to hold at all time values that are integer multiples of �� A pre	x of a possible run of the

automaton is shown below� Since there is a single clock� the clock interpretation is given

by a real value�

��
�
�s�� ��� ���

�
��
�
�s�� ��� �����

�
��
���

�s�� ����� ���
�
��
	
�s	� ��� ���

fxg
��
�
�s�� ��� ��� � � �

The set of timed state sequences generated byM� is

L�M�� " f� j �n 	 N� p 	 �����n�g�

Example ���� Consider the interval automaton M�� shown in Figure ��� with seven

states� s� to s�� and uses two clocks� x and y�

The automaton starts in the initial state s� with the clock y initialized to �� At time

�� the automaton moves to state s�� and simply loops there� The proposition p denotes an

external event which is true only at instantaneous points t
 �� in time �and no more than

CHAPTER �� LINEAR TEMPORAL LOGIC ���

y>40-

x:=0

p ,q

2<x<5
y<40

-

p ,q
y<40

x=0

p, q

y=0

p q,
y<40
x<2

p q,

y<40

p q,

S0 S1 S2 S3 S4 S5

y<40
p q,

x=5

S6

Figure ���� Interval automatonM�

once every � time units�� namely� whenever M� is in state s�� The automaton responds

to p by resetting the clock x� and then it requires that the proposition q holds over the

interval t ��� ��� Thus the automatonM� models a system which responds� until time ���

to the event p by setting q to true for the interval ��� �� following p� A possible timed state

sequence generated byM� is

��� ��� ����� �fpg� ���� ����� ��� ���� ����� �fqg� ���� ����� ��� ���� ����� �fqg� ��������

The interval automaton satis	es the MITL
formula

�������� p � ������q � � ���� q�

Checking emptiness

The emptiness problem for interval automata is to decide whether L�M� is empty for a

given automaton M� This problem can be solved using the same techniques that we used to

solve the emptiness problem for timed automata in Section ���� Also the model
checking

algorithm for TCTL �to be de	ned in Chapter �� can be used to check for the emptiness of

an interval automaton� It follows that the problem can be solved in PSPACE� speci	cally�

in time O��jSj jEj� � �j�j�� where j(j denotes the length of clock constraints�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The proof of PSPACE
hardness of the emptiness problem for timed automata �see The

orem ����� is easily modi	ed to show PSPACE
hardness for interval automata also� The

next theorem follows�

Theorem ���� Given an interval automaton M� the problem of deciding whether L�M�

is empty� is PSPACE
complete�

Composing interval automata

To describe any real
time system it is useful to describe individual components separately

and then combine the di
erent descriptions� We discussed this operation� called parallel

composition� in context of timed automata� Interval automata describing behaviors of

di
erent components can be put together in a similar way� The next theorem gives the

construction for composing interval automata�

Theorem ���� Given interval automata Mi " hSi� S�i� �i�Ci� �i�Eii� � � i � �� there

exists an interval automatonM such that L�M� " L�M�� � L�M���

Proof� We assume that the clock sets Ci are disjoint� The states of M are of the

form hs�� s�i� where s� is a state ofM� and s� is a state ofM� such that both s� and s�

agree on the assignment of truth values to propositions� that is� ���s�� " ���s��� The clock

constraint for hs�� s�i is the conjunction of the clock constraints for s� and s�� For any pair

of transitions s�
���� s�� and s�

���� s�� inM� andM�� respectively� the product automaton

has three transitions� hs�� s�i
������� hs��� s

�
�i� hs�� s�i

���� hs��� s�i� and hs�� s�i
���� hs�� s

�
�i�

Thus the transitions ofM simulate the joint behavior of the two component automata�

Introducing fairness

In verifying concurrent systems� we are generally interested only in correctness along the fair

computation paths �LPS���� For example� in a system with two processes� we may wish to

consider only those computation sequences in which each process executes in	nitely often�

For a Kripke structureM " �S� S�� ��E�� a standard way to introduce fairness requirements

uses a fairness family F
 �S� A path �s�� s�� � � �� is fair with respect to F i
 for each F 	 F �

si 	 F for in	nitely many i
 �� Note that the fairness constraints for Kripke structures

are similar to the acceptance conditions for �
automata� In the automata framework� the

fairness requirement of the above form has been called generalized B�uchi condition� We

introduce fairness in interval automata in a similar way�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

De�nition ���
 An interval automaton with fairness is an automaton hS� S�� ��C�(�Ei

with a fairness family F
 �S�

A run r of the form

r � ��
��

�s�� I��
����
��

�s�� I��
����
��

�s�� I��
����
��

� � �

is called F
fair i
 for every F 	 F � for in	nitely many i
 �� si 	 F�

For an interval automatonM with a fairness family F � the set L�M� of timed state

sequences generated by M consists of all timed state sequences �r corresponding to the

F
fair runs r of M�

The algorithm to check emptiness of L�M� can be generalized to handle fairness con

straints in a straightforward way� Similarly� the product construction for interval automata

is easily extended to handle fairness constraints�

��� Deciding MITL

We solve the satis	ability problem for MITL by reducing it to the emptiness problem for

interval automata� Our main result is that� given an MITL
formula �� we can construct an

interval automatonM� such that the runs ofM� that meet certain fairness requirements

correspond precisely to the timed state sequences that satisfy ��

����� Restricting the problem

To simplify the exposition of the decision procedure� we restrict the satis	ability question

for MITL to formulas and models of a speci	c form and show that this can be done without

loss of generality�

De�nition ���� An MITL
formula � is said to be in normal form i
 it is built from

atomic propositions and negated atomic propositions using conjunctions� disjunctions� and

temporal subformulas � of the following six types�

�� �� UI �� with bounded I and l�I� 	 ��

�� �� IU�� with bounded I and l�I� 	 ��

�� �I �
� with I " ��� n� or I " ��� n��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

�� �I �
� with I " ��� n� or I " ��� n��

�� �� U ���

�� ����

Next we give a series of transformations that allow us to rewrite any formula � into

an equivalent formula �� in normal form� Thus we restrict ourselves to test the satis	a

bility of MITL
formulas each of whose temporal subformulas are� according to the above

classi	cation� of one of six types� type�� to type���

First� we require that no interval in � contains �� This can be achieved by applying the

following equivalence�

�� UI �� � ��� � ��UI������ ���

provided that � 	 I �

Secondly� we require that the only unbounded intervals in � are of the form ������ This

can be achieved by applying the following two equivalences�

�� U�n��� �� � ����n
 ��� � �� U ���

�� U�n��� �� � ����n��� � ����n
 ��� � ��� � �� U ����

provided that n 	 ��

Thirdly� we require that only the eventually and the always operators are constrained

with bounded intervals I such that l�I� " �� This can be achieved by applying the following

equivalence�

��UI �� � �I �� � �� U ��

provided that l�I� " ��

Finally� we push all negations in � to the inside and use the following equivalence to

eliminate each subformula of the form �� U���

�� U�� � � �� � ��U ��� � ����

It is easy to check that the resulting formula is in normal form�

It may appear that these rewritings blow up the size of the formula �� but observe that

the number of distinct subformulas of �� is only linear in the length of �� This is because

CHAPTER �� LINEAR TEMPORAL LOGIC ���

at each step of rewriting� only a constant number of new subformulas are created� In fact�

if the formula is represented as a directed acyclic graph� thus avoiding the duplication of

shared subformulas� then the size of the formula blows up only by a constant factor� The

next lemma follows�

Lemma ���� For every MITL
formula � there exists an equivalent formula �� in normal

form such that

� the largest �integer� constant appearing as an interval end
point in �� is the same as

the largest constant appearing in �� and

� if j�j is the number of atomic propositions� Boolean connectives� and temporal oper

ators in �� then the number of distinct syntactic subformulas of �� is O�j�j��

Proof� For each step of rewriting� we can show that if a formula � is rewritten to

�� then the number of syntactic subformulas in �� is bounded by a constant multiple of

the number of subformulas in � by induction on the automaton of �� Also note that the

rewriting steps do not introduce any new constants�

Henceforth we assume that the MITL
formulas under consideration are in normal form�

Let K 	 N be such that K � � is the largest constant appearing as an interval end
point in

the formula � to be checked�

To check the satis	ability of an MITL
formula �� by Lemmas ��� and ���� we can con	ne

ourselves to the question if � has a �
	ne model� Therefore we consider� throughout this

section� only �
	ne timed state sequences � " ��� I�� It follows that� if � is a subformula of

�� we may write �i j" � for ��t j" � for all t 	 Ii�� In addition� we assume that all intervals

in I are either singular or open� This is su�cient� because any model of � can be brought

into this form by splitting all nonsingular closed intervals� for instance� the interval �a� b�

can be split into the two intervals �a� a� and �a� b��

Let us introduce a new atomic proposition psing such that �i j" psing i
 the i
th interval

Ii of � " ��� I� is singular� Hence the proposition psing holds exactly in every other interval�

For a timed state sequence � that satis	es these conditions� Then�

� � j" �� UI �� i
 for some i with Ii � I �" �� ��� both �i j" �� and �i j" �� � psing �

and ��� �j j" �� for all �
 j
 i� and ��� �� j" �� � psing �

CHAPTER �� LINEAR TEMPORAL LOGIC ���

� � j" �� IU�� i
 �� j" �� if I��I �" �� and either ��� �� j" ����psing � or ��� �i j" ��

for some i 	 � and �j j" �� for all �
 j � i with Ij � I �" �� or ��� �j j" �� for all

j 	 � with Ij � I �" ��

The di
erent types of temporal subformulas of � are handled di
erently by our algo

rithm� The simplest case is that of type
� and type
� formulas� they are treated essentially

in the same way in which tableau decision procedures for linear temporal logic handle un

constrained temporal operators� The most interesting case is that of type
� and type
�

formulas� We concentrate 	rst on this case� The case of type
� and type
� formulas will be

considered later�

����� Intuition for the algorithm

Consider the MITL
formula

������ �p � �����
 q��

Let us assume� for simplicity� that both p and q are true only in singular intervals and let

us try to build an interval automaton that accepts precisely the models of this formula�

Whenever the automaton visits a p
state� it needs to make sure that within � to � time

units a q
state is visited� This can be done by setting a clock x to � when the p
state is

visited� and demanding that some q
state with the clock constraint � � x � � is visited

later� This strategy requires a clock per visit to a p
state within the interval ��� ��� However�

the number of such visits is potentially unbounded and� hence� any automaton with a 	xed

number of clocks cannot reset a new clock for every visit� That is why this simple strategy

cannot be made to work�

An alternative approach is to guess the times for future q
states in advance� The au

tomaton nondeterministically guesses two time values t� and t� within the interval ��� ���

this is done by resetting a clock x at time t� and another clock y at time t�� The guess is

that the last q
state within the interval ��� �� is at time t� �� and that the �rst q
state

within the interval ��� �� is at time t� �� If the guesses are correct� then the formula�����
 q

holds during the intervals ��� t�� and �t�� ��� and does not hold during the interval �t�� t���

Consequently� the automaton requires that every p
state within the interval ��� �� lies either

within ��� t�� or within �t�� ��� It also needs to make sure that the guesses are right� that is�

whenever either x " � or y " �� the automaton must be in a q
state� This strategy requires

only two clocks for the interval ��� �� of length �� irrespective of the number of p
states

CHAPTER �� LINEAR TEMPORAL LOGIC ���

within ��� ���

We say that the guessed times t� � and t� � witness the formula �����
 q throughout

the intervals ��� t�� and �t�� ��� respectively� In general� the witnesses need not be singular

intervals� they can be open intervals� To see this� let us relax the assumption that q

holds only in the singular intervals� Let �
 t�
 t��
 � be such that q is true during

I� " �t� �� t
�
� �� and false during �t

�
� �� ��� and let �
 t�
 t��
 � be such that q is false

during ��� t� �� and true over I� " �t� �� t
�
� ��� Thus I� is the last q
interval within ��� ���

and I� is the 	rst q
interval within ��� ��� The formula �����
 q holds during the intervals

��� t��� and �t�� ��� and does not hold during the interval �t
�
�� t��� To check the formula� the

automaton nondeterministically guesses four time values t�� t
�
�� t�� and t

�
�� It requires that

no p
state lies within �t��� t��� and also it needs to ensure that the guesses are right� In

this case we say that the intervals I� and I� witness the formula �����
 q throughout the

intervals ��� t��� and �t�� ��� respectively� Notice that we could not have chosen a particular

time instant from I� as a witness for ��� t
�
��� if I� were right
closed we could have chosen its

right end
point as the witness�

In the following we develop an algorithm based on this idea of guessing� in advance�

time intervals that witness temporal formulas and� later� checking the correctness of these

guesses� The crucial fact that makes this strategy work� with a 	nite number of clocks� is

that the same interval may serve as a witness for many points in time� We warn the reader

that the details of this algorithm are quite tedious compared to the other parts of the thesis�

����� Witnessing intervals

De�nition ���� The interval I � is a witnessing interval for the MITL
formula �� UI ��

under �t� for a timed state sequence � and t 	 R� i
 I �� �t I� �" � and �t j" �� UJ�t �� for

every nonempty interval J
 I ��

The interval I � is a witnessing interval for the MITL
formula �� IU�� under �
t i
 t I

I � and �t j" �� I ��tU���

Observe that if I � witnesses �� UI �� under �t� then �� holds throughout �t� r�I ���� and

�� holds throughout the interval I
�� Witnessing intervals are de	ned such that the following

property holds�

Lemma ���	 Let � be an MITL
formula of the form ��UI �� or �� IU��� let � be a timed

state sequence and t 	 R� There is a witnessing interval for � under �t i
 �t j" ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

Proof� If �t j" � for the formula � " �� UI ��� then �t
�
j" �� for some t

� 	 t I and

the singular interval �t�� t�� witnesses � under �t� If �t j" � for the formula � " �� IU���

then the interval t I witnesses � under �t�

The other direction of the lemma follows from the semantic clauses for the until and

unless operators�

Now we show that the same interval may serve as a witnessing interval for a temporal

formula under �in	nitely� many su�xes of a timed state sequence�

Example ���� Consider the timed state sequence � over two propositions p and q�

�fpg� ��� ����� � �fp� qg� ����� ����� � �fpg� ���������

Thus along � the proposition p is always true� but the proposition q is true only during the

interval Iq " ����� ����� The interval Iq witnesses the formula pU����� q under �
t for every

t 	 ��� ����� On the other hand� the interval ����� �� witnesses the formula ������ ��q� under

�t for every t 	 ����� ���

Lemma ���� Let � be the type
� formula �� UI ��� For every timed state sequence ��

there are two bounded� open or closed� intervals I � and I �� such that� for every t 	 ��� ���

the formula � is satis	ed by �t i
 either I � or I �� witnesses � under �t� Furthermore�

r�Ii� � r�I� � for i " �� ��

Proof� Let � " ��� I� be a �
	ne timed state sequence with only singular and open

intervals� including the singular interval �r�I� �� r�I� �� �split intervals if necessary�� We

choose two witnessing intervals I � and I �� as follows�

� Let)� be the maximal i
 � such that Ii�I �" �� both �i j" �� and �i j" ���psing � and

�k j" �� for all � � k
 i with Ik � I �" �� If no such i exists� let I � " �� otherwise� let

I � " I���

� Let)
 be the minimal j
 � such that Ij��I �� �" �� both �j j" �� and �
j j" ���psing �

and �k j" �� for all � � k
 j with Ik � �I � I �� �" �� If no such j exists� let I �� " ��

otherwise� let I �� " I�
�

Consider � � t
 �� Assume �t satis	es �� Clearly �t
�
j" �� for all t�
 I � If I � exists

and I � � �t I� �" � then I � witnesses � under �t� Otherwise� let t� 	 �t I� be such that

CHAPTER �� LINEAR TEMPORAL LOGIC ���

�t
�
j" �� and �

t�� j" �� for all t
�� 	 �t� t��� In this case I �� exists� if t� 	 Ik then)
 � k� Hence

I�
 � �t I� �" �� and I �� witnesses � under �t�

In the case of type
� formulas� a single witness per unit interval su�ces to reduce the

problem to type ��

Lemma ���� Let � be the type
� formula �� IU��� For every timed state sequence ��

there is a bounded interval I � such that� for every t 	 ��� ��� the formula � is satis	ed

by �t i
 either �t satis	es the type
� formula ���������I��� or I
� witnesses � under �t�

Furthermore� r�I �� � r�I� ��

Proof� Let � " ��� I� be a �
	ne timed state sequence with only singular and open

intervals� including the singular interval In " �r�I� �� r�I� ��� We choose witnessing

interval I � as follows�

� Let)� be the minimal i
 � such that Ii � I �" � and either

�� �k j" �� for all k
 i with Ik � I �" �� or

�� there is some i � j � n such that �j j" �� � �� and �
k j" �� for all i � k
 j�

� Given)�� let)
 be the maximal)� � j � n such that either �k j" �� for all)� � k � j� or

�k j" �� � �� for some)� � k � j� Note that if)� exists� then so does)
� in particular� if

)� exists because of clause �� then)
 " n�

If no appropriate)� exists� let I � " �� otherwise� let I � be the union of all Ik for)� � k �)
�

Assume that � � t
 �� then �t satis	es � i
 either ��� �i j" �� for all i with Ii��t I� �"

�� or ��� �i j" �� � �� for some i with Ii � �t I� �" � and �j j" �� for all j
 i with

Ij � �t I� �" �� or ��� �t
�
j" �� for some t
 t�
 t I � In either of the 	rst two cases� I �

witnesses � under �t� the third case is equivalent to �t satisfying the formula���������I����

If I � witnesses � under �t� then �t j" � by Lemma �����

����� Type�� and type�� formulas

Now we can be more precise about how we will construct the interval automatonM� that

accepts exactly the models of �� To check the truth of type
� and type
� subformulas of ��

the automaton guesses corresponding witnessing intervals� The boundaries of a witnessing

interval are marked by clocks� a clock interval is a bounded interval that is de	ned by

CHAPTER �� LINEAR TEMPORAL LOGIC ���

its type �e�g�� left
closed and right
open� and a pair of clocks� Given a time t and a clock

interpretation �� the clock interval C " �x� y�� for two clocks x and y� stands for the closed

witnessing interval �t K � ��x�� t K � ��y��� the clock interval C " �x� y� stands for the

corresponding half
open interval� etc� �recall that K � � is the largest constant appearing

in the formula�� We write K � C for the interval fK � ��x�� K � ��y�g� for any type of

clock interval C " fx� yg�

For simplicity� let us consider a type
� subformula � of the form �I �
�� The automaton

resets� nondeterministically� any of its clocks at any time� When guessing a witnessing

interval I �� it writes the prediction that �the clock interval C " fx� yg witnesses the formula

�� into its memory� If the clock x was reset at time t�� and y was reset at time t�
 t��

then the witnessing interval guessed is I � " ft� K� t� Kg� To check the the truth of

the temporal formula � at time t
 t�� the automaton needs to verify that its guess I
� is

indeed a witness� The condition I � � �t I� �" � translates to verifying the clock constraint

�K � C� � I �" �� It remains to be checked that �� is satis	ed throughout the witnessing

interval I �� that is� the automaton needs to verify that �� holds at all states with the clock

constraint � 	 �K � C��

The Lemmas ���� and ���� are the key to constructing an automaton that needs only

�nitely many clocks� For the type
� formula �� UI ��� at most � witnessing intervals need

to be guessed per interval of unit length� Furthermore� the fact that the right end
point of

a witnessing interval is bounded allows the automaton to reuse every clock after a period of

length r�I� �� Thus we need� at any point in time� at most �r�I� � active clock intervals�

that is� clock intervals that stand for a guess of a witnessing interval and� therefore� have

to be veri	ed later� Similarly� to check a type
� formula �� IU��� we need� at any point in

time� no more than r�I� � active clock intervals� Consequently� �K clocks su�ce to check

any type
� subformula of �� and �K clocks su�ce for any type
� subformula of ��

����� Type�� and type�� formulas

Now let us move to formulas of the form �I �
� and �I �

� with I " ��� n� or I " ��� n��

Checking the truth of such a formula is much easier and can be done using a single clock�

Consider the type
� formula � " �I �
�� Whenever the automaton needs to check that

� holds� say at time t� it starts a clock x and writes the corresponding proof obligation

into its memory � to verify that �� holds at some later state with the clock constraint

x 	 I � The obligation is discharged as soon as an appropriate ��
state is found� If the

CHAPTER �� LINEAR TEMPORAL LOGIC ���

automaton encounters another �
state in the meantime� at time t� 	 t before the obligation

is discharged� it does not need to check the truth of � separately for this state� This is

because if there is a ��
state after time t� within the interval t I � then both �t j" �I �
�

and �t
�
j" �I �

�� Once the proof obligation is discharged� the clock x can be used again�

Thus one clock su�ces to check the formula � as often as necessary�

The described strategy works for checking the truth of � at singular intervals� There

is� however� a subtle problem with this method when the truth of � during open intervals

needs to be checked� as is illustrated by the following example� Consider the timed state

sequence

�fg� ��� ��� � �fg� ��� ��� � �fpg� �������

it satis	es the formula ������ p at all times t 	 ��� ��� To check the truth of ������ p during

the open interval ��� ��� the automaton starts a clock x upon entry� at time �� However�

the proof obligation that p holds at some later state with the clock constraint x 	 ��� ��

can never be veri	ed� On the other hand� if the automaton were to check� instead� the

truth of the formula �����
 p during the interval ��� ��� then our strategy works and the

corresponding proof obligation can be veri	ed� because there is a p
state while x 	 ��� ��

holds� Furthermore� observe that the validity of �����
 p throughout the open interval ��� ��

implies that ������ p is also true throughout ��� ���

In general� the following lemma holds�

Lemma ���� Let � and)� be the type
� MITL
formulas �I �
� and �I�fr�I�g�

�� respec

tively� For every timed state sequence � " ��� I� and open interval Ii in I � �i j" � i

�i j")��

Proof� First note that� for all t
 �� if � is satis	ed by �t� then)� is also satis	ed by

�t� This is because I
 I � fr�I�g�

Now consider an open interval Ii and assume that �
i j")�� If I is right
closed� then

� ")�� So suppose that I is right
open� and let t 	 Ii� Since Ii is open� there exists some

t� 	 Ii with t
�
 t� Since �t

�
j")�� there exists some j
 i such that Ij��t

� �I�fr�I�g�� �" �

and �j j" ��� It follows that Ij � �t I� �" � and� hence� that �t j" ��

Consequently� to check the truth of a type
� formula � during an open interval� it su�ces

to check the truth of the weaker formula)�� Accordingly� the automaton we construct writes

only the proof obligation that corresponds to checking)� into its memory�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

For checking a type
� formula of the form � " �I �
�� the situation is symmetric� The

automaton uses also a single clock x to check this formula� Whenever the formula � needs

to be veri	ed� say at time t� the automaton starts the clock x with the proof obligation

that as long as the clock constraint x 	 I holds� so does ��� The obligation is discharged as

soon as x 	 I � If the automaton encounters another �
state within the interval t I � say

at time t�� it simply resets the clock x� and thus overwrites the previous proof obligation�

This strategy is justi	ed by the observation that if �� holds throughout the interval �t� t��

and �t
�
j" �I ��� then also �t j" �I ��� Once the proof obligation is discharged� the clock x

can be reused to check � again whenever necessary�

As in the case of type
� formulas� we need to be more careful when checking � during

open intervals� For the type
� formula � " �I ��� let)� be the formula �I�fr�I�g�
�� From

Lemma ���� and duality� it follows that for every timed state sequence � " ��� I�� if Ii is

open� then �i j" � i
 �i j")�� Hence to check the truth of � during an open interval�

it su�ces again to check the truth of the weaker formula)�� Accordingly� only a proof

obligation for)� is set up� This is because the corresponding clock x is started at time r�Ii��

and for � to hold during the open interval Ii� �� need not hold at time r�Ii� r�I�� even if

I is right
closed�

����	 Constructing the interval automaton

Now let us de	ne the interval automatonM� formally� For each temporal subformula of �

of type
�� the automatonM� has �K pairs of clocks� These clocks always appear in pairs�

to form clock intervals� From any pair of clocks x and y� four di
erent clock intervals can be

formed� �x� y�� �x� y�� �x� y�� and �x� y�� From Lemma ���� for checking type
� formulas we

need only open or closed witnessing intervals� Thus associated with each type
� subformula

� of � we have �K clock intervals� they are denoted by C������ � �C�K���� For each type
�

subformula of � the automatonusesK clock pairs giving �K clock intervals� For subformulas

� of types � and �� the automaton needs one clock x	 per formula�

In addition to these clocks� we use the clock xsing to enforce that the runs ofM� have

alternate singular and open intervals�

Closure set

For the given MITL
formula �� we de	ne its closure set Closure��� to consist of the following

items�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

�� All subformulas of �� for each type
� subformula �� IU�� of �� the type
� formula

���������I���� for each type
� subformula � " �I �
� of �� the type
� formula)� "

�I�fr�I�g�
�� and for each type
� subformula � " �I �

� of �� the type
� formula

)� " �I�fr�I�g�
��

�� For each type
� or type
� formula � in the closure set� the clock intervals C����

through C�K���� and for each type
� and type
� formula � in the closure set� the

clock x	�

�� For each clock interval C " Cj��� in the closure set� where � is �� UI �� or �� IU���

all clock constraints of the form �
 �K�C�� � � �K�C�� � " �K�C�� �K�C� " ��

I
 �K � C�� and �K � C�� I �" �� and for each clock x	 in the closure set� where �

is �I �
� or �I �

�� the clock constraints x 	 I and x 	 I �

We write � � �K � C� short for f�g � �K � C�� It should be clear that all of these

conditions are indeed clock constraints� For instance� the condition � � �K � �x� y��

stands for the clock constraint x � K � y 	 K� the condition � " �K� �x� y�� is never

satis	ed�

�� The clock constraint xsing " ��

Note that the number of subformulas of � is O�j�j� and the number of clocks is O�K�

for each subformula of �� Hence the size of the closure set Closure��� is O�j�j�K��

The states of the desired automaton M� will be subsets of Closure���� We need to

consider only those subsets of Closure��� that satisfy certain local consistency constraints�

Whenever the automaton is in state s� the formulas in s indicate which subformulas of �

are true� Accordingly� a state s
 Closure��� is initial i
 both � and xsing " � are in s� and

for each state s the propositional constraints ��s� are de	ned such that p 	 ��s� i
 p 	 s

for all atomic propositions p 	 AP�

The clock constraints (�s� are the conjunction of all clock constraints in s� The clock

intervals in s indicate which clock intervals are currently active and represent witnessing

intervals for type
� and type
� formulas� the clocks in s indicate which clocks are currently

active and represent proof obligations for type
� and type
� formulas�

The transitions of M� are all triples s
�
�� s� that satisfy certain global consistency

criteria� Both the local and the global consistency conditions are de	ned in the following

CHAPTER �� LINEAR TEMPORAL LOGIC ���

catalog� For every state s
 Closure��� and every transition s
�
�� s� with source state s�

Logical consistency

� For each atomic proposition p 	 AP� precisely one of p and �p is in s�

� If the formula �� � �� is in s� then both �� and �� are in s�

� If the formula �� � �� is in s� then either �� or �� is in s�

These conditions ensure that no state contains subformulas of � that are mutually incon

sistent�

Timing consistency

� s contains at most one of the clock constraints �
 �K�C�� � � �K�C�� � " �K�C��

and �K � C� " � for each clock interval C� Furthermore� no two clock intervals in s

share clocks� for instance� s does not contain both the clock intervals �x� y� and �x� y��

� s contains at most one of the clock constraints x	 	 I and x	 	 I for each type
� or

type
� formula ��

� If s contains xsing " �� then xsing �	 �� If s does not contain xsing " �� then xsing 	 �

and s� contains xsing " ��

These conditions guarantee that no state contains clock constraints that are mutually in

consistent� We say that a state s is singular i
 it contains xsing " �� otherwise s is open�

The last clause of the above conditions ensures that singular and open states alternate along

any run�

Type�� formulas

Consider a type
� formula � " �� UI �� in the closure set�

Firstly� if � is in s� then there is some clock interval C " Cj��� such that

� �K � C�� I �" � is in s� and

� either C is in s� or s is singular and C is in s� and the clocks associated with C are

not in ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The 	rst condition checks that the interval K�C is an appropriate candidate for witnessing

the formula �� The second condition activates the clock interval C to represent a witnessing

interval for �� Note that if s is singular� the corresponding clock interval is activated only

in the following open interval� This is because� to check that the interval �K�C� is indeed

a witness� no conditions are required of the current singular state�

Secondly� if some clock interval C " Cj��� is in s� then

� if either � " �K � C� or � � �K � C� is in s� then �� is in s� and

� if either �
 �K � C� or � � �K � C� is in s� then �� is in s� and

� the clocks associated with C are not in � and either C or �K � C� " � is in s��

The 	rst two conditions verify that the active clock interval C represents indeed a witness

for the formula �� The 	nal condition keeps the clock interval C active as long as necessary�

To prove the correctness of the construction of M�� we show that along every run r

of M�� if the state at time t contains the formula � then �tr satis	es �� The proof is by

induction on the automaton of �� Let us consider the case when � is a type
� formula�

Suppose that the above conditions are satis	ed along a run r and the formula � is in a state

s at time t� Consider the clock interval C " Cj��� satisfying the consistency requirements�

We show that the interval I � " �t K � C� is a witnessing interval for � under �tr� The

constraint �K � C� � I �" � is satis	ed� and hence I � � �t I� �" � holds� If s is an

open state then s contains C or if s is singular then its successor contains C� Note that

until the condition �K � C� " � becomes true marking the end of I �� all the intermediate

states contain C� and the clocks associated with C do not get reset� and hence continue

to denote the same witness I �� In all states s� at time instants t
 t�
 I � the constraint

�
 �K � C� holds� by consistency conditions s� contains ��� and hence by induction

hypothesis� �t
�

r j" ��� Similarly all states s
� at time instants t� 	 I � contain the constraint

� � �K � C� or � " �K � C�� and hence� the formula ��� Furthermore� if t� �" r�I ��

then � � �K � C� holds� and the state contains the formula �� also� Hence� by induction

hypothesis� for all t� 	 I �� �t
�

r j" ��� and if t
� �" r�I �� then �t

�

r j" ��� Thus I
� satis	es all

criteria to be a witness for � at time t� By Lemma ����� it follows that �tr j" ��

Conversely� if �t j" �� then there is a run r that satis	es all conditions� This is because�

by Lemma ����� the automaton can� at time t� either share an already activated clock

interval Cj��� or has enough clocks to activate an unused clock interval Cj���� If C is the

CHAPTER �� LINEAR TEMPORAL LOGIC ���

activated clock interval and K � C stands for the guessed witness� then it follows� from

de	nitions� that all the consistency criteria are met� The 	rst state in which �K � C� " �

holds� the automaton discards the clock interval C from the state�

Type�� formulas

Consider a type
� formula � " �� IU�� in the closure set�

Firstly� if � is in s� then either

� ���������I��� is in s � or

� there is some clock interval C " Cj��� such that

� I
 �K � C� is in s� and

� either C is in s� or s is singular and C is in s� and the clocks associated with C

are not in ��

If ���������I��� holds then so does �� The second clause corresponds to guessing a witness�

The 	rst condition checks that the interval K�C is an appropriate candidate for witnessing

the formula �� The second condition activates this clock interval C�

Secondly� if some clock interval C " Cj��� is in s� then

� if either � " �K � C� or � � �K � C� is in s� then �� is in s� and

� either �� is in s� or the clocks associated with C are not � and either C or �K�C� " �

is in s��

These conditions ensure that the active clock interval C represents indeed a witness for the

formula � and that it is kept active as long as necessary�

Soundness and completeness of these conditions follow by the Lemmas ���� and �����

Type�� formulas

Consider a type
� formula � " �I �
� in the closure set�

Firstly� if � is in s� then either

� s is singular and x	 	 s�� or

� s is open and I is right
open and)� is in s� or

CHAPTER �� LINEAR TEMPORAL LOGIC ���

� s is open and I is right
closed and x	 is in s�

These conditions activate a clock to represent a proof obligation� Lemma ���� justi	es the

decision to start a clock corresponding to the weaker formula)� when s is open�

Secondly� if x	 is in s� then

� x	 	 I is in s� and

� either �� is in s� or x	 is in s
� and x	 �	 ��

These conditions verify the proof obligation that is represented by the clock x	 and keep it

active as long as necessary�

Type�� formulas

Consider a type
� formula � " �I �
� in the closure set�

Firstly� if � is in s� then either

� s is singular and x	 	 s� and x	 	 �� or

� s is open and I is right
closed and)� is in s� or

� s is open and I is right
open and x	 	 s and x	 	 s� and x	 	 ��

These conditions activate a clock to represent a proof obligation� and reset it� as was justi	ed

in the previous subsection� Recall that if s is open then instead of checking � the automaton

checks)��

Secondly� if x	 is in s then

� �� is in s� and

� either x	 or x 	 I is in s��

The 	rst condition veri	es the proof obligation that is represented by the clock x	� and the

second condition keeps it active as long as necessary�

Type�
 formulas

Consider a subformula � " �� U �� of type �� Whenever � is in s� then either

� s is singular and � 	 s�� or

CHAPTER �� LINEAR TEMPORAL LOGIC ���

� s is open and �� is in s� and either �� is in s or �� is in s
� or both �� and � are in s

��

These conditions ensure that unconstrained until formulas are propagated correctly �re

member that singular and open intervals alternate�� However� these conditions admit the

possibility that a run consists of states containing � and �� without ever visiting a ��
state�

Additional fairness constraints are needed to ensure that whenever a run r contains a state

s with the type
� formula � then some later state s� along the run contains ��� For each

type
� formula � " �� U �� in the closure set� we de	ne�

F	 " fs
 Closure��� j �� 	 s or � �	 sg�

It is straightforward to show that for the runs r that are fair with respect to F	� if a state

s at time t contains the formula � then �tr j" ��

Type�� formulas

Consider a subformula � " ��� of type �� Whenever � is in s� then either

� s is singular and � 	 s�� or

� s is open and �� 	 s and both �� and � are in s��

These conditions guarantee that unconstrained always formulas are propagated forever�

This concludes the de	nition of the interval automatonM�� The runs ofM� are de	ned

as before� The fairness requirements on the timed state sequences are given by the family

F� consisting of the sets F	 for every type
� formula � in the closure set�

The following main lemma states the correctness of our construction by relating the

accepting runs ofM� to the models of ��

Lemma ���� The set L��� of the models of an MITL
formula � equals the set L�M�� of

timed state sequences generated byM��

Proof� It can be shown� by induction on the automaton of �� that given a F�
fair run

r ofM�� if a formula � in Closure��� is in a state s in r at time t 	 R� then �tr j" �� We

have outlined the crucial arguments for the six interesting cases of temporal subformulas

above�

Conversely� given a �
	ne model � of � with alternating singular and open intervals� we

can construct a F�
fair run r ofM� such that � " �r� The Lemmas ���� and ���� instruct

us how to use the available limited number of clocks to mark witnessing intervals�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

This result yields algorithms for checking the satis	ability and validity of the given

MITL
formula �� To check satis	ability� we 	rst construct the interval automatonM�� and

then we use the algorithm that checks whether L�M�� is nonempty to test if � has a model�

Similarly� � is valid i
 L�M��� is empty�

����
 Complexity of MITL

We conclude this section by showing that our decision procedure for MITL is in EXPSPACE�

and that this is optimal� because the decision problem for MITL is EXPSPACE
complete�

First we show the lower bound of EXPSPACE
hardness by encoding computations

of exponential
space bounded Turing machines� The proof is similar to the proof of the

EXPSPACE
hardness of the real
time logic MTL �AH����

Lemma ���
 The satis	ability problem for MITL is EXPSPACE
hard�

Proof� Consider a �deterministic� �n
space
bounded Turing machineM � for each input

X of length n� we construct an MITL
formula �X of length O�n � log n� that is satis	able

i
M accepts X � The EXPSPACE lower bound follows by a standard complexity
theoretic

argument�

Thus it su�ces to show� given X � how to construct a su�ciently succinct formula �X

that describes the �unique� computation ofM on X � as an in	nite sequence of propositions�

and requires it to be accepting�

First we require that propositions change their values only at the integer time points�

This requirement is imposed by introducing a special proposition clock � and adding the

conjunct

�clock " clock � ���� clock � ��������clock� � �����
 clock ��

In every timed state sequence satisfying �clock the proposition clock is true during the

interval �j� j� and false during the interval �j� j �� for all j 	 N�

For every proposition p to be used in the formula� we add the requirement

��� � �p � pU clock� � ���p� � ��p�U clock� ��

This conjunct ensures that p can change its value only at the integer time values� With

these restrictions we assume that every state stays unchanged for precisely one time unit�

We use a proposition pi and a proposition qj for every tape symbol i and state j of M �

respectively� In particular� p� and q� correspond to the special tape symbol �blank� and

CHAPTER �� LINEAR TEMPORAL LOGIC ���

the initial state of M � Let

)pi " pi �
�
i� ��i

�pi� �
�
�qj �

ri�j " pi � qj �
�
i� ��i

�pi� �
�
j� ��j

�qj� �

s "
�
�pi� �

�
�qj �

We represent con	gurations ofM by)p
state sequences of length �n� which are separated

by s
states� the position of the read
write head is marked by an r
state� The computation

of M on X is completely determined by the following two conditions�

�i� it starts with the initial con	guration� and

�ii� every con	guration follows from the previous one by a move of M �

The computation is accepting i
� furthermore�

�iii� it contains the accepting state F �

These conditions can be expressed in MITL� The initialization constraints are expressed by

the formula

�init " � s � ������ rX��� �
�

��i�n

��i�i���)pXi
� ��n����n���)p� ��

The 	rst conjunct says that the 	rst state is an s
state� the second conjunct says that the

head is at the beginning of the tape readingX�� the next conjunct sets up the input symbols

in positions � through n� and the last conjunct says that the rest of the tape is blank�

The consecution requirement is expressed by the formula

�move "

�
BBB�

��clock � s � ���n����n��� s ��

V
P�Q�R�

�
� clock � P � ������Q � ����	�R �

���n����n�	� fM �P�Q�R�

�
A

�
CCCA

The 	rst conjunct requires s
states separated by length �n �� and the second conjunct

relates the successive con	gurations� Note that the k
th state in the new con	guration

can be determined from the the �k � ��
th� k
th� and �k ��
th states of the previous

con	guration� P � Q� and R represent three consecutive tape symbols� and each range over

the propositions)pi� ri�j� and s� fM �P�Q�R� refers to the transition function of M � For

CHAPTER �� LINEAR TEMPORAL LOGIC ���

instance� ifM writes� in state j on input i�� the symbol k onto the tape� moves to the right�

and enters state j�� then fM �)pi� ri��j �)pi��� ")pk and fM �ri��j �)pi���)pi���� " ri���j�

The acceptance requirement corresponds to eventually visiting the state F � it is given

by the formula �accept " � qF �

We take �X to consist of these three additional conjuncts �init � �move � and �accept � The

lengths of �init � �move � and �accept are O�n � log n�� O�n�� and O���� respectively �recall that

constants are represented in binary�� thus implying the desired O�n � log n�
bound for �X �

Now we show that the time complexity of our algorithm is doubly exponential in the

length of the constants in �� and singly exponential in the number of logical and temporal

operators in �� Furthermore� the algorithm also implies an upper bound of EXPSPACE for

deciding MITL�

Theorem ���� The decision problem for testing satis	ability of MITL
formulas is com

plete for EXPSPACE� In particular� the proposed algorithmchecks satis	ability of an MITL

formula � in time O��j�j�K�logK�� where K � � is the largest constant appearing in ��

Proof� Given a formula � the 	rst step of the algorithm rewrites it to a normal form

��� By Lemma ����� the number of subformulas of �� is O�j�j�� Let K � � be the largest

constant appearing in �� then the size of the closure set Closure���� is O�j�j�K�� Hence the

number of states inM� is O��
j�j�K�� The number of clocks inM� is O�j�j�K�� Furthermore�

for every clock x the largest constant that x is compared with in a clock constraint ofM� is

bounded by K� Recall that the complexity of the emptiness test for an interval automaton

is exponential in its number of clocks� and is proportional to the size of its state
transition

graph and product of the timing constants for all the clocks �see Section ����� Consequently�

the algorithm testing emptiness ofM� runs in time O�K
j�j�K��

We have already proved EXPSPACE
hardness� For containment in EXPSPACE note

that the description of M� can be given in space polynomial in j�j �K� that is� in space

exponential in the length of �� assuming binary encoding of all interval end
points� The

emptiness problem for an interval automatonM is PSPACE complete �see Theorem ������

It follows that the validity of � can be decided in space polynomial in j�j �K� that is� in

EXPSPACE�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

��	 Veri�cation using MITL

Model checking is a powerful and well
established technique for automatic veri	cation of

	nite
state systems� it compares a temporal
logic speci	cation of a system against a state

transition description of the system�

In the qualitative case� the system is modeled by its state
transition graph� also known

as Kripke structure� and the speci	cation may be presented as a formula of the propositional

linear temporal logic PTL �LP���� Using our results about MITL� we can present a real

time veri	cation procedure that checks MITL
speci	cations against descriptions given as

interval automata�

We model a real
time system by an interval automatonM and give the speci	cation as

a formula � of MITL� Hence the model checking problem is to decide whether or not all

the timed state sequences generated by the structureM satisfy the speci	cation ��

L�M�
�

 L���

Notice the similarity between this approach to veri	cation and the one in Chapter�� Apart

from changing the speci	cation language from automata to logic� we have shifted from the

event
based semantics of timed traces to the state
based semantics of timed state sequences�

Our construction for testing the satis	ability of MITL
formulas can be used to develop an

algorithm for model checking� The 	rst step is to construct an interval automatonM�� such

that its runs precisely capture the models of the negated formula ��� L�M��� " L�����

The model checking question can then be reformulated as follows�

L�M�
 L��� i
 L�M�� L�M��� " ��

The next step in the model checking algorithm is to construct an interval automatonM�

that is the product ofM and M�� �see Section ����� a timed state sequence is generated

byM� i
 it is generated by bothM andM���

Hence we have reduced the model checking problem to the emptiness question for interval

automata� M j" � i
 L�M�� is empty� The size ofM� is polynomial in the sizes ofM and

M��� Consequently� the description ofM
� is exponential in the length of �� and polynomial

in the length of the description of M� Since the emptiness for interval automata can be

solved in PSPACE� it follows that the model checking problem can be solved in EXPSPACE�

As for all linear temporal logics� the model checking question for MITL is no simpler

than the satis	ability question� it is also EXPSPACE
hard� The following theorem follows�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

Theorem ���� The problem of checking whether an interval automaton M satis	es an

MITL
formula � is EXPSPACE
complete�

Proof� We have already outlined how to solve the model
checking problem in EX

PSPACE�

To prove EXPSPACE
hardness we reduce the satis	ability question for MITL to model

checking question� An MITL
formula � is unsatis	able i
 the universal interval automaton�

which generates all possible timed state sequences� satis	es ��� Thus EXPSPACE
hardness

of satis	ability implies EXPSPACE
hardness of model checking�

The time complexity of the model checking algorithm is polynomial in the qualitative

part of the system description� exponential in the qualitative part of the MITL
speci	cation�

exponential in the timing part of the system description� and doubly exponential in the

timing part of the speci	cation� Compared to this the model checking algorithm for PTL

�LP��� is polynomial in the size of the Kripke structure and exponential in the size of the

speci	cation�

Thus moving to real�time gives an additional exponential blow
up� This blow
up seems�

however� unavoidable for formalisms for quantitative reasoning about time� It occurs even

in the discrete
time case �EMSS��� AH��� AH����

��
 Expressiveness

Every formula � of MITL speci	es a real
time property � the set of models of �� The

expressive power of a formalism is measured by the real
time properties that can be speci	ed

in it� First we compare the expressive power of MITL to that of MTL� a real
time logic

based on the 	ctitious
clock model� Then we compare the expressive power of MITL to

that of interval automata�

��	�� Comparison with �ctitious�clock logics

We compare the expressive power of MITL to the use of a 	ctitious clock and MTL� which

admits singular intervals as time bounds on temporal operators� More precisely� we show

that the dense
time model without equality �MITL� is more expressive than any 	ctitious

clock model with equality �MTL��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The logic MTL

First let us de	ne the syntax and semantics of the logic MTL� metric temporal logic� The

syntax of MTL is the same as that of MITL� however� it also admits singular intervals as

subscripts�

As before let AP be a set of atomic propositions� The formulas of MTL are built from

propositions by Boolean connectives and time
bounded versions of the until operator U �

De�nition ���� The formulas of MTL are inductively de	ned as follows�

� �" p j �� j �� � �� j �� UI ��

where p 	 AP� and I is an interval with integer end
points�

The semantics of MITL uses the 	ctitious
clock model of Section ������ Thus time is

viewed as a discrete counter� which is updated with every tick of the global clock� The

formulas of MTL are interpreted over observation sequences�

De�nition ���	 An observation sequence is a pair � " ��� T�� where � " ���� � � � is an

in	nite sequence of states �i 	 �AP� and T " T�T� � � � is an in	nite sequence of corresponding

time stamps Ti 	 N satisfying

� the initiality condition that T� " ��

� the weak monotonicity condition that Ti � Ti�� for all i
 �� and

� the progress condition that� for all n 	 N� there is some i
 � such that Ti 	 n�

We will denote the observation sequence � " ��� T� by an in	nite sequence

���� T�� � ���� T�� � ���� T�� � ��	� T	� � � � �

of observations� Each observation consists of a state �i 	 �AP and a time stamp Ti 	 N�

For an observation sequence � and i 	 N� the observation sequence �i is the su�x of � that

begins with the observation �si� Ti��

For an observation sequence � and an MTL
formula �� the satisfaction relation � j" �

is de	ned as usual by induction on the structure of ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

De�nition ���� For an MTL
formula �� and an observation sequence � " ��� T�� the

satisfaction relation � j" � is de	ned inductively as follows�

� j" p i
 p 	 ���

� j" �� i
 � �j" ��

� j" �� � �� i
 � j" �� and � j" ���

� j" �� UI �� i
 �
i j" �� for some i
 � with Ti 	 I � and �j j" �� for all �
 j
 i�

An MTL
formula is called satis	able i
 � j" � for some observation sequence ��

Note that the until operator is strict in its left argument� Also MTL has no next�state

operator� this restriction makes MTL
formulas insensitive to stuttering�

The tableau
based decision procedure for PTL can be extended to get a decision proce

dure for checking satis	ability of MTL
formulas� In particular� given an MTL
formula � we

can construct a Kripke structureM� with fairness constraints that characterizes the satis

fying models of �� Details of the decision procedure� and comparison of the expressiveness

of MTL with other 	ctitious
clock logics can be found in �AH���� Here we only state the

result on complexity of MTL�

Theorem ���� The decision problem to test satis	ability of a given MTL
formula � is

EXPSPACE
complete� Speci	cally� there is an algorithm that checks satis	ability of a

given MTL
formula � in time exponential in O�j�j�K�� where K � � is the largest constant

appearing in ��

De�ning real�time properties using MTL

We need to formalize which real
time properties can be speci	ed in MTL� To this end�

let us consider how to extract an observation sequence from a timed state sequence � that

describes the actual behavior of a real
time system� Observations are made with respect to

a digital clock� the observation at time t records the state ���t� and the reading of the clock

at time t �recall that �� is a map from R to states induced by ��� Clearly the observations

depend on how fast the clock ticks� and at what time the clock is started� This motivates

the next de	nition�

De�nition ���� A digital clock D " ��� �� is a pair consisting of the distance � 	 R

between two successive clock ticks and the time � 	 R of the 	rst clock tick� that is�

� � �
 �� At time t 	 R the clock D shows the integer value tD " d�t� ����e�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

The clock D is called rational i
 both � and � are rational numbers�

The clock D starts at time � with the reading �D " �� The reading of the clock during

the interval ��� �� is �� and during the interval �� n�� � �n ���� its reading is �n ��

for all n 	 N�

Now we can de	ne the observed behavior of a timed state sequence � with respect to a

given clockD� The observation of � at time t consists of the state ���t� and the clock reading

tD� As time increases� the D
observation stays the same until either the clock tick changes

the value of tD� or the state changes along �� Consequently� all possible D
observations

along � can be described by an �
sequence�

De�nition ���� For a clock D� and a timed state sequence � " ��� I�� the D
observation

of � at time t is Ot " ����t�� tD��

The D
observed behavior of � is the observation sequence

�D � Ot� � Ot� � Ot� � � � � �

for time values ti 	 R such that for all i
 �� ��� ti
 ti��� and ��� for all t 	 �ti� ti���� Ot

equals either Oti or Oti�� �

Note that above properties de	ne �D uniquely modulo stuttering �i�e�� duplication of

neighboring observations�� Furthermore� the state component of �D is the state component

of � �modulo stuttering��

Example ���� Consider the timed state sequence � �

�s�� ��� ���� �s�� ��� ���� �s�� ��� ������ �s	� ���������

Then the digital clock ��� ���� observes the observation sequence ���������

�s�� �� � �s�� �� � �s�� �� � �s�� �� � �s	� �� � �s	� �� � �s	� �� � � � �

Using the above notion of observations we can associate real
time properties with every

MTL
formula for every choice of the digital clock�

De�nition ���
 For a given digital clock D� a formula � of MTL speci	es a real
time

property LD��� � the set of timed state sequences � such that �D j" ��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

Comparing MITL with MTL

Now we can be speci	c about the sense in which the dense
time model is� even without

equality� more expressive than the 	ctitious
clock model� for any choice of digital clock�

Theorem ���� �a� For every MTL
formula � and every rational clock D� the real
time

property LD��� equals L��� for some MITL
formula � �using intervals with rational end

points�� �b� There is an MITL
formula � such that the real
time property L��� does not

equal LD��� for all MTL
formulas � and all choices of digital clock D�

Proof� �a� Given a rational clock D " ��� �� and a formula � of MTL� we construct

an MITL
formula that speci	es the real
time property LD���� We assume that � contains

only intervals of the form ��� ��� ��� ��� �m�n� for � � m � n� and �m��� for m
 �� It is

trivial to convert any MTL
formula into this form� for instance� the MTL
formula ��� � is

equivalent to the formula ���� ����� ������
��

We model the ticks of the digital clock D by a new proposition r that holds only in

transient states at time instants �� n���

�D � ��
 �r � ��
 r � ��� �r � ��r�U�� r��

Let �� be the MITL
formula that results from � by replacing every occurrence of a subfor

mula �� UI �� with

�r � ��� � �r�U�� ��

if I is ��� ��� with

�r � ��� � �r�U�� ��� � �� U����� �r � �� � �� U����
���

if I is ��� ��� with

�� U��l�I������r�I��� �r � �� � �� U����
 ���

if I is bounded and l�I� 	 �� and with

�� U��l�I����� �r � �� � �� U ���

if I is unbounded and l�I� 	 �� It is not hard to show that �D j" � i
 � j" ��D � ��� for

every timed state sequence ��

For example� consider the MTL
formula

��� �p � ��� q��

CHAPTER �� LINEAR TEMPORAL LOGIC ���

and the digital clock D " ��� ��� This formula speci	es the property that �for every p
state

there is a q
state separated from p by exactly 	ve integer times�� and is equivalent to the

MITL
formula

������ � ��� �p � ������ �r � �����
 q���

�b� From the tableau decision procedure for MTL �AH���� it follows that if a formula

� of MTL is satis	able� then it has a model �D such that any two state changes in � are

separated by at least some minimum time gap �which depends on D and the size of ��� In

fact� for any digital clock D one can always construct timed state sequences in LD��� that

become periodic after some point in time� We show that this is not the case for MITL�

Let us construct a satis	able MITL
formula � for which every model � " ��� I� contains

arbitrarily close state changes� that is� for every real � 	 �� there is some i
 � such that

�i�� �" �i and �i �" �i�� and ti���ti
 �� The set of models of � can clearly not be speci	ed

in MTL� for any choice of digital clock D�

The formula � uses three propositions p� q� and r� First� it requires at most one of these

three propositions to be true at any state� In addition� it has the following three conjuncts�

The 	rst condition�

r � ��� �r � ��r�U�� r��

places transient r
states at precisely the even integers� The second condition�

��� ��p � q� � ��� r��

ensures that p and q can only hold in the second half of the intervals of length � separating

consecutive r
states� The third condition�

��� p � ��� �p � ��� q� � ��� �q � ����	� p��

implies that there is a p
state� and later a q
state� between every pair of consecutive r
states�

and thus between every odd integer and the subsequent even integer�

Moreover� from any model of � we can extract an in	nite sequence of alternating p and

q states� with the q
state following a p
state guaranteed by the condition p � ��� q� and

the p
state following a q
state by the condition q � ����	� p� The times that are associated

with the states in this sequence� taken modulo �� form a strictly increasing in	nite sequence

of reals contained in the interval ��� ��� Since this time sequence is bounded above� there

must be arbitrarily close pairs of a p
state followed by a q
state� It follows that � has no

eventually periodic models�

CHAPTER �� LINEAR TEMPORAL LOGIC ���

On the other hand� the MITL
formula � is satis	able� a model for � can be readily con

structed by introducing� in addition to the transient r
states at all even integers� transient

p
states at time �n� ���n� and transient q
states at time �n� ���n� for each integer n
 ��

Thus even though MITL disallows singular interval subscripts� it is more expressive than

the 	ctitious
clock logics allowing the use of equality irrespective of the rate of the clock�

Recall that MITL with equality is undecidable �Theorem ������ We have shown two ways

of achieving decidability� MITL puts a syntactic restriction disallowing subscripts such as

��� ��� on the other hand� MTL weakens the expressiveness through a semantic abstraction

that� at every state change only a discrete approximation to the real
time may be recorded�

��	�� Comparison with interval automata

An interval automaton M generates the set of timed state sequences L�M�� Thus it pro

vides an alternative to MITL for specifying real
time properties� Now we compare the two

formalisms with respect to expressiveness�

The decision procedure for MITL constructs� for a given formula �� an interval automa

ton M� with fairness conditions such that L��� " L�M��� Thus interval automata with

fairness conditions are at least as expressive as MITL� A close inspection of the construc

tion shows that fairness conditions are needed to handle unconstrained eventualities only�

In particular� for an MITL
formula �� if its equivalent normal form �� does not contain any

type
� subformulas �� U ��� then there exists an interval automatonM� generating L����

Thus no fairness conditions are needed to handle until operators subscripted with bounded

intervals�

However� the formalism of interval automata has strictly greater expressive power com

pared to MITL� We consider some examples to illustrate this point�

Example ���� Assume AP " fp� qg� Consider the following property of timed state se

quences�

L " f� j �t 	 R� �p 	 ���t� � q 	 ���t ���g�

The property L asserts there is a p
state at some time instant t followed by a q
state at

time t �� This property can easily be expressed as an interval automaton with fairness

conditions� It cannot be speci	ed using MITL� Note that it can be expressed in the extension

CHAPTER �� LINEAR TEMPORAL LOGIC ���

of MITL that allows singular intervals as subscripts�

��� � p � ��� q ��

Example ���� shows that the interval automata can express some forms of equality

constraints not expressible by MITL� In addition� there are certain �qualitative� properties

that can be expressed using Kripke structures� but not by linear temporal logics� This also

makes MITL less expressive than interval automata�

Example ���� Assume AP " fp� qg� Furthermore� assume that both propositions are true

only during singular intervals� Such a requirement is expressible using both formalisms� Now

a timed state state sequence � is speci	ed by a state sequence � " ���� � � � and an in	nite

sequence I " t�t� � � � of time values� Consider the property that �the proposition p holds

in every state �i with even i�� This is a property of state sequences� and does not restrict

the possible choices for I� It is known that PTL cannot specify this property �Wol���� It

follows that MITL cannot specify this property either� even if we allow the use of singular

intervals� It is straightforward to specify the property using interval automata� No fairness

constraints are required�

The next theorem follows�

Theorem ���	 �a� For every MITL
formula � there exists an interval automatonM with

fairness constraints such thatM generates L���� �b� For every MITL
formula � such that

its normal form �� has no unconstrained until operators� there exists an interval automaton

M that generates L���� �c� There exists an interval automatonM such that L�M� is not

speci	able by any MITL
formula� even if we allow singular intervals and intervals with

rational end
points�

Note that the real
time properties de	nable by MITL are closed under complement�

since the logic has the negation operator� On the other hand� interval automata are not

closed under complement� For instance� the complement of the property considered in

Example ���� is not speci	able using interval automata� In general� the negative results for

timed automata in Section ��� can be shown for timed structures also� In particular� the

language inclusion problem for interval automata is undecidable�

Chapter �

Branching�Time Logic

This chapter is based on branching
time semantics of reactive systems� Until now� we have

been using linear
time semantics where a system is modeled by a set of linear sequences� In

contrast� in the branching
time framework� the system is viewed as a single tree� and the

paths in the tree correspond to the possible executions �Mil��� BMP��� EC���� In general�

the branching
time semantics is 	ner than the linear
time semantics� that is� there are ex

amples where the branching
time semantics distinguishes two systems which the linear
time

semantics considers to be the same �see� for instance� �Mil����� Amongst the researchers

there is no consensus on the choice between the two approaches� Having presented veri	

cation methods based on the linear
time approach� now we proceed to show how real
time

can be added to the branching
time framework� We de	ne a real
time extension of the

branching
time logic CTL� and develop an algorithm for checking whether a 	nite
state

system modeled by an interval automaton satis	es its speci	cation in this language�

	�� Computation tree logic

Computation tree logic �CTL� was introduced by Emerson and Clarke �EC��� as a speci	

cation language for 	nite
state systems� Let us brie�y review its syntax and semantics�

Similarly to the linear
time temporal logic PTL� the logic CTL has atomic propositions�

logical connectives� and temporal operators� However� as CTL
formulas are interpreted over

	nitely
branching trees� each temporal operator of CTL has two types� �existential� and

�universal�� For instance� �� means �in all states along some path�� and �� means �in all

states along all paths�� Let AP be a set of atomic propositions� The formulas of CTL are

���

CHAPTER �� BRANCHING�TIME LOGIC ���

inductively de	ned as follows�

� �" p j �� j �� � �� j � � �� j ��� U �� j ��� U ��

where p 	 AP� and ��� �� are CTL
formulas�

Intuitively � � � means that there is an immediate successor state� reachable by exe

cuting one step� in which � holds� ��� U �� means that for some computation path� there

exists an initial pre	x of the path such that �� holds at the last state of the pre	x and ��

holds at all the intermediate states� ��� U �� means that for every computation path the

above property holds�

Formally� the semantics of CTL is de	ned with respect to a Kripke structure M "

hS� sinit � ��Ei� where S is a countable set of states� sinit 	 S is an initial state� � � S � �AP

gives an assignment of truth values to propositions in each state� and E is a binary relation

over S giving the possible transitions� A path is an in	nite sequence of states �s�� s� � � �� 	 S
�

such that hsi� si��i 	 E for all i
 �� Given a CTL
formula � and a state s 	 S� the

satisfaction relation �M� s� j" � �meaning � is true in M at s� is de	ned inductively as

follows �since the structure is 	xed� we abbreviate �M� s� j" � to s j" ���

s j" p i
 p 	 ��s��

s j" �� i
 s �j" ��

s j" �� � �� i
 s j" �� and s j" ���

s j" �� � i
 s� j" �� for some state s� such that hs� s�i 	 E�

s j" ��� U �� i
 for some path �s�� s�� � � �� with s " s�� for some i
 �� si j" ��

and sj j" �� for � � j
 i�

s j" ��� U �� i
 for every path �s�� s�� � � �� with s " s�� for some i
 �� si j" ��

and sj j" �� for � � j
 i�

The Kripke structureM satis	es � i
 �M� sinit� j" ��

Some of the commonly used abbreviations are� ��� for � true U �� ��� for � true U ��

��� for ������ and ��� for ������

CTL can express several interesting properties of reactive systems� The formula ��p

says that the property p is an invariant of the system� The formula ��p says that p is

inevitable� every possible computation path will have some p
state� The formula �� �� p

says that in every reachable state p potentially holds� that is� it is always possible to get to

some p
state� Incidentally� this property cannot be expressed using a linear
time logic such

CHAPTER �� BRANCHING�TIME LOGIC ���

as PTL� that means there is no PTL
formula � such that a Kripke structure M satis	es

� i
M satis	es the CTL
formula �� �� p� We remind the reader that a Kripke structure

gives a set of models for a PTL
formula �� andM j" � i
 all the models generated byM

satisfy �� Properties such as fairness are expressible in PTL� but not in CTL� Consider the

PTL
formula

�fair " �� p � � q�

The formula holds in a Kripke structure M i
 all paths throughM with in	nitely many

p
states also have some q
state� There is no CTL
formula � such thatM j" � i
M j" �fair

�EH����

A typical response property that �every p
state is always followed by a q
state�� is

speci	ed by the following CTL
formula�

��� p � ��q ��

A CTL
formula � is called satis�able i
 there is a Kripke structureM such thatM j" ��

CTL has the �nite�model property � if a CTL
formula is satis	able� then it is satis	able in a

structure with a 	nite set of states �in fact� in a structure of size exponential in the size of the

formula�� Consequently� the satis	ability question for CTL is decidable� It has been shown

that the decision problem is complete for deterministic singly
exponential
time �EXPTIME

complete�� However� the model
checking problem is in PTIME � given a CTL
formula ��

and a 	nite Kripke structureM " hS� sinit � ��Ei there is an algorithm for deciding whether

or notM satis	es � with time complexity O�j�j��jSj jEj�� �CES����

Finite
state concurrent systems can be modeled as 	nite Kripke structures� Given a

system modeled as a Kripke structure and the speci	cation as a CTL
formula� the model

checking algorithm can be used to decide whether or not the implementation satis	es the

speci	cation �see �CES��� BCDM��� for examples of CTL based veri	cation��

Since CTL cannot express correctness along fair paths� Clarke et�al� have de	ned CTLF

by changing the semantics of CTL �CES���� The syntax of CTLF is same as that of CTL�

however� the formulas are interpreted over Kripke structures with fairness constraints�

A Kripke structure M now has an additional component F
 �S� Recall that a path

�s�� s�� � � �� is called F�fair if for each F 	 F � there are in	nitely many i such that si 	 F�

Given a CTLF
formula �� we change the meaning of �M� s� j" � so that the path
quanti	ers

range only over F
fair paths� The model
checking algorithm for CTL can be modi	ed to

handle this extension of CTL at a cost of a factor of jFj�

CHAPTER �� BRANCHING�TIME LOGIC ���

	�� The logic TCTL

To reason about quantitative time requirements� we add time explicitly to the syntax and

semantics of CTL� As before� we choose the dense�time model� and de	ne the logic timed

computation tree logic or TCTL�

����� Syntax

Recall that one way to introduce real
time in the syntax of a temporal logic is to allow

bounds on the temporal operators restricting their scope in time� The logic MITL uses

such a notation of bounded temporal operators� The syntax of CTL can be extended in a

similar way� For example� we can write ���� p to say that along some computation path p

becomes true within � time units� However� alternative notations have been proposed� and

to de	ne TCTL we use a more powerful notation�

In �AH���� we de	ne a linear
time logic TPTL using a di
erent syntax for writing real

time speci	cations� In this logic the bounded response property that �every p
state is

followed by some q
state within � time units�� is written as

�x� � p � �y� �q � y � x ����

The time quanti�er �x�� binds the associated variable x to the �current� time� x� ��x� holds

at time t i
 ��t� does� Read the above formula as �in every state with time x� if p holds

then there is a later q
state with time y such that �y � x �� holds�� Thus in the formula

�y� �� the time variable y is bound to the time of the state at which � is �eventually� true�

We adopt a notation similar to TPTL to de	ne the syntax of TCTL� The syntax uses

the time quanti	ers which allow references to the times of states� and admits the addition

of timing constraints� that is� atomic formulas that relate the times of di
erent states�

As timing constraints� we permit comparisons of clock values� possibly with addition of

constants� The formulas of TCTL are built from propositions and timing constraints by

connectives� CTL temporal operators� and time quanti	ers� As time constants we want to

use the set of rational numbers� but for the sake of simplicity we de	ne the syntax using

only the integer constants� The changes necessary to handle rational constants should be

obvious to the reader�

Let AP be a set of propositions� V be a set of variables� and N be the set of constants

f�� �� �� � � �g denoting the natural numbers�

CHAPTER �� BRANCHING�TIME LOGIC ���

De�nition
�� The formulas � of TPTL are inductively de	ned as follows�

� �" p j �x c� � �y d� j �� j �� � �� j ��� U �� j ��� U �� j x� �

for c� d 	 N� p 	 AP� and x� y 	 V �

����� Semantics

To de	ne the semantics of TCTL we choose the set of nonnegative reals R to model time�

Recall that an interpretation for MITL
formulas provides an assignment for atomic proposi

tions at each time instant of R� Similarly� to de	ne the semantics of TCTL we 	rst generalize

the notion of a computation path from an �
sequence of states to a map from R to states�

De�nition
�� Let S be a set of states and � be a function from S to �AP labeling each

state with atomic propositions� A computation over S is a map � from R to S satisfying the

�nite�variability condition�

there exists an interval sequence I�I�I� � � � such that whenever two time values

t and t� belong to the same interval Ii� ����t�� equals ����t����

The 	nite
variability condition says that the map � �� from R to �AP changes its value at

atmost � number of points� This rules out arbitrary variation of truth values of propositions

along a computation� For instance� a map along which p is true at all rational time values

and false at all irrational time values is not a legal computation� Notice that we have not

required that the map � change its value only � number of times� In fact� in the models

for TCTL
formulas extracted from interval automata� a state will also encode the clock

values� and thus the state set S will be an uncountable set� and �� by itself� will not meet

the 	nite
variability constraint�

A structure for a branching
time logic should specify a set of labeled states and should

associate a computation tree with each state� In discrete time� a structure can be described

by associating a set of �next� states with each state� In dense time� there is always a third

state between every pair of states on a path� so another characterization of trees is needed�

A dense tree can be considered to be a set of �dense� computations describing the paths

in the tree� However� not every such collection of computations describes a reasonable tree�

so some additional properties are needed� To give the de	nition in detail� let us de	ne some

notation�

CHAPTER �� BRANCHING�TIME LOGIC ���

De�nition
�� Let S be a labeled set� � be a computation over S� and let t 	 R�

The pre�x of � up to time t� denoted by �t� is a map from ��� t� to S obtained by

restricting the domain of �� The su
x of � at time t� denoted by �t� is a computation

de	ned by �t�t�� " ��t t�� for every t� 	 R�

If �� is some map from ��� t� to S� then its concatenation with �� denoted by �� ��� is

de	ned by�

for t� 	 R� ��� ����t�� "

��

���t�� if t�
 t

��t� � t� otherwise

Now we are ready de	ne the notion of a TCTL
structure�

De�nition
�� A TCTL
structure is a tuple T " hS� sinit � �� fi� where

� S is a set of states�

� sinit 	 S is an initial state�

� � � S � �AP is a labeling function which assigns to each state the set of atomic

propositions true in that state�

� f is a collection of computations over S satisfying the following closure properties�

�� Su
x closure� for all � 	 f and t 	 R� �t 	 f �

�� Fusion closure� for all �� �� 	 f and t 	 R� if ��t� " ����� then �t ��� 	 f �

The second condition says that the behavior of the system does not depend on the past

and only on the current state� If a state s appears along a computation at time t� the

set of all possible computations can be obtained by concatenating the pre	x up to time t

with all the computations in f starting at the state s� This requirement ensures that the

reachability relation over S induced by f is transitive�

We de	ne below what it means for a TCTL
formula to be true in a state of a TCTL

structure�

De�nition
�
 For a TCTL
structure T " hS� sinit � �� fi� a state s 	 S� an environment

E mapping V to R� a time value t 	 R and a TCTL
formula �� the satisfaction relation

�T � s� t� j"E � is de	ned inductively as follows�

CHAPTER �� BRANCHING�TIME LOGIC ���

�s� t� j"E p i
 p 	 ��s��

�s� t� j"E �x c� � �y d� i
 E�x� c � E�y� d�

�s� t� j"E �� i
 �s� t� �j"E ��

�s� t� j"E �� � �� i
 �s� t� j"E �� and �s� t� j"E ���

�s� t� j"E x� � i
 �s� t� j"�x��t
E ��

�s� t� j"E ��� U �� i
 for some � 	 f with ���� " s� for some t�
 �� ���t��� t

t�� j"E �� and ���t
���� t t��� j"E �� for all � � t��
 t��

�s� t� j"E ��� U �� i
 for every � 	 f with ���� " s� for some t�
 �� ���t��� t

t�� j"E �� and ���t���� t t��� j"E �� for all � � t��
 t��

A TCTL
structure T satis	es a TCTL
formula �� written T j" �� i
 �T � sinit � �� j"�V ���
 ��

A TCTL
formula � is called satis�able i
 there is a TCTL
structure T such that T j" ��

In the above de	nition of �s� t� j"E �� the environment E gives the valuation of all the

free variables of �� The time value t gives the current time� and is used to bind the variable

x while evaluating �x� ��� Consider� for instance� the formula

� " x� � �y� y � x � � p�U �z� z � x �� � q��

Applying the de	nition of the satisfaction relation gives

�s� t� j"E � i
 for some � 	 f with ���� " s� for some t�
 �� ���t��� t t�� j"�x��t
E

�z� z � x ��� q� and ���t���� t t��� j"�x ��t
E �y� y � x ��p� for all � � t��
 t��

Unfolding the de	nition further gives

�s� t� j" � i
 for some � 	 f with ���� " s� for some t�
 �� q 	 ����t��� and

�t t� � t ��� and for all � � t��
 t�� either �t t�� � t �� or p 	 ����t�����

Thus the formula states the property that along some computation path� q holds at time

t� � ��� and the proposition p holds over the interval ��� t���

Note that every TCTL
formula is equivalent to its closure� in which all free variables

are bound by a pre	x of time quanti	ers�

����� On the choice of syntax

In TCTL additional temporal operators such as ��� ��� ��� and �� are de	ned using

the �until� operators as in case of CTL� Furthermore� for writing timing constraints the

CHAPTER �� BRANCHING�TIME LOGIC ���

abbreviations such as "�
� 	�
 are de	ned using the logical connectives and �� We will

also use expressions such as x 	 ��� ��� Note that TCTL has no next�time operator ��

because if time is dense then� by de	nition� there is no unique next time�

A typical bounded response property that �every p
state is followed by some q
state

within � time units�� is written in TCTL as

�� x� � p � �� y� �q � y
 x �� ��

A few comments regarding the use of the notation of the time quanti	er �x�� are in order�

The variables in TCTL range over the time domain R� however� unlike the conventional

	rst
order logics� the quanti	er �x�� is neither existential nor universal� It is its own dual�

observe the following TCTL equivalence�

��x� �� � x� �����

This quanti	er has been called �half
order� in �Hen����

An alternative to using the temporal quanti	ers is to adopt the notation of 	rst
order

temporal logics such as RTTL �Ost��b� or XCTL �HLP��� which use a dynamic variable T

denoting the current time along with the explicit quanti	cation over the time domain� For

instance� the above bounded response property is written as

�� �x� � �p � T " x� � �� �q � T
 x �� ��

In this formula� the variable x is a static variable ranging over the time domain R� and T

is a dynamic variable representing the current time� We have shown that this 	rst
order

notation leads to a nonelementary blow
up in the decision procedure� for a more detailed

comparison of the two notations see �AH����

In TCTL temporal operators subscripted with time intervals are de	ned as abbrevia

tions� We de	ne ��� I �UI �� as an abbreviation for

x� � �y� �y 	 I � x � ����U �z� ��� � z 	 I x���

The intervals I and I � have integer endpoints� but they may be bounded or unbounded�

singular or nonsingular� closed or open or semiclosed� Recall that in the syntax of MITL

singular intervals are disallowed� and so are interval subscripts in both arguments of U � Such

a restriction is not needed for the decidability of the model
checking problem for TCTL�

CHAPTER �� BRANCHING�TIME LOGIC ���

Consequently� the response property that �every p
state is followed by some q
state at time

��� is expressible in TCTL� we may write

��� p � ������
 q ��

The abbreviation ��� I �UI �� is similarly de	ned� Notice that� unlike MITL� the until

operator of TCTL is nonstrict in its both arguments� The corresponding strict versions can

be de	ned as abbreviations� For instance� �x� x 	 � � ���U �� holds of a computation �

i
 for some t
 �� �� holds at time t and �� holds at all times �
 t�
 t�

In TCTL all CTL properties can be speci	ed with time bounds� For instance� now we

can write ��������� It says that �� holds at least once during the time interval ��� �� along

some computation path�� Similarly ���� p means that �p is an invariant until time ���

�� ���	 p says that �from every reachable state� some p
state is reachable within time ���

For linear
time temporal logics with discrete semantics� the notation of temporal quanti

	ers is equally expressive as the notation of subscripted temporal operators �AH���� though

it can express certain properties more succinctly� However with the dense
time semantics�

this notation seems to be strictly more expressive than the notation of subscripted operators�

For example� consider the formula�

��x� �p � �� �q � ��z� �r� z
 x ����

It says that �there exists a computation with a p
state followed by a q
state� followed by

an r
state� which is within � time units from the p
state�� The notation of subscripted

operators allows us to relate only the adjacent temporal contexts� and we conjecture that

this property cannot be expressed by subscripted CTL operators�

����� Undecidability

The denseness of the underlying time domain allows us to encode Turing machine com

putations in TCTL
formulas� Consequently� unlike other logics with similar syntax but

discrete
time semantics� the satis	ability question for TCTL is undecidable � ��
�
hard�

The proof of the next theorem is similar to the proof of undecidability of MITL with sin

gular intervals �Theorem ������

Theorem
�� The satis	ability question for TCTL is ��
�
hard�

Proof� We reduce the recurrence problem for nondeterministic �
counter machines

to TCTL
satis	ability� The encoding of a con	guration hi� c� di by an interval �a� b� of

CHAPTER �� BRANCHING�TIME LOGIC ���

a computation � is as in the proof of Theorem ����� For example� we require that the

proposition pC holds at exactly c time instants in the interval �a� b� along ��

We construct a TCTL
formula � such that �T � s� �� j"�V ���
 � i
 there exists a computa

tion fhij � cj� dji � j
 �g of the �
counter machine A such that every computation � starting

at s encodes the j
th con	guration over the interval �j� j �� for all j
 ��

The initiation� consecution� and recurrence requirements are expressed as in the proof of

Theorem ����� we replace each temporal operator by its universal version� For instance� if

the second instruction is to increment D �and proceed to instruction ��� � has the following

conjunct�

����

�
������
p� �

�
BBBBB�

���� p	 � ��������p	�

������� ����i�n�i��	 �pi� �

������� copy�pC� �

� copy�pD�U����pD � ���� pD � � copy�pD�U p	�

�
CCCCCA

�
					

The abbreviation copy�p� stands for the conjunction

�p � ���� p� � ��p � ���� �p��

The conjunct ���� p� expresses the recurrence requirement� If � is the formula con

structed this way then � is satis	able i
 A has a recurring computation� Consequently�

TCTL
satis	ability is ��
�
hard�

����� Interval automata as TCTL�structures

We de	ned interval automata to model 	nite
state real
time systems in Section ���� We

will interpret TCTL
formulas over interval automata� For technical reasons� we need to

modify the de	nition of interval automata slightly� so we de	ne timed structures � The

timed structures di
er from the interval automata in two aspects� Firstly� to associate a

unique computation tree with a given timed structure we assume that timed structures

have a single initial state denoted by sinit � Secondly� we need to consider runs that start at

arbitrary states� and hence� we do not impose the initiality requirement on the runs� The

de	nition of a timed structure and its runs is given below�

De�nition
�� A timed structure is a tupleM " hS� sinit � ��C� ��Ei� where S is a 	nite set

of states� sinit 	 S is an initial state� � � S � �AP is an assignment of atomic propositions

CHAPTER �� BRANCHING�TIME LOGIC ���

to states� C is a 	nite set of clocks� (� S � %�C� is an assignment of clock constraints to

states� and E
 S� S� �C is a set of edges�

A run r of a timed structureM starting in state s� is an in	nite sequence

r � ��
��

�s�� I��
����
��

�s�� I��
����
��

�s�� I��
����
��

� � �

of states si 	 S� intervals Ii� clock sets �i
 C� and clock interpretations �i 	 '�M�

satisfying the following constraints�

� Consecution�

� the sequence I�I�I� � � � forms an interval sequence�

� for all i
 � either hsi� si��� �ii 	 E or si�� " si with �i " ��

� �i�� " ��i�� �� ����i r�Ii�� l�Ii�� for all i
 ��

� Timing� for all t 	 Ii� the clock interpretation at time t� �r�t� " �i t� l�Ii�� satis	es

(�si��

Observe that the future behavior of the system is fully determined by its current state

and the current clock interpretation� This motivates the following de	nition�

De�nition
�� For a timed structureM " hS� sinit � ��C� ��Ei� an extended state is a pair

hs� �i where s 	 S and � is a clock interpretation over C such that � j" (�s��

Given an extended state we can evaluate TCTL
formulas by considering all the runs

starting at it� Hence to obtain a TCTL
structure TM from a timed structure M we take

all the extended states of M as the states of TM� The initial state of TM is hsinit � �C �� ��i�

Runs of M give maps from R to extended states of M� that is� a computation over the states

of TM�

De�nition
�	 Consider a run r of M of the form

r � ��
��

�s�� I��
����
��

�s�� I��
����
��

�s�� I��
����
��

� � �

The computation �r associated with the run r is a map from R to S�'�M� de	ned by�

for each t 	 Ij � �r�t� " hsj � �r�t�i with �r�t� " �j t� l�Ij��

CHAPTER �� BRANCHING�TIME LOGIC ���

Notice that if two time instants t and t� belong to the same time interval Ii along a run

r then ���r�t�� " ���r�t
���� It follows that �r satis	es the 	nite
variability constraint� Fur

thermore� the following lemma also holds� it can be proved by a straightforward application

of the de	nitions�

Lemma
��� For a timed structure M the collection of all the computations correspond

ing to the runs of M satis	es both the su�x closure and fusion closure requirements of

De	nition ����

Now we can formally associate a TCTL
structure with M and use it to interpret TCTL

formulas�

De�nition
��� Given a timed structure M� the corresponding TCTL
structure is TM "

hS � '�M�� hsinit � �C �� ��i� ��� fMi� where the labeling function is de	ned by ���hs� �i� "

��s�� and fM consists of precisely the computations corresponding to all the runs of M�

For a TCTL
formula ��M j" � precisely when TM j" �� A TCTL
formula � is called

�nitely satis�able i
 there exists a timed structure M such thatM j" ��

Theorem ���� shows that the 	nite
satis	ability question is also undecidable� For the

conventional temporal logics such CTL or PTL� the algorithm for constructing 	nite mod

els is used for automatic synthesis of a synchronization skeleton meeting the constraints

speci	ed by the temporal logic speci	cation �EC��� MW���� The undecidability of the

	nite
satis	ability question for TCTL implies that this approach cannot be used for auto

matic synthesis from TCTL
speci	cations� Later� we will show that the set of satis	able

TCTL
formulas di
ers from the set of 	nitely
satis	able TCTL
formulas� that is� unlike

CTL the two notions of satis	ability are di
erent for TCTL�

Theorem
��� The set of 	nitely
satis	able TCTL
formulas is not recursive�

Proof� We reduce the halting problem for �
counter machines to the 	nite
satis	ability

question�

While proving the undecidability of TCTL
satis	ability �see proof of Theorem ����� we

encoded the computations of a given �
counter machine A using a formula �� Let us assume

that A is deterministic and its halting corresponds to the location counter taking a speci	c

value� say n� Let � be the conjunction of � and the halting requirement �� pn�

If A does not halt� then � is not satis	able� and hence� not 	nitely satis	able�

CHAPTER �� BRANCHING�TIME LOGIC ���

If A halts� then � is satis	able� Suppose A stops after m steps� Clearly both the

counters never exceed m� Hence according to our encoding scheme the truth assignment

need not change more than �m times during an interval of unit length� Consequently we can

construct a 	nite pre	x of state
interval pairs � " �s�� I���s�� I�� � � ��sk� Ik� such that the

transition times �the boundaries of Ijs� are multiples of ����m� and � encodes the halting

computation of A� It is straightforward to construct a 	nite timed structure that has a

single run which starts with the pre	x �� Consequently � is 	nitely satis	able�

Thus� � is 	nitely satis	able i
 A halts� The theorem follows�

	�� Model checking

In this section we develop an algorithm for deciding whether a 	nite
state real
time system

presented as a timed structure M meets its speci	cation given as a TCTL
formula �� We

will also study the complexity of the model
checking problem� Throughout this section we

will assume M and � are 	xed�

����� Introducing formula clocks

A state of the TCTL
structure TM is a pair hs� �i where � is a clock interpretation� Let

� be a subformula of �� Recall that the satisfaction relation is de	ned as �hs� �i� t� j"E ��

Thus to evaluate the truth of a formula� in addition to the state and the clock values� one

also needs the current time t and the environment E giving values for the free variables in

�� It is convenient to reformulate the semantic de	nition by introducing a clock for each

variable appearing in ��

De�nition
��� Let C� be the set of variables appearing in �� let C� be C � C�� The

timed structureM� is de	ned to be the tuple hS� sinit � ��C��(�Ei�

An extended state of M� is a pair hs� �i where s 	 S and � is a clock interpretation

over C�� The runs ofM� give computations which are maps from R to its extended states�

Note that the extra clocks introduced are not reset along the runs ofM�� they only record

the elapsed time and are used to interpret the variables in ��

Consider a clock interpretation � forM�� The time assignment for the clocks of M is

interpreted as before� In addition� � also gives an assignment from C� to R� This is viewed

as an interpretation for the variables in �� the intended meaning is that at time t� for each

CHAPTER �� BRANCHING�TIME LOGIC ���

variable x� ��x� should equal t � E�x�� Now given an extended state hs� �i� the formula �

can be interpreted� the clock interpretation � contains the information about t and E � We

rede	ne the semantics as follows�

De�nition
��� For an extended state hs� �i ofM�� and a subformula � of �� the satis

faction relation hs� �i j" � is de	ned inductively as follows�

hs� �i j" p i
 p 	 ��s��

hs� �i j" �x c� � �y d� i
 ��x� d
 ��y� c�

hs� �i j" �� i
 hs� �i �j" ��

hs� �i j" �� � �� i
 hs� �i j" �� and hs� �i j" ���

hs� �i j" x� � i
 �s� �x �� ���� j" ��

hs� �i j" ��� U �� i
 for some run r ofM� starting at hs� �i� �r�t� j" �� for some

t
 �� and �r�t
�� j" �� for all � � t�
 t�

hs� �i j" ��� U �� i
 for every run r of M� starting at hs� �i� �r�t� j" �� for

some t
 �� and �r�t
�� j" �� for all � � t�
 t�

The advantage of using the revised de	nition is that environments give static interpreta

tions to variables� whereas the clock interpretations for variables integrate conveniently with

the clock interpretations of the timed structure� The following lemma states the equivalence

of the two semantic de	nitions�

Lemma
��
 Consider a subformula � of �� and t 	 R� Let E be an environment and ��

be a clock interpretation for C� such that ���x� " t � E�x� for all variables x 	 C�� Then

�hs� �i� t� j"E � i
 hs� � ��
�i j" ��

Proof� The proof is by a straightforward induction on the structure of �� Observe that

�E�x� c � E�y� d� i
 �t � E�x� d
 t � E�y� c��

It follows that to check the truth of � with respect to M� it su�ces to check whether

the initial extended state hsinit � �C� �� ��i satis	es ��

����� Clock regions

The task of the model
checking algorithm is to evaluate the truth of a formula in the initial

extended state� To this end the algorithm needs to evaluate the truth of all the subformulas

CHAPTER �� BRANCHING�TIME LOGIC ���

in all the extended states� There are in	nitely many �in fact� uncountable� extended states�

but� not all of these extended states are distinguishable by our logic� If two extended states

corresponding to the same state agree on the integral parts of all clock values� and also on

the ordering of the fractional parts of all clock values� then the computation trees rooted

at these two extended states cannot be distinguished by TCTL
formulas� We de	ne an

equivalence relation over the set of all clock interpretations as in Section ����� and show

that TCTL
formulas cannot distinguish between equivalent clock interpretations�

De�nition
��� For x 	 C� let cx denote the largest constant d such that x � d is a

subformula of some clock constraint appearing in E� For x 	 C�� let cx denote the largest

constant d such that �x c � y d� or �x d � y c� is a subformula of ��

Given clock interpretations � and �� over C�� de	ne ���� i
 all of the following conditions

are met�

�� For each x 	 C�� either b��x�c and b���x�c are the same� or both ��x� and ���x� are

greater than cx�

�� For every x� y 	 C� such that ��x� � cx and ��y� � cy� fract���x�� � fract���y�� i

fract����x�� � fract����y���

�� For each x 	 C� such that ��x� � cx� fract���x�� " � i
 fract����x�� " ��

�� For a subformula �x c � y d� of �� ���x� d
 ��y� c� i
 ����x� d
 ���y� c��

A clock region is an equivalence class of clock interpretations induced by ��

An end region is a clock region satisfying x 	 cx for all x 	 C�� A boundary region is a

clock region satisfying x " c for some x 	 C� and for some c � cx�

Example
��� Consider a system with C� " fx� yg with cx " � and cy " �� For a clock

interpretation � with ��x� " ��� and ��y� " ���� the clock region ��� consists of all clock

interpretations satisfying ��
 x
 y
 �� �see Section ����� for greater details��

The clock region ��
 y
 x " �� is a boundary region� The end region is given by

��x 	 ��� �y 	 ���� If x and y are clocks corresponding to � and x � y is a subformula of ��

then this end region is split into two end regions� ��
 x � y� and ���
 y
 x�� ��
 x���

As a corollary to the model
checking algorithm it will follow that

For two extended states hs� �i and hs� ��i of M�� if ���� then for every subfor�

mula � of �� hs� �i j" � i� hs� ��i j" �	

CHAPTER �� BRANCHING�TIME LOGIC ���

����� The region graph

The 	rst step in the model
checking algorithm is to construct a region graph similar to the

one in Section ������

De�nition
��� A region is a pair hs� �i� where s 	 S� and � is a clock region satisfying

(�s��

We want to label the regions with all the subformulas of � such that hs� ���i is labeled

with � i
 hs� �i j" ��

Suppose we want to determine whether hs� ���i should be labeled with ��� U ��� We

try to 	nd a run starting at hs� �i such that the associated path satis	es �� U ��� As time

progresses� the extended state of the system changes� but the truth of the subformulas ��

and �� changes only when it moves to a new region� Hence� instead of the desired run

we search for a 	nite sequence of regions starting at hs� ���i such that each region can be

reached from the previous one either by a state
transition of M or by increase in the values

of clocks� Furthermore� for the desired sequence� �� should be true over its last region� and

�� should be true over all the intermediate regions�

The edge relation over the regions captures two di
erent types of events� ��� transitions

in M� and ��� moving into a new clock region because of the passage of time� We de	ne a

time�successor function over clock regions to capture the second type of transitions�

De�nition
��	 Let � and � be distinct clock regions� succ��� " � i
 for each � 	 ��

there exists a positive t 	 R such that � t 	 �� and for all t�
 t� � t� 	 � � ��

Successor is de	ned for every clock region except the end region�

Example
��� Let us consider an example with two clocks x and y with cx " � and

cy " �� The clock regions are shown in Figure ���� Note that the regions which lie on either

horizontal or vertical lines are boundary regions�

The successor of a clock region � is the class to be hit 	rst by a line drawn from some

point in � in the diagonally upwards direction� For example� the successor of the clock

region �x " �� y " �� is the clock region ���
 x
 ��� �y " x � ���� The successor of

��
 y
 x
 �� is the clock region ��
 y
 x " ���

CHAPTER �� BRANCHING�TIME LOGIC ���

�

��
�

�
�

� � �

�

y

x

Figure ���� Clock regions

Notice that the de	nition of successor here is somewhat di
erent from the one used while

checking emptiness of timed automata �see Section ������� Consider a system with one clock

x with cx " �� In case of timed automata� the region ��
 x
 �� has two time
successors�

the region �x " �� and the region �x 	 ��� On the other hand� by the above de	nition� the

successor of ��
 x
 �� is �x " ��� and the successor of �x " �� is �x 	 ��� This is because for

TCTL model
checking all the regions appearing along the path are of importance� Consider

a transition from state s to state s� with the clock constraint �x 	 ��� The single transition

from hs� �x
 ��i to hs�� �x 	 ��i in case of the region automaton for timed automata� now

needs to be modeled by a sequence of transitions� hs� �x
 ��i to hs� �x " ��i to hs� �x 	 ��i

to hs�� �x 	 ��i�

We can represent each clock region as in Section ����� by recording �i� for every clock x

a single constraint of the form x " c� or x 	 �c� c ��� or x 	 cx� and �ii� the ordering of the

fractional parts of all the clocks� The time
successor of every clock region can be computed

�in time linear in the number of clocks� as in Section ������ Let us de	ne the region graph�

De�nition
��� The region graph R�M� �� is de	ned to be the graph hV�� E�i� The vertex

set V� is the set of all regions� The edge set E� consists of two types of edges�

�� Edges representing the passage of time� every vertex hs� �i has an edge to hs� succ���i�

�� Edges representing the transitions of M�

� Consider a vertex hs� �i� where � is not a boundary region� For every edge

s
�
�� s�� it has an edge to each of the vertices hs�� �� �� ���i� hs�� succ��� �� ����i�

and hs�� �� �� ��succ���i�

� Consider a vertex hs� �i� where � is a boundary region� For every edge s
�
�� s��

it has an edge to the vertex hs�� succ��� �� ����i�

CHAPTER �� BRANCHING�TIME LOGIC ���

In the above de	nition� the edges are de	ned only if the target is a legal region� For

example� in the 	rst clause there is an implicit assumption that hs� succ���i is a region� that

is� � is not an end
region� and succ��� satis	es (�s�� The second clause considers di
erent

cases� and can be best understood through an example�

Example
��� Consider a system with two clocks x and y� Assume that there is an edge

from s to s� which resets x� Also assume that (�s� and (�s�� are always true�

Suppose the current region is v " �s� ���� ����� The 	rst clause gives an edge to �s� ���� ���

This corresponds to the case when the transition to state s� does not happen before the

clock y reaches ��

Next consider the edges representing the transition from s to s� assuming that the tran

sition happens before the equivalence class changes� From v there is an edge to �s�� �� �����

this corresponds to the case when the state at the transition point is s�� that is� current

interval is right
open� and the value of x at the transition point is �� The pre	x of such a

run looks like

��
�������

�s� ��� �����
fxg
��
������

�s�� �������� � � �

The vertex v also has an edge to �s�� ����� ������ this corresponds to the case when the current

interval is right
closed� and hence the region �s�� �� ���� does not appear along the run� only

its successor appears� This case is shown in the following pre	x�

��
�������

�s� ��� �����
fxg
��
������

�s�� �������� � � �

Now let us consider the case when the transition from s to s� happens exactly when the

clock region changes� In this case v has an edge to �s�� �� �� corresponding to the case that

the current interval is right
open� If the current interval is right
closed then a region change

precedes the state
change�

Finally let us consider the edges from the boundary region �s� ���� ��� The system can

stay in this region only instantaneously� The 	rst clause gives an edge to �s� ���� ����� For the

edges representing the state
transitions of M� the only relevant case is if the state changes

before the region �s� ���� ���� appears on the run� Since the current interval has to be right

closed� there is only one case to be considered� and the region has an edge to �s�� ���� �����

There is a simple correspondence between the runs of M and in	nite paths through

R�M� ��� To formalize this correspondence� we de	ne the notion of a re�ned run as follows�

CHAPTER �� BRANCHING�TIME LOGIC ���

De�nition
��� Let r be a run of the timed structureM��

r � ��
��

�s�� I��
����
��

�s�� I��
����
��

�s�� I��
����
��

� � �

It is called a re�ned run i
 whenever two time instants t and t� are in the same interval

Ij � the clock interpretations at time t and t
� are equivalent� that is� �r�t���r�t

���

Thus along a re	ned run all the clock interpretations in the same interval belong to the

same clock region� The next lemma asserts that from any given run we can obtain a re	ned

run by splitting each interval�

Lemma
��� For every run r ofM� there exists a re	ned run r� such that the computations

�r and �r� associated with them are the same�

Proof� Consider a run r of the form

r � ��
��

�s�� I��
����
��

�s�� I��
����
��

�s�� I��
����
��

� � �

To obtain the corresponding re	ned run� we split each interval Ij into a 	nite sequence of

adjacent intervals� Given �j � let t�� � � � tk� each ti 	 Ij � be the sequence of time values at

which the clock region changes as time increases� The region does not change during the

intervals �ti� ti���� and during Ij� " ft 	 Ij j t
 t�g� and during Ij� " ft 	 Ij j t 	 tng�

The successive regions along this chain are related by the successor function� We replace

the element �sj � Ij� by the sqeuence

�sj � Ij��
�
��
�j�t�

�sj � �t�� t���
�
��
�j�t�

�sj � �t�� t���
�
��
�j�t�

� � ��sj � �tn� tn��
�
��
�j�tn

�sj � Ij��

For example� let �j " ����� ����� and Ij " ��� ����� Then the desired sequence of transition

times is ���� ���� ���� and the sequence of intervals is

��� ���� � ����� ���� � ����� ���� � ����� ���� � ����� ���� � ����� ���� � ����� ����

Check that if t and t� belong to the same interval in the above sequence then �j t� � and

�j t� � � are equivalent�

Consequently� while interpreting TCTL
formulas at an extended state of M� one can

restrict attention only to the re	ned runs starting at that state�

Observe that a re	ned run can be characterized by an �
sequence of regions�

CHAPTER �� BRANCHING�TIME LOGIC ���

De�nition
��
 Let r be a re	ned run ofM� with states si and intervals Ii� The projection

of r� denoted project�r�� is an in	nite sequence of regions

hs�� ��i � hs�� ��i � hs�� ��i � � � �

such that for each t 	 Ij � the clock interpretation �r�t� 	 �j �

The edges in the region graph are de	ned so that if two regions v and v� appear adjacent

along the projection of some re	ned run then there is an edge from v to v�� Thus if v�v�v� � � �

is the projection of a re	ned run then it is also a path through R�M� ���

Now let us see if the converse of this holds� does every in	nite path through the region

graph correspond to the projection of some run$ This �almost� holds� but to ensure that

the runs satisfy the progress requirement� we need to impose certain fairness constraints on

the region graph� For example� if a vertex whose clock region satis	es �x
 �� has a self

loop� then the progress of time requires that no run can correspond to looping in	nitely on

this vertex�

Consider the projection project�r� " v�v� � � � Since time progresses without bound along

r� every clock x 	 C� is either reset in	nitely often or eventually it always increases� Hence�

for each x 	 C�� along project�r�� in	nitely many regions satisfy either �x " �� or �x 	 cx��

This is because if a clock is never reset from a certain position onwards then its value will

eventually cross every time value�

This motivates the following de	nition�

De�nition
��� De	ne the set Fx " fhs� ���i j �s 	 S� � ���x� " � � ��x� 	 cx�g for

x 	 C�� A path v�v�v� � � � through R�M� �� is called Fp
fair i
 for each x 	 C�� for

in	nitely many i�s� vi is in Fx�

Thus the projections of the runs are Fp
fair paths in the region graph� The following

lemma states this property�

Lemma
��� For every re	ned run r ofM�� the sequence of regions project�r� is an Fp
fair

path through R�M� ���

Conversely� from an Fp
fair path it is possible to construct a run which projects onto

this path� and also satis	es the progress requirement�

CHAPTER �� BRANCHING�TIME LOGIC ���

Lemma
��� For every Fp
fair path � through R�M� ��� there exists a re	ned run r of

M� such that � equals project�r��

Proof� Consider an in	nite path � " v�v� � � � through R�M� �� with vi " hsi� �ii�

Choose some �� 	 ��� The interval I� is left
closed and l�I�� " �� Now we construct the

desired �re	ned� run r inductively� Assume �i and the left boundary for Ii is chosen� We

show how to choose the right
boundary of Ii and the clock interpretation �i��� Repeating

this process de	nes the desired run r�

First consider the case when �i is a boundary region� In this case Ii is a singular interval�

that is� set r�Ii� " l�Ii�� and Ii is right
closed� If �i�� " succ��i� then �i�� " �� and

�i�� " �i� Otherwise� the edge from vi to vi�� corresponds to a M
transition si
�i��
�� si���

choose �i�� " ��i�� �� ���i�

Now consider the case when �i is not a boundary region� If �i is not the end
region

then there is some positive �i such that �i �i 	 succ��i�� and �i � 	 �i for all � 	 ��� �i��

That is� the clock interpretation �i changes its equivalence class after �i time elapses� There

are several cases to consider�

��� Suppose the edge from vi to vi�� indicates passage of time� that is� si�� " si and

�i�� " succ��i�� In this case� Ii is right
open� Choose r�Ii� " l�Ii� �i� �i�� " �i �i� and

�i�� " ��

��� This case corresponds to a state
transition si
�i��
�� si�� happening before the current

clock region changes� We can choose the length of Ii in this case� If �i is the end
region

let � " � else � " �i��� Choose r�Ii� " l�Ii� �� and �i�� " ��i�� �� ����i ���� If

�i�� " ���i�� �� ���i� then Ii is right
open� and if �i�� " succ����i�� �� ���i�� then Ii is

right
closed�

��� Let us consider the case when the state change occurs after time �i according the

M
edge si
�i��
�� si��� The current interval Ii is right
open� Choose r�Ii� " l�Ii� �i� and

�i�� " ��i�� �� ����i �i��

It is easy to check that the run r satis	es the consecution and timing requirements� Also

� equals project�r�� Furthermore� since � is Fp
fair� r satis	es the progress requirement�

Suppose r does not meet the progress requirement� The run contains in	nitely many tran

sitions corresponding to the edges in M� From the above construction it follows that the

sequence of values �i converges to �� This implies that there exists j
 � such that for all

i
 j the regions �i satisfy �d
 x
 d �� for some clock x and some integer d
 cx� This

implies that � is not fair with respect to Fx�

CHAPTER �� BRANCHING�TIME LOGIC ���

From the above two lemmas it follows that the behavior of the timed structureM� can

be analyzed by examining the Fp
fair paths in the region graph� Notice that by introducing

the fairness requirements� we are essentially treating the region graph as a Kripke structure

for CTLF with the fairness family given by Fp " fFx � x 	 C�g�

����� Labeling algorithm

We label the regions with subformulas of � starting from the subformulas of length �� then

of length �� and so on� We introduce a special proposition pb� and label a region v " hs� �i

with pb i
 � is a boundary region�

Let � be a subformula of �� Assume that all the regions are already labeled with each

subformula of �� Let v " hs� ���i be a region�

� If � is an atomic proposition� label v with � i
 � 	 ��s��

� If � is the timing constraint �x c � y d�� then label v with � i
 ��x� d
 ��y� c�

� If � is ���� then label v with � i
 v is not labeled with ���

� If � is the conjunction �� � ��� then label v with � i
 v is labeled with both �� and

���

� If � is x� ��� then label v with � i
 the region hs� �x �� ���i is labeled with ���

� If � is the temporal subformula ���U �� ����U ��� respectively�� then label v with

� i
 some �every� respectively� Fp
fair path through R�M� �� starting at v has a

pre	x v�� v�� � � �vn such that each vi� � � i
 n� is labeled with ��� and vn is labeled

with �� and with either �� or pb�

The last condition can be tested using conventional model
checking algorithms for CTLF

�CES���� The following lemma states the correctness of the above labeling procedure�

Lemma
��	 Let � be a subformula of �� The above labeling algorithm labels hs� ���i with

� i
 hs� �i j" ��

Proof� We assume that the CTL labeling algorithm works correctly� The proof is by

induction on the structure of �� For satisfaction of TCTL
formulas� we use De	nition �����

CHAPTER �� BRANCHING�TIME LOGIC ���

The cases � 	 AP� � " �x c � y d�� � " ���� � " �� � ��� and � " x� �� follow

trivially from de	nitions� We prove that hs� �i j" � i
 the algorithm labels hs� ���i with ��

where � " ��� U ��� The other case � " ��� U �� is similar�

First assume that the algorithm labels hs� ���i with �� Hence there exists an Fp
fair path

� with pre	x v�v� � � �vn such that vn is labeled with �� and each vi� � � i
 n� is labeled

with ��� Let vi " hsi� �ii� By Lemma ���� there exists a re	ned run r with states si and

intervals Ii such that project�r� " �� Consider some t 	 In� We know that �r�t� 	 �n� Since

vn is labeled with �� it follows from the induction hypothesis that �r�t� j" ��� Consider

t�
 t� and let t� 	 Ij � If j
 n then vj is labeled with ��� If j " n� the clocks at two

distinct time values� t and t�� belong to the same clock region �n� and hence� �n cannot be

a boundary region� So even in this case� the vertex vj is labeled with ��� Now we can use

the induction hypothesis to conclude that �r�t
�� j" ��� Hence� hs� �i satis	es ��

Now let us assume that hs� �i j" �� Hence there exists a run starting at hs� �i that

satis	es �� U ��� By Lemma ���� there exists a re	ned run r with states si and intervals Ii�

satisfying �� U ��� Suppose �r�t� j" ��� and �r�t
�� j" �� for some t 	 In and for all t

�
 t�

By Lemma ���� the projection v�v� � � � of r is an Fp
fair path in R�M� ��� Let vi " hsi� �ii�

We know that �r�t� 	 �n� Hence� by the induction hypothesis� the algorithm labels vn with

��� For each � � i
 n� there is some t� in Ii with t
�
 t� and �r�t

�� j" ��� Again� by similar

reasoning� each vi should be labeled with ��� Also if �n is not a boundary region then there

is some t� 	 In with t
�
 t� and hence in this case� vn also should be labeled with ��� Thus

the region graph has a path of the desired form� and hence� hs� ���i gets labeled with ��

This gives a decision procedure for model
checking�

Given a timed structure M and a TCTL�formula �� �rst construct the region

graph R�M� ��	 Then label all the regions with the subformulas of � using the la�

beling procedure	 The structureM satis�es the speci�cation � i� hsinit � �C
� �� ��i

is labeled with �	

����� Complexity of the algorithm

Using the ideas discussed above� one can implement an algorithm for model
checking which

runs in time linear in the qualitative part� and exponential in the timing part of the input�

As in Lemma ���� of Section ������ we can show that the the number of clock regions

of �C� �� R� induced by � is bounded by �jC�j& ��jC
�j �!x�C��� �cx ���� Thus the number

CHAPTER �� BRANCHING�TIME LOGIC ���

of regions is O��j����j�j��M�j�� it is exponential in j(���j� the length of the atomic timing

formulas in �� and also exponential in j(�M�j� the length of the clock constraints �we

assume binary encoding for the constants��

Now from the de	nition of the region graph� it follows that jV�j " O�jSj��j����j�j��M�j��

The 	rst clause in the de	nition of E� contributes at most one edge for every vertex� and

the second clause contributes at most three edges for every edge in E and a clock region of

�C� �� R�� Hence� jE�j " O��jSj jEj���j����j�j��M�j��

Thus the size of the region graph is exponential in the length of timing constraints of the

given timed structure and the formula� but linear in the size of the state
transition graph�

Theorem
��� Given a timed structure M and a TCTL
formula �� there is a decision pro

cedure for checking whether or notM j" � which runs in timeO�j�j��jSj jEj���j����j�j��M�j��

Proof� First construct the region graph R�M� �� " hV�� E�i� The successor class of

any class can be computed in time O�jC�j�� Hence� R�M� �� can be constructed in time

O�jV�j jE�j�� Then run the labeling algorithm on the subformulas of �� The number

of fairness constraints is jC�j� The vertices of R�M� �� can be marked with a formula �

in time O��jV�j jE�j� � jC�j�� assuming they are already marked with the subformulas of

�� using the labeling algorithm for CTLF �CES���� So the labeling algorithm takes time

O�j�j�jC�j��jV�j jE�j��� The complexity bound follows from the bounds on jV�j and jE�j�

Since we have shown that the model
checking problem is decidable� we can also charac

terize the complexity class of deciding 	nite satis	ability of TCTL
formulas�

Corollary
��� The problem of deciding whether a given TCTL
formula is 	nitely satis

	able� is complete for the class of recursively
enumerable problems ���
complete��

Proof� The set of timed structures is enumerable� For any given timed structure M

one can 	nd whether or not M satis	es the given TCTL
formula� Consequently� the set

of 	nitely
satis	able TCTL
formulas is recursively enumerable� Undecidability was proved

earlier in Theorem �����

Note that since the set of satis	able TCTL
formulas is not recursively enumerable� there

must be some formulas which are satis	able but not 	nitely satis	able� Thus TCTL does

not have the 	nite
model property�

CHAPTER �� BRANCHING�TIME LOGIC ���

����	 Complexity of model�checking

The model
checking algorithm we considered� requires time exponential in the length of the

timing constraints� Now we establish a lower bound for the problem� and show the problem

to be PSPACE
complete�

Theorem
��� Given a timed structure M and a TCTL
formula �� the problem of deciding

whether or notM j" �� is PSPACE
complete�

Proof� �PSPACE
hardness� Theorem ���� asserts that the problem of testing whether

an interval automaton has an in	nite run is PSPACE
hard� This emptiness question for a

timed structure can be phrased as a model
checking problem� a timed structure M has an

in	nite run i
M j" �� true� It follows that model
checking problem is PSPACE
hard�

�PSPACE
membership� We show that given a timed structure M and a TCTL
formula

�� the problem of deciding whether or notM j" � can be solved using space polynomial in

the length of the input�

The region graph has size exponential in the length l of the input� and hence if we

construct it fully� and label its vertices with the subformulas of �� the algorithm will need

space exponential in l� The standard way to save on the work
space is to compute the labels

of the vertices as they are required� We sketch out another version of the labeling algorithm

using this idea�

The main procedure of the algorithm is label�v� ��� which returns true if v should be

labeled with � else returns false� Let n be the maximum depth of the nesting of the path

quanti	ers in �� We claim that a non
deterministic version of label can be implemented so

as to use space O�l�n�� This can be proved by an induction on the structure of ��

The cases � 	 AP� � " �x c � y d�� � " ���� and � " �� � �� are straightforward�

For � " ��� U ��� the procedure nondeterministically guesses a path v � v� � � � �vm�

The path is guessed vertex by vertex� at each step checking that the newly guessed vertex

is connected by an edge from the previous one� Furthermore� some Fp
fair path should

be accessible from vm� The procedure checks that label�vi� ��� returns true for each i

m� label�vm� ��� returns true� and if vm does not correspond to a boundary region then

label�vm� ��� returns true� Notice that the procedure just needs to remember the current

guess and the previous guess� This does involve recursive calls to label � so the total space

required is O�l� plus the space for label when called with �� or �� as the second argument�

The claim follows by the inductive hypothesis�

CHAPTER �� BRANCHING�TIME LOGIC ���

Now consider the case � " ��� U ��� First observe that the negation of � can be written

using only existential path
quanti	ers�

��� U �� � �� ������U ���� � ���� � ����� �

The procedure label is called recursively on each subformula of the above translation� Note

that the rewriting does not increase the depth of the nesting of path quanti	ers� The case

� " ���� is handled similarly to the previous case�

By Savitch�s theorem the deterministic version can be implemented in space O�l��j�j���

����
 TCTL with fairness

The model
checking algorithm can be modi	ed to handle timed structures with fairness in

a straightforward way� Recall that a timed structure M with fairness has an associated

fairness family F � A run r of M is F
fair i
 for every F 	 F � in	nitely many states of r

are in F� For the TCTL
structure TM associated with such a timed structure� the set of

computations fM consists only of those computations that correspond to the F
fair runs

of M�

The region graph R�M� �� is constructed as before� We only change the de	nition of

fair paths through the region graph� A path v�v�v� � � �� with vi " hsi� �ii for all i
 �� in

the region graph is called F
fair i
 for every F 	 F � for in	nitely many i
 �� si 	 F� Now

while labeling a vertex with ��� U �� or ��� U ��� we consider only those paths that are

both Fp
fair and F
fair� The algorithm for CTL
F is used to compute the labels�

Chapter �

Concluding Remarks

Summary

We have presented a theory for modeling� specifying� and verifying 	nite
state real
time

systems� The focus of the thesis has been on decidability� complexity� and expressiveness

issues� It shows that automated reasoning is plausible only if we restrict timing constraints

to those comparing delays with constants� With this restriction� the simplifying assumption

of discreteness is not required for checking correctness� we can use the more appealing

dense
time model� The thesis also shows that the additional cost of introducing real
time

in 	nite
state reasoning is a factor proportional to the magnitudes of the constants bounding

the delays�

We have considered three di
erent styles of speci	cations� The automata
theoretic ap

proach uses an event
based model� and regards the veri	cation problem as an inclusion

problem between two descriptions of the system� In the temporal logic based approach� the

process is modeled by an automaton generating timed state sequences� The logic MITL

uses a linear
time semantics� whereas the logic TCTL uses a branching
time semantics� All

three formalisms can express most of the interesting properties of real
time systems� but

di
er from each other in expressiveness� We have outlined an algorithm for veri	cation in

each case�

Towards �e�cient� veri�cation

We have tested toy examples of circuits and tra�c controllers using our implementation of

one of the veri	cation algorithms� However� all algorithms presented in the thesis are of

���

CHAPTER 	� CONCLUDING REMARKS ���

exponential time complexity� and we have not suggested ways to cope with the PSPACE

hardness of veri	cation problems� Now that we have a reasonable theory for real
time

reasoning� and we understand the basic complexity issues related to automated reasoning

about timing constraints� we should proceed to 	nd ways to do veri	cation more e�ciently�

Search for heuristics to cope with the state
explosion problem has been an active area of

research in automatic veri	cation� Recently heuristics to implementmodel
checking without

explicitly enumerating all the states have been proposed� For instance� �BCD���� proposes

the use of binary decision diagrams to represent large state sets symbolically� Godefroid

has proposed a scheme to avoid the state
explosion due to the modeling of concurrency by

interleaving �God��� GW���� Whether our methods can be applied in practice to verify

complex systems� largely depends on the success of such attempts� We feel hopeful that the

techniques designed for the qualitative case can be generalized to handle timing constraints

also�

Apart from an e�cient implementation of the veri	cation algorithms� the other impor

tant aspect is to provide tools to specify complex systems� Timed automata is a fairly

low
level representation� and automatic translations from more structured representations

such as process algebras� timed Petri nets� or high
level real
time programming languages�

should exist� Recently� Sifakis et�al� have shown how to translate a term of the real
time

process algebra ATP to a timed automaton �NSY����

Probabilistic veri�cation

One promising direction of extending the work reported here is to incorporate probabilistic

information in the process model� This is particularly relevant for systems that control and

interact with physical processes� The computational models used in the theory of stochastic

processes are physically realistic� but formal methods for veri	cation of stochastic real
time

systems have not been studied much�

In the simplest type of probabilistic model
checking� the state
transition graph is con

verted into a 	nite
state Markov chain by placing probabilities on the transitions �Var���

PZ��� VW��� CY���� If the speci	cation is presented as a formula of PTL or as a B�uchi

automaton� then the veri	cation problem is to decide whether the sample paths of the

Markov chain satisfy the speci	cation property with probability �� For CTL speci	cations�

the semantics is rede	ned so that the path quanti	ers in the logic� which previously meant

�for all paths� and �there exists a path�� are reinterpreted to mean �with probability one�

CHAPTER 	� CONCLUDING REMARKS ���

and �with positive probability�� respectively�

We add probabilities to our model of timed automata by associating 	xed distributions

with the delays� Now we can express constraints like �the delay between the request and

the response is distributed uniformly between � to � seconds�� This extension makes our

processes generalized semi�Markov processes �see �She��� for an introduction to the GSMP

model�� Our technique of constructing a region automaton by grouping the uncountably

many con	gurations of the system into a 	nite number of equivalence classes� can be used

to analyze the behavior of GSMPs�

In �ACD��a�� we present an algorithm that combines model
checking for TCTL with

model
checking for discrete
time Markov chains� The method can be adopted to check prop

erties speci	ed using deterministic timed automata also �ACD��b�� However� the problem

of checking speci	cations presented as formulas of MITL or as nondeterministic timed au

tomata is still open� A more ambitious problem is to compute estimates on the probability

that a given process satis	es its logical speci	cation�

Beyond veri�cation

In this thesis we have addressed only the veri	cation problem for systems modeled as timed

automata� Clearly� questions other than veri	cation can be studied using timed automata�

For example� Wong
Toi and Ho
mann study the problem of supervisory control of discrete

event systems when the plant and speci	cation behaviors are represented by timed automata

�WH���� The problem of synthesizing schedulers from timed automata speci	cations is

addressed in �DW���� Courcoubetis and Yannakakis use timed automata to solve certain

minimum and maximum delay problems for real
time systems �CY���� For instance� they

show how to compute the earliest and the latest time a target state can appear along

the runs of an automaton given an initial state and an interpretation for clock values� A

generalized version of this problem is to synthesize time bounds on delays so that a particular

speci	cation is met� Speci	cally� consider a timed automaton A whose timing constraints

involve comparisons of clock values with unknown constants or parameters� The problem

is to compute the set of values �or the extremal values with respect to some optimizing

function� of these parameters for which L�A� is empty� Several interesting questions about

computing least restrictive bounds on delays� preserving some property of interest� can be

formulated within this framework�

Bibliography

�ACD��� Rajeev Alur� Costas Courcoubetis� and David Dill� Model
checking for real
time

systems� In Proceedings of the Fifth IEEE Symposium on Logic in Computer

Science� pages ���*���� �����

�ACD��a� Rajeev Alur� Costas Courcoubetis� and David Dill� Model
checking for proba

bilistic real
time systems� In Automata� Languages and Programming� Proceed�

ings of the ��th ICALP� Lecture Notes in Computer Science ���� �����

�ACD��b� Rajeev Alur� Costas Courcoubetis� and David Dill� Verifying automata spec

i	cations of probabilistic real
time systems� In Proccedings of REX workshop

�Real�time� theory in practice�� �����

�AD��� Rajeev Alur and David Dill� Automata for modeling real
time systems� In Au�

tomata� Languages and Programming� Proceedings of the ��th ICALP� Lecture

Notes in Computer Science ���� pages ���*���� Springer
Verlag� �����

�AFH��� Rajeev Alur� Tom+as Feder� and Thomas Henzinger� The bene	ts of relaxing

punctuality� In Proceedings of the Tenth ACM Symposium on Principles of

Distributed Computing� pages ���*���� �����

�AH��� Rajeev Alur and Thomas Henzinger� A really temporal logic� In Proceedings of

the ��th IEEE Symposium on Foundations of Computer Science� pages ���*����

�����

�AH��� Rajeev Alur and Thomas Henzinger� Real
time logics� complexity and expres

siveness� In Proceedings of the Fifth IEEE Symposium on Logic in Computer

Science� pages ���*���� �����

���

BIBLIOGRAPHY ���

�AK��� S� Aggarwal and R�P� Kurshan� Modeling elapsed time in protocol speci	ca

tion� In H� Rudin and C�H� West� editors� Protocol Speci�cation� Testing� and

Veri�cation� volume III� pages ��*��� �����

�AKS��� S� Aggarwal� R�P� Kurshan� and K� Sabnani� A calculus for protocol speci	ca

tion and validation� In H� Rudin and C�H� West� editors� Protocol Speci�cation�

Testing� and Veri�cation� volume III� pages ��*��� �����

�AS��� Bowen Alpern and Fred Schneider� Verifying temporal properties without using

temporal logic� ACM Transactions on Programming Languages and Systems�

���������*���� �����

�BB��� J�C�M� Baeten and J�A� Bergstra� Real
time process algebra� Formal Aspects

of Computing� ��������*���� �����

�BCD���� J�R� Burch� E�M� Clarke� D�L� Dill� L�J� Hwang� and K� L� McMillan� Symbolic

model checking� ���� states and beyond� In Proceedings of the Fifth IEEE

Symposium on Logic in Computer Science� pages ���*���� �����

�BCDM��� Michael Browne� Edmund Clarke� David Dill� and Bud Mishra� Automatic

veri	cation of sequential circuits using temporal logic� IEEE Transactions on

Computers� C
�����������*����� �����

�BD��� B� Berthomieu and M� Diaz� Modeling and veri	cation of time
dependent sys

tems using time Petri nets� IEEE Transactions on Software Engineering� SE

���������*���� �����

�BH��� Arthur Bernstein and Paul Harter� Proving real
time properties of programs

with temporal logic� In Proceedings of the Eighth ACM Symposium on Operating

System Principles� �����

�BKP��� Howard Barringer� Ruard Kuiper� and Amir Pnueli� A really abstract concur

rent model and its temporal logic� In Proceedings of the ��th ACM Symposium

on Principles of Programming Languages� pages ���*���� �����

�BMP��� Mordechai Ben
Ari� Zohar Manna� and Amir Pnueli� The temporal logic of

branching time� In Proceedings of the Eighth ACM Symposium on Principles of

Programming Languages� �����

BIBLIOGRAPHY ���

�BS��� J�A� Brzozowski and C�J�H� Seger� Advances in asynchronous circuit theory�

Part II� Bounded inertial delay models� MOS circuits� design techniques� �����

�B�uc��� Richard B�uchi� On a decision method in restricted second
order arithmetic� In

Proceedings of the International Congress on Logic� Methodology� and Philoso�

phy of Science ����� pages �*��� Stanford University Press� �����

�CDK��� E�M� Clarke� I�A� Draghicescu� and R�P� Kurshan� A uni	ed approach for show

ing language containment and equivalence between various types of �
automata�

Technical report� Carnegie Mellon University� �����

�CES��� Edmund Clarke� E� Allen Emerson� and A� Prasad Sistla� Automatic veri	ca

tion of 	nite
state concurrent systems using temporal
logic speci	cations� ACM

Transactions on Programming Languages and Systems� ��������*���� �����

�Cho��� Yaacov Choueka� Theories of automata on �
tapes� a simpli	ed approach�

Journal of Computer and System Sciences� �����*���� �����

�CR��� J�E� Coolahan and N� Roussopoulos� Timing requirements for time
driven sys

tems using augmented Petri
nets� IEEE Transactions on Software Engineering�

SE
��������*���� �����

�CY��� Costas Courcoubetis and Mihalis Yannakakis� Verifying temporal properties of

	nite
state probabilistic programs� In Proceedings of the ��th IEEE Symposium

on Foundations of Computer Science� pages ���*���� �����

�CY��� Costas Courcoubetis and Mihalis Yannakakis� Minimum and maximum de

lay problems in real
time systems� In Proceedings of the Third Workshop on

Computer�Aided Veri�cation� Aalborg University� Denmark� �����

�DHW��� David Dill� Alan Hu� and Howard Wong
Toi� Checking for language inclusion

using simulation relations� In Proceedings of the Third Workshop on Computer�

aided Veri�cation� Aalborg University� Denmark� �����

�Dil��� David Dill� Timing assumptions and veri	cation of 	nite
state concurrent sys

tems� In J� Sifakis� editor� Automatic Veri�cation Methods for Finite State

Systems� Lecture Notes in Computer Science ���� Springer*Verlag� �����

BIBLIOGRAPHY ���

�dR��� Willem
Paul de Roever� editor� Real Time� Theory in Practice� Lecture Notes

in Computer Science� Springer
Verlag� ����� To appear�

�DW��� David Dill and Howard Wong
Toi� Synthesizing processes and schedulers from

temporal speci	cations� In Proceedings of the Second Workshop on Computer�

Aided Veri�cation� Rutgers University� �����

�EC��� E� Allen Emerson and Edmund M� Clarke� Using branching
time temporal logic

to synthesize synchronization skeletons� Science of Computer Programming�

�����*���� �����

�EH��� E� Allen Emerson and Joseph Halpern� Decision procedures and expressive

ness in the temporal logic of branching time� In Proceedings of the �th ACM

Symposium on Principles of Programming Languages� pages ���*���� �����

�EL��� E�A� Emerson and C�L� Lei� Modalities for model
checking� Branching time

logic strikes back� In Proceedings of the ��th ACM Symposium on Principles of

Programming Languages� pages ��*��� �����

�Eme��� E� Allen Emerson� Temporal and modal logic� In J� van Leeuwen� editor�

Handbook of Theoretical Computer Science� volume B� pages ���*����� Elsevier

Science Publishers� �����

�EMSS��� E� Allen Emerson� Aloysius Mok� A� Prasad Sistla� and Jai Srinivasan� Quanti

tative temporal reasoning� Presented at the First Workshop on Computer
aided

Veri	cation� Grenoble� France� �����

�God��� Patrice Godefroid� Using partial orders to improve automatic veri	cation meth

ods� In Proceedings of the Second Workshop on Computer�Aided Veri�cation�

Rutgers University� �����

�GW��� Patrice Godefroid and Pierre Wolper� A partial approach to model
checking� In

Proceedings of the Sixth IEEE Symposium on Logic in Computer Science� pages

���*���� �����

�Har��� Eyal Harel� Temporal analysis of real
time systems� Master�s thesis� The Weiz

mann Institute of Science� Rehovot� Israel� �����

BIBLIOGRAPHY ���

�Hen��� Thomas Henzinger� Half
order modal logic� how to prove real
time proper

ties� In Proceedings of the Ninth ACM Symposium on Principles of Distributed

Computing� pages ���*���� �����

�Hen��� Thomas Henzinger� Temporal Speci�cation and Veri�cation of Real�Time sys�

tems� PhD thesis� Stanford University� �����

�HJ��� Hans Hansson and Bengt Jonsson� A framework for reasoning about time and

reliability� In Proceedings of the Tenth IEEE Real�Time Systems Symposium�

pages ���*���� �����

�HK��� Zvi Har�El and Robert Kurshan� Software for analytical development of com

munication protocols� AT�T Technical Journal� �����

�HLP��� Eyal Harel� Orna Lichtenstein� and Amir Pnueli� Explicit
clock temporal logic�

In Proceedings of the Fifth IEEE Symposium on Logic in Computer Science�

pages ���*���� �����

�HMP��� Thomas Henzinger� Zohar Manna� and Amir Pnueli� Temporal proof method

ologies for real
time systems� In Proceedings of the ��th ACM Symposium on

Principles of Programming Languages� pages ���*���� �����

�Hoa��� C�A�R� Hoare� Communicating sequential processes� Communications of the

ACM� ���������*���� �����

�Hoa��� C�A�R� Hoare� Communicating Sequential Processes� Prentice
Hall� �����

�HPS��� David Harel� Amir Pnueli� and Jonathan Stavi� Propositional dynamic logic of

regular programs� Journal of Computer and System Sciences� ������*���� �����

�HU��� John Hopcroft and Je
 Ullman� Introduction to Automata Theory� Languages�

and Computation� Addison
Wesley� �����

�JM��� Farnam Jahanian and Aloysius Mok� Safety analysis of timing properties in real

time systems� IEEE Transactions on Software Engineering� SE*���������*����

�����

�JM��� Farnam Jahanian and Aloysius Mok� A graph
theoretic approach for tim

ing analysis and its implementation� IEEE Transactions on Computers� C

���������*���� �����

BIBLIOGRAPHY ���

�JS��� Farnam Jahanian and Douglas Stuart� A method for verifying properties of

modechart speci	cations� In Proceedings of the Ninth IEEE Real�Time Systems

Symposium� pages ��*��� �����

�Koy��� Ron Koymans� Specifying real
time properties with metric temporal logic� Jour�

nal of Real�Time Systems� �����*���� �����

�Kur��� Robert Kurshan� Complementing deterministic B�uchi automata in polynomial

time� Journal of Computer and System Sciences� �����*��� �����

�KVdR��� Ron Koymans� Jan Vytopil� and Willem
Paul de Roever� Real
time program

ming and asynchronous message passing� In Proceedings of the Second ACM

Symposium on Principles of Distributed Computing� pages ���*���� �����

�LA��� Nancy Lynch and Hagit Attiya� Using mappings to prove timing properties� In

Proceedings of the Ninth ACM Symposium on Principles of Distributed Com�

puting� pages ���*���� �����

�Lam��� Leslie Lamport� What good is temporal logic$ In R�E�A� Mason� editor�

Information Processing ��� Proceedings of the Ninth IFIP World Computer

Congress� pages ���*���� Elsevier Science Publishers� �����

�Lam��� Leslie Lamport� The temporal logic of actions� Technical report� DEC Systems

Research Center� Palo Alto� California� �����

�Lew��� Harry Lewis� Finite
state analysis of asynchronous circuits with bounded tem

poral uncertainty� Technical Report TR
��
��� Harvard University� �����

�Lew��� Harry Lewis� A logic of concrete time intervals� In Proceedings of the Fifth

IEEE Symposium on Logic in Computer Science� pages ���*���� �����

�LP��� Orna Lichtenstein and Amir Pnueli� Checking that 	nite
state concurrent pro

grams satisfy their linear speci	cation� In Proceedings of the ��th ACM Sym�

posium on Principles of Programming Languages� pages ��*���� �����

�LPS��� Daniel Lehman� Amir Pnueli� and Jonathan Stavi� Impartiality� justice� and

fairness� The ethics of concurrent termination� In Automata� Languages and

Programming� Proceedings of the Ninth ICALP� Lecture Notes in Computer

Science ���� pages ���*���� Springer
Verlag� �����

BIBLIOGRAPHY ���

�LT��� Nancy Lynch and Mark Tuttle� Hierarchical correctness proofs for distributed

algorithms� In Proceedings of the Seventh ACM Symposium on Principles of

Distributed Computing� pages ���*���� �����

�McN��� Robert McNaughton� Testing and generating in	nite sequences by a 	nite au

tomaton� Information and Control� �����*���� �����

�Mil��� Robin Milner� A Calculus of Communicating Systems� Lecture Notes in Com

puter Science ��� Springer
Verlag� �����

�Mil��� Robin Milner� Calculi for synchrony and asynchrony� Theoretical Computer

Science� ������*���� �����

�MP��� Zohar Manna and Amir Pnueli� The temporal framework for concurrent pro

grams� In R�S� Boyer and J�S� Moore� editors� The correctness problem in

Computer science� pages ���*���� Academic Press� �����

�MP��� Zohar Manna and Amir Pnueli� The anchored version of the temporal frame

work� In Linear Time� Branching Time� and Partial Order in Logics and Mod�

els for Concurrency� Lecture Notes in Computer Science ���� Springer
Verlag�

�����

�MT��� F� Moller and C� Tofts� A temporal calculus of communicating processes� In

J�C�M� Baeten and J�W� Klop� editors� CONCUR ��� Theories of Concurrency�

Lecture Notes in Computer Science ���� pages ���*���� Springer
Verlag� �����

�Mul��� David Muller� In	nite sequences and 	nite machines� In Proceedings of the

Fourth IEEE Symposium on Switching Circuit Theory and Logical Design� pages

�*��� �����

�MW��� Zohar Manna and Pierre Wolper� Synthesis of communicating processes from

temporal logic speci	cations� ACM Transactions on Programming Languages

and Systems� �������*��� �����

�NRSV��� Xavier Nicollin� Jean
Luc Richier� Joseph Sifakis� and Jacques Voiron� ATP� an

algebra for timed processes� In Proceedings of the IFIP TC� Working Conference

on Programming Concepts and Methods� Sea of Galilee� Israel� �����

BIBLIOGRAPHY ���

�NSY��� Xavier Nicollin� Joseph Sifakis� and Sergio Yovine� From ATP to timed graphs

and hybrid systems� In Proccedings of REX workshop �Real�time� theory in

practice�� �����

�OL��� Susan Owicki and Leslie Lamport� Proving liveness properties of concurrent pro

grams� ACM Transactions on Programming Languages and Systems� ��������*

���� �����

�Ost��a� Jonathan Ostro
� Deciding properties of timed transition models� IEEE Trans�

actions on Parallel and Distributed Systems� �������*���� �����

�Ost��b� Jonathan Ostro
� Temporal Logic of Real�time Systems� Research Studies Press�

�����

�Pet��� J�L� Peterson� Petri Net Theory and the Modeling of Systems� Prentice
Hall�

�����

�PH��� Amir Pnueli and Eyal Harel� Applications of temporal logic to the speci	cation

of real
time systems� In Formal Techniques in Real�time and Fault�tolerant

Systems� Lecture Notes in Computer Science ���� pages ��*��� Springer
Verlag�

�����

�Pnu��� Amir Pnueli� The temporal logic of programs� In Proceedings of the ��th IEEE

Symposium on Foundations of Computer Science� pages ��*��� �����

�Pnu��� Amir Pnueli� Applications of temporal logic to the speci	cation and veri	cation

of reactive systems� a survey of current trends� In Current Trends in Concur�

rency� Lecture Notes in Computer Science ���� pages ���*���� Springer
Verlag�

�����

�PZ��� Amir Pnueli and Lenore Zuck� Probabilistic veri	cation by tableaux� In Pro�

ceedings of the First IEEE Symposium on Logic in Computer Science� pages

���*���� �����

�Ram��� Chander Ramchandani� Analysis of asynchronous concurrent systems by Petri

nets� Technical Report MAC TR
���� Massachusetts Institute of Technology�

�����

BIBLIOGRAPHY ���

�Rog��� Hartley Rogers� Theory of Recursive Functions and E�ective Computability�

McGraw
Hill� �����

�RR��� G�M� Reed and A�W� Roscoe� A timed model for communicating sequential

processes� Theoretical Computer Science� ������*���� �����

�Saf��� Shmuel Safra� On the complexity of �
automata� In Proceedings of the ��th

IEEE Symposium on Foundations of Computer Science� pages ���*���� �����

�SC��� A� Prasad Sistla and Edmund Clarke� The complexity of propositional linear

temporal logics� The Journal of the ACM� ������*���� �����

�She��� Gerald Shedler� Regeneration and Networks of Queues� Springer
Verlag� �����

�SVW��� A� Prasad Sistla� Moshe Vardi� and Pierre Wolper� The complementation prob

lem for B�uchi automata with applications to temporal logic� Theoretical Com�

puter Science� ��� �����

�Tar��� Robert Tarjan� Depth 	rst search and linear graph algorithms� SIAM Journal

on Computing� ��������*���� �����

�Tho��� Wolfgang Thomas� Automata on in	nite objects� In J� van Leeuwen� editor�

Handbook of Theoretical Computer Science� volume B� pages ���*���� Elsevier

Science Publishers� �����

�Var��� Moshe Vardi� Automatic veri	cation of probabilistic concurrent 	nite
state pro

grams� In Proceedings of the ��th IEEE Symposium on Foundations of Computer

Science� pages ���*���� �����

�Var��� Moshe Vardi� Veri	cation of concurrent programs * the automata
theoretic

framework� In Proceedings of the Second IEEE Symposium on Logic in Com�

puter Science� pages ���*���� �����

�VW��� Moshe Vardi and Pierre Wolper� An automata
theoretic approach to automatic

program veri	cation� In Proceedings of the First IEEE Symposium on Logic in

Computer Science� pages ���*���� �����

�Wan��� Yi Wang� Real time behavior of asynchronous agents� In CONCUR ��� The�

ories of Concurrency� Lecture Notes in Computer Science ���� pages ���*����

Springer
Verlag� �����

BIBLIOGRAPHY ���

�WH��� HowardWong
Toi and Girard Ho
mann� The control of dense real
time discrete

event systems� �����

�Wol��� Pierre Wolper� Temporal logic can be more expressive� Information and Control�

�����*��� �����

�WVS��� Pierre Wolper� Moshe Vardi� and A� Prasad Sistla� Reasoning about in	nite

computation paths� In Proceedings of the ��th IEEE Symposium on Foundations

of Computer Science� pages ���*���� �����

�YKT��� Tomohiro Yoneda� Yutaka Kondo� and Yoshihiro Tohma� On the acceleration

of timing veri	cation method based on time Petri nets� �����

�Zwa��� Amy Zwarico� Timed Acceptances� An Algebra of Time Dependent Computing�

PhD thesis� University of Pennsylvania� �����

