
De
ision Problems for Timed Automata: A Survey?Rajeev Alur and P. MadhusudanUniversity of PennsylvaniaAbstra
t. Finite automata and regular languages have been useful ina wide variety of problems in 
omputing, 
ommuni
ation and 
ontrol,in
luding formal modeling and veri�
ation. Traditional automata do notadmit an expli
it modeling of time, and 
onsequently, timed automata [2℄were introdu
ed as a formal notation to model the behavior of real-timesystems. Timed automata a

ept timed languages 
onsisting of sequen
esof events tagged with their o

urren
e times. Over the years, the formal-ism has been extensively studied leading to many results establishing
onne
tions to 
ir
uits and logi
, and mu
h progress has been made indeveloping veri�
ation algorithms, heuristi
s, and tools. This paper pro-vides a survey of the theoreti
al results 
on
erning de
ision problemsof rea
hability, language in
lusion and language equivalen
e for timedautomata and its variants, with some new proofs and 
omparisons. We
on
lude with a dis
ussion of some open problems.1 Timed AutomataA timed automaton is a �nite automaton augmented with a �nite set of (real-valued) 
lo
ks . The verti
es of the automaton are 
alled lo
ations, and edges are
alled swit
hes. While swit
hes are instantaneous, time 
an elapse in a lo
ation.A 
lo
k 
an be reset to zero simultaneously with any swit
h. At any instant,the reading of a 
lo
k equals the time elapsed sin
e the last time it was reset.With ea
h swit
h we asso
iate a 
lo
k 
onstraint, and require that the swit
hmay be taken only if the 
urrent values of the 
lo
ks satisfy this 
onstraint.Timed automata a

ept (or, equivalently, generate) timed words, that is, stringsof symbols tagged with o

urren
e times. Let IR denote the set of nonnegativereal numbers, and let Q denote the set of nonnegative rational numbers. Atimed word over an alphabet � is a sequen
e (a0; t0); (a1; t1) � � � (ak; tk), whereea
h ai 2 �, ea
h ti 2 IR, and the o

urren
e times in
rease monotoni
ally:t0 � t1 � � � � � tk. The set of all timed words over � is denoted T��. A timedlanguage over � is a subset of T��.The untimed word 
orresponding to a timed word (a0; t0); (a1; t1) � � � (ak; tk)is the word a0a1 : : : ak obtained by deleting the o

urren
e times. The untimedlanguage untime(L) of a timed language L 
onsists of all the untimed words
orresponding to the timed words in L. For an alphabet �, we use �� to denote? This resear
h was partially supported by NSF award ITR/SY 0121431.



� [ f�g (where � is not in �), and for a subset �0 � �, and a timed wordw = (a0; t0); (a1; t1) � � � (ak; tk) over �, the proje
tion of w over �0 is obtainedfrom w by deleting all (ai; ti) su
h that ai 62 �0. The proje
tion operation extendsto timed languages as well.To de�ne timed automata formally, we need to say what type of 
lo
k 
on-straints are allowed as guards. For a set X of 
lo
ks, the set �(X) of 
lo
k
onstraints g is de�ned by the grammarg := x � 
 j 
 � x j x < 
 j 
 < x j g ^ gwhere x 2 X and 
 2 Q. A 
lo
k valuation � for a set X of 
lo
ks assigns areal value to ea
h 
lo
k; that is, it is a mapping from X to IR. For Æ 2 IR, � + Ædenotes the 
lo
k valuation whi
h maps every 
lo
k x to the value �(x) + Æ. ForY � X , �[Y := 0℄ denotes the 
lo
k valuation for X whi
h assigns 0 to ea
hx 2 Y , and agrees with � over the rest of the 
lo
ks.A timed automaton A over an alphabet � is a tuple hV; V 0; V F ; X;Ei, where{ V is a �nite set of lo
ations,{ V 0 � V is a set of initial lo
ations,{ V F � V is a set of �nal lo
ations,{ X is a �nite set of 
lo
ks,{ E � V � �� � �(X) � 2X � V is a set of swit
hes. A swit
h hs; a; g; �; s0irepresents an edge from lo
ation s to lo
ation s0 on symbol a. The guard gis a 
lo
k 
onstraint over X that spe
i�es when the swit
h is enabled, andthe update � � X gives the 
lo
ks to be reset to 0 with this swit
h.The semanti
s of a timed automaton A is de�ned by asso
iating an in�nite-stateautomaton SA over the alphabet � [ IR. A state of SA is a pair (s; �) su
h thats is a lo
ation of A and � is a 
lo
k valuation for X . A state (s; �) is an initialstate if s is an initial lo
ation (i.e. s 2 V 0) and �(x) = 0 for all 
lo
ks x. A state(s; �) is a �nal state if s is a �nal lo
ation (i.e. s 2 V F ). There are two types oftransitions in SA:Elapse of time: for a state (s; �) and a time in
rement Æ 2 IR, (s; �) Æ! (s; �+Æ).Lo
ation swit
h: for a state (s; �) and a swit
h hs; a; g; �; s0i su
h that � sat-is�es the guard g, (s; �) a! (s0; �[� := 0℄).For a timed word w = (a0; t0); (a1; t1) � � � (ak; tk) over ��, a run of A over w isa sequen
eq0 t0! q00 a0! q1 t1�t0! q01 a1! q2 t2�t1! q02 a2! q3 ! � � � ak! qk+1su
h that q0 is an initial state of SA. The run is a

epting if qk+1 is a �nal stateof SA. The timed automaton A a

epts a timed word w over � if there existsa timed word w0 over �� su
h that A has an a

epting run over w0 and theproje
tion of w0 to � is w. The set of timed words a

epted by A is denotedL(A).



s1 s2a; x := 0a; b a; b x 6= 1
Fig. 1. A non-
omplementable timed automatona; x = 1; x := 0

�; x = 1; x := 0Fig. 2. �-transitions in
rease expressivenessA timed language L � T�� is said to be timed regular if there exists a timedautomaton A su
h that L(A) = L. The 
losure properties of timed regularlanguages are summarized below:Theorem 1. The set of timed regular languages is 
losed under union, inter-se
tion, and proje
tion, but not under 
omplementation [2℄.The 
losure under union and interse
tion is established by extending the 
lassi
alprodu
t 
onstru
tion to timed automata. Closure under proje
tion is immediatesin
e swit
hes 
an be labeled with �.For the non-
losure under 
omplementation, we give a new proof here. Let� = fa; bg. Let L be the timed language 
onsisting of timed words w 
ontainingan a event at some time t su
h that no event o

urs at time t + 1. The (non-deterministi
) timed automaton shown in Figure 1 (with initial lo
ation s1 and�nal lo
ation s2) a

epts L.We 
laim that L, the 
omplement of L, is not timed regular. Consider thetimed language L0 
onsisting of timed words w su
h that the untimed word ofw is in a�b�, all the a events happen before time 1, and no two a events happenat the same time. Verify that L0 is timed regular. Observe that a word of theform anbm belongs to untime(L \ L0) i� m � n. Sin
e timed regular languagesare 
losed under interse
tion, the untimed language of a timed regular languageis regular (see Se
tion 2), and the language fanbm j m � ng is not regular, itfollows that L is not timed regular.Unlike 
lassi
al automata, �-labeled swit
hes add to the expressive power oftimed automata [10℄. For example, the automaton of Figure 2 a

epts timedwords w over fag su
h that every o

urren
e time is an integer and no two a-



events o

ur at the same time. This language 
annot be a

epted by a timedautomaton if �-labeled swit
hes are disallowed: if the largest 
onstant in a timedautomaton A is 
 and A does not have �-labeled swit
hes, then A 
annot distin-guish between the words (a; 
+ 1) and(a; 
+ 1:1).The more re
ent de�nitions of timed automata also admit labeling of ea
hlo
ation with a 
lo
k 
onstraint 
alled its invariant, and require that time 
anelapse in a lo
ation only as long as its invariant stays true [23℄. While this is auseful modeling 
on
ept to enfor
e upper bounds (without introdu
ing \error"lo
ations), it does not add to the expressive power.Timed languages 
an also be de�ned using timed state sequen
es : a timedstate sequen
e is a mapping from a pre�x of the reals to a �nite alphabet that
an be represented by a sequen
e (ao; I0)(a1; I1) : : : (ak; Ik), where I0; I1; : : : Ikis a sequen
e of adjoining intervals (e.g. [0; 1:1)[1:1; 1:2℄(1:2; 1:7)). Timed statesequen
es 
an be generated by timed automata in whi
h lo
ations are labeledwith observations [23, 3℄. This dual view does not 
hange the 
ore results, butsome expressiveness results do di�er in the two views [34℄.2 Rea
hability and Language Emptiness2.1 Region AutomataGiven a timed automaton A, to 
he
k whether the language L(A) is empty, wemust determine if some �nal state is rea
hable from an initial state in the in�nite-state system SA. The solution to this rea
hability problem involves 
onstru
tionof a �nite quotient. The 
onstru
tion uses an equivalen
e relation on the state-spa
e that equates two states with the same lo
ation if they agree on the integralparts of all 
lo
k values and on the ordering of the fra
tional parts of all 
lo
kvalues. The integral parts of the 
lo
k values are needed to determine whetheror not a parti
ular 
lo
k 
onstraint is met, whereas the ordering of the fra
tionalparts is needed to de
ide whi
h 
lo
k will 
hange its integral part �rst. This isformalized as follows. First, assume that all the 
onstants in the given timedautomaton A are integers (if A uses rational 
onstants, we 
an simply multiplyea
h 
onstant with the least-
ommon-multiple of all the denominators to getan automaton with the same timed language modulo s
aling). For any Æ 2 IR,hÆi denotes the fra
tional part of Æ, and bÆ
 denotes the integral part of Æ;Æ = bÆ
+ hÆi. For ea
h 
lo
k x 2 X , let 
x be the largest integer 
 su
h that x is
ompared with 
 in some 
lo
k 
onstraint appearing in a guard. The equivalen
erelation �=, 
alled the region equivalen
e, is de�ned over the set of all 
lo
kvaluations for X . For two 
lo
k valuations � and �, � �= � i� all the following
onditions hold:1. For all 
lo
ks x 2 X , either b�(x)
 and b�(x)
 are the same, or both �(x)and �(x) ex
eed 
x.2. For all 
lo
ks x; y with �(x) � 
x and �(y) � 
y, h�(x)i � h�(y)i i� h�(x)i �h�(y)i.3. For all 
lo
ks x 2 X with �(x) � 
x, h�(x)i = 0 i� h�(x)i = 0.



A 
lo
k region for A is an equivalen
e 
lass of 
lo
k valuations indu
ed by �=.Note that there are only a �nite number of regions, at most k! �4k ��x2X(
x+1),where k is the number of 
lo
ks. Thus, the number of 
lo
k regions is exponentialin the en
oding of the 
lo
k 
onstraints.The key property of region equivalen
e is its stability: for any lo
ation s, and
lo
k valuations � and �0 su
h that � �= �0, (a) for any Æ 2 IR, if (s; �) Æ! (s; �+Æ)then there exists Æ0 2 IR su
h that (s; �0) Æ0! (s; �0+Æ0) and (�+Æ) �= (�0+Æ0), and(b) for every label a 2 �� and state (t; �), if (s; �) a! (t; �) then there exists �0su
h that (s; �0) a! (t; �0) and � �= �0. Thus, if two states are equivalent, then ana-labeled dis
rete swit
h from one 
an be mat
hed by a 
orresponding dis
reteswit
h from the other leading to an equivalent target state, and if the automaton
an wait for Æ units in one state, then it 
an wait for Æ0 units, possibly di�erentfrom Æ, resulting in equivalent states. For this reason, the region equivalen
e isa time-abstra
t bisimulation.For a timed automaton A, the quotient of SA with respe
t to the regionequivalen
e is 
alled the region automaton of A, and is denoted R(A): verti
esof R(A) are of the form (s; r), where s is a lo
ation and r is a 
lo
k region; thereis an edge (s; r) a! (s0; r0) in R(A) for a 2 �� i� for some 
lo
k valuations � 2 rand �0 2 r0, (s; �) a! (s0; �0) in SA, or, a = � and (s; �) Æ! (s0; �0) for someÆ 2 IR. The initial and �nal states of SA are used to de�ne the initial and �nalverti
es of R(A). Now, the language of R(A) is the untimed language of L(A).Theorem 2. For a timed regular language L, untime(L) is a regular language [2℄.Consequently, R(A) 
an be used to solve language emptiness for A, and alsoto answer rea
hability queries for A. Thus, emptiness and rea
hability 
an besolved in time linear in the number of verti
es and edges of the region automaton,whi
h is linear in the number of lo
ations and edges of A, exponential in thenumber of 
lo
ks, and exponential in the en
oding of the 
onstants. Te
hni
ally,these problems are Pspa
e-
omplete.Theorem 3. The language emptiness question for timed automata is Pspa
e-
omplete, and 
an be solved in time O(m � k! � 4k � (
 � 
0 + 1)k), where m is thenumber of swit
hes in A, k is the number of 
lo
ks in A, 
 is largest numerator inthe 
onstants in the 
lo
k 
onstraints in A, and 
0 is the least-
ommon-multipleof the denominators of all the 
onstants in the 
lo
k 
onstraints of A [2℄.In [15℄ it was also shown that for timed automata with three 
lo
ks, rea
h-ability is already Pspa
e-
omplete. A re
ent result [28℄ shows that for timedautomata with one 
lo
k, rea
hability is Nlogspa
e-
omplete and for timedautomata with two 
lo
ks, it is NP-hard. The rea
hability problem remainsPspa
e-hard even if we bound the magnitudes of 
onstants [15℄.2.2 Cy
le dete
tionA timed !-word is an in�nite sequen
e of the form � = (a0; t0)(a1; t1) : : : (ai; ti); : : :,with ai 2 �, ti 2 IR, and t0 � t1 � � � � ti � � � � , and timed !-language is a set



of timed !-words. Reasoning in terms of in�nite timed words, as in the untimedsetting, is useful for 
he
king liveness properties. The notion of a run of a timedautomaton A naturally extends to timed !-words. A timed !-word � is a

eptedby A using the B�u
hi 
ondition, if there is a run of A on � that repeatedly hits(in�nitely often) some �nal lo
ation in V F . The set of !-words a

epted by Ais denoted by L!(A). Che
king whether L!(A) is nonempty, for a given A, 
anbe done by 
he
king whether there is a 
y
le in the region graph of A whi
h isrea
hable from an initial state and 
ontains some state in V F .For in�nite words, it is natural to require that time diverges, that is, thesequen
e t0; t1; : : : ti; : : : grows without bound. Timed words that do not divergedepi
t an in�nite number of events that o

ur in a �nite amount of time. Torestri
t L!(A) only to divergent words, we 
an transform the timed automatonby adding a new 
lo
k x whi
h is reset to 0 whenever it be
omes 1 (using an�-edge) and the timed automaton hits the new �nal set V 0F only if the run hadpassed through VF in the last one unit of time.Theorem 4. Given a timed automaton A, the problem of 
he
king emptiness ofL!(A) is Pspa
e-
omplete.Most of the results in this survey hold for timed !-languages also.2.3 Sampled Semanti
sIn the dis
rete-time or sampled semanti
s for timed automata, the dis
reteswit
hes, or the events, are required to o

ur only at integral multiples of agiven sampling rate f . This 
an be formalized as follows. Given a timed automa-ton A and a sampling rate f 2 Q, we de�ne an automaton SfA: the states, initialstates and �nal states of SfA are the same as the states, initial states, and �nalstates of SA, and the transitions of SfA are the transitions of SA that are labeledwith either a 2 �� or with m:f (where m 2 N). The sampled timed languageLf (A) is de�ned using the automaton SfA. Note that time of o

urren
e of anysymbol in the timed words in Lf (A) is an integral multiple of the sampling fre-quen
y f . To 
he
k emptiness of Lf (A), observe that in any rea
hable state ofSfA, the values of all 
lo
ks are integral multiples of f , and this 
an lead to aredu
ed sear
h spa
e 
ompared to the region automata. However, the 
omplexity
lass of the rea
hability and 
y
le-dete
tion problems stays un
hanged (here Lf!denotes the set of !-words where events o

ur at sampling rate f):Theorem 5. Given a timed automaton A and a sampling rate f 2 Q, the prob-lem of 
he
king the emptiness of Lf (A) (or Lf!(A)) is Pspa
e-
omplete.If the sampling rate f is unknown, the resulting problems are the dis
rete-time rea
hability and dis
rete-time 
y
le-dete
tion problems with unknown sam-pling rate: given a timed automaton A, does there exist a rational number f 2 Qsu
h that Lf (A) (or Lf!(A)) is nonempty. Dis
rete-time rea
hability for unknownsampling rate is de
idable sin
e it is equivalent to the question of whether L(A)



l1 l2a; y = 1; y := 0b; x > 1; x := 0Fig. 3. Sampled semanti
s is di�erent from the standard semanti
sis empty: if L(A) is nonempty, we 
an �nd a word in L(A) where events o

ur atrational times, and by 
hoosing an appropriate f , show that it is an f -sampledword. However, the dis
rete-time 
y
le-dete
tion problem with unknown sam-pling rate is unde
idable:Theorem 6. Given A, the problem of 
he
king whether Sf2QLf!(A) is nonempty,is unde
idable [14℄.The unde
idability proof is by redu
tion from the halting problem for two-
ounter ma
hines. Given a two-
ounter ma
hine M , one 
an 
onstru
t a timedautomaton AM and a lo
ation sF su
h that for any integer n, the lo
ation sFis rea
hable in the dis
rete-time semanti
s with the sampling rate 1=n i� thetwo-
ounter ma
hine M has a halting run in whi
h both the 
ounters do notex
eed the value n.To see that L!(A) 
an be nonempty while for ea
h f , Lf!(A) = ;, 
onsider theautomaton in Figure 3. While the a-events o

ur at integer times, the b-eventshave to o

ur 
loser and 
loser to the a-events, and �xing any sampling rate fmakes the !-language empty.2.4 Choi
e of Clo
k Constraints and UpdatesThe 
lo
k 
onstraints in the guards of a timed automaton 
ompare 
lo
ks with
onstants. Su
h 
onstraints allow us to express (
onstant) lower and upperbounds on delays. Consider the following generalization of 
lo
k 
onstraints:for a set X of 
lo
ks, the set �d(X) of 
lo
k 
onstraints g is de�ned by thegrammarg := x � 
 j 
 � x j x� y � 
 j x < 
 j 
 < x j x� y < 
 j g ^ gwhere x; y are 
lo
ks in X and 
 2 Q. In
luding su
h \diagonal" 
lo
k 
onstraintsthat 
ompare 
lo
k di�eren
es with 
onstants does not 
hange the 
omplexityof rea
hability. Similarly, we 
an relax the allowed updates on swit
hes. In theoriginal de�nition, ea
h swit
h is tagged with a set � whi
h spe
i�es whi
h 
lo
ksshould be reset to zero. A more general update map � maps 
lo
ks in X to Q[Xspe
ifying the assignments x := �(x). Thus, x 
an be assigned to an arbitraryrational 
onstant, or to the value of another 
lo
k. Both these modi�
ations 
an



be handled by modifying the region 
onstru
tion. In fa
t, both these extensionsdo not add to the expressive power.Theorem 7. If the 
lo
k 
onstraints for guards are 
hosen from the set �d(X),and the swit
hes are annotated with the update maps, the expressive power oftimed automata stays un
hanged, and the language emptiness problem staysPspa
e-
omplete.However, a variety of extensions have been shown to allow de�nition of lan-guages that are not timed regular, and lead to unde
idability of the emptinessproblem. We summarize some notable ones:1. Allowing guards of the form x = 2y renders rea
hability problem for timedautomata unde
idable [2℄.2. Allowing guards of the form x+ y � 
, where � 2 f<;�g leads to unde
id-ability if there are four or more 
lo
ks, but is de
idable for automata withtwo 
lo
ks [9℄.3. Allowing updates of the form x := x � 1 renders rea
hability problem fortimed automata unde
idable [13℄.4. Allowing updates of the form x := x + 1 keeps the rea
hability problemPspa
e-
omplete if the 
lo
k 
onstraints are 
hosen from �(X), but rendersit unde
idable if the guards are 
hosen from �d(X) [13℄.5. Allowing guards that 
ompare 
lo
ks with irrational 
onstants renders rea
h-ability problem for timed automata unde
idable [30℄.The �rst result above implies that allowing 
onstraints involving additionof 
lo
k variables leads to unde
idability of the rea
hability problem. With anenabling 
ondition of the form y = 2x, one 
an express a 
onstraint of thekind \the time delay between the symbols a and b is the same as the timedelay between b and 
" (reset a 
lo
k x while reading a, reset a 
lo
k y whilereading b, and require y = 2x while reading 
). This 
an be exploited to 
opythe 
ounter values, and en
ode 
on�gurations of a two-
ounter ma
hine, leadingto unde
idability. The se
ond result is of similar nature. The third result saysthat one 
annot allow de
rements. Sin
e 
lo
ks in
rease with elapse of time,with de
rements they 
an a
t as 
ounters, and thus be used to en
ode 
ounterma
hines. The fourth result says that expli
it in
rements 
an be allowed in theoriginal region 
onstru
tion, but in the presen
e of guards of the \diagonal" formx�y � 
, su
h in
rements allow en
oding of 
ounter values using the di�eren
esbetween 
lo
ks. Bouyer et al have also studied nondeterministi
 updates (forexample, x is reset to a value 
hosen nondeterministi
ally from intervals su
has [0; 
℄ or [y;1)), and their impa
t on the de
idability with and without the\diagonal" 
onstraints [13℄. Finally, [30℄ 
onsiders timed automata where guard
onstraints 
ompare 
lo
ks with irrational 
onstants, and shows that if � 2 (0; 1)is an irrational number, then timed automata where the 
onstants are taken fromf0; 1; �; 3� �g have an unde
idable emptiness problem.



l1 l2a; (x < 1) ^ (y > 1)Fig. 4. Clo
k drift, however small, in
uen
es rea
hability2.5 Choi
e of Clo
k RatesAn interesting generalization of timed automata is re
tangular automata in whi
h
lo
ks in
rease at a rate that is bounded by 
onstants [21℄. Su
h a 
lo
k 
an beused to approximate a 
ontinuous variable. A re
tangular automaton A over analphabet � is a tuple hV; V 0; V F ; X;E; low; highi, where the 
omponents V , V 0,V F , X , and E are as in a timed automaton, and low and high are fun
tions fromX to Q. When time elapses ea
h 
lo
k x in
reases at a rate bounded by low(x)from below, and by high(x) from above. The transition system SA asso
iatedwith the re
tangular automaton A is de�ned as in 
ase of timed automata. Theonly di�eren
e is in the transitions 
orresponding to elapse of time: for a state(s; �), a time in
rement Æ 2 IR, and a 
lo
k valuation �, (s; �) Æ! (s; �) holdsif for ea
h 
lo
k x 2 X , there exists a rate low(x) � rx � high(x) su
h that�(x) = �(x) + Æ � rx.Theorem 8. The language a

epted by a re
tangular automaton is timed reg-ular, and the language emptiness problem for re
tangular automata is Pspa
e-
omplete [21℄.The emptiness problem for re
tangular automata is solved by translating re
tan-gular automata to equivalent timed automata. Consider a re
tangular automatonA. We obtain an equivalent automaton B as follows. For every 
lo
k x of A, Bhas two 
lo
ks: xl whose rate is low(x) and xh whose rate is high(x). We wouldlike xl and xh to tra
k the lower and upper bounds, respe
tively, on the possiblevalues of the 
lo
k x whose rate 
an vary in the interval [low(x); high(x)℄. Con-sider a swit
h of A with guard x � 
. The 
orresponding swit
h in B has guardxl � 
, and update xh := 
. Analogously, the guard x � d is repla
ed by the 
on-straint xh � d, with an a

ompanying adjustment xl := d. This transformationpreserves answers to rea
hability questions, and in fa
t, timed languages. Theautomaton B has 
lo
ks that have �xed rates, and 
an easily be transformedinto a timed automaton simply by s
aling. Note that in re
tangular automata,a variable does not 
hange its rate from one lo
ation to another, the enabling
onditions 
ompare variables with 
onstants, and updates reset variables to 
on-stants. Relaxing any of these restri
tions results in unde
idability [21℄.Re
tangular automata are also useful to introdu
e \errors" in the 
lo
ks. Fora timed automaton A, and a 
onstant ", let A" be the re
tangular automatonobtained from A by setting low(x) = 1 � " and high(x) = 1 + " for all 
lo
ks



x. Thus, the 
lo
ks in A" have a drift bounded by ". A lo
ation s of a timedautomaton A is said to be limit-rea
hable if s is rea
hable in the perturbedautomaton A", for every " > 0. Obviously, rea
hability implies limit rea
hability,but not vi
e versa [33℄. For instan
e, the language of the automaton of Figure 4is nonempty as long as the there is a non-zero drift for the two 
lo
ks. It ispossible to 
ompute the set of limit-rea
hable lo
ations by modifying the sear
hin the region automaton R(A). For example, in Figure 4, in the initial lo
ation,the region 0 < x = y < 1 is rea
hable. Sin
e it tou
hes the region 0 < x < y = 1,whi
h, in turn, tou
hes the region 0 < x < 1 < y, the latter is de
lared limit-rea
hable, and this makes the dis
rete swit
h to the �nal lo
ation possible. The
omputation, in general, requires identifying the so-
alled limit-
y
les in theregion graph [33℄.Theorem 9. Given a timed automaton A, the problem of de
iding whether alo
ation is limit rea
hable is Pspa
e-
omplete [33℄.Instead of perturbing the 
lo
k rates, if we perturb the guards, that is, repla
eevery x � 
 by x � 
 + " and every x � 
 by x � 
 � ", and ask if a lo
ationis rea
hable for every positive perturbation " of the guards, then the problem issolvable by similar te
hniques [17℄.2.6 Weighted Automata and Optimal Rea
habilityA weighted timed automaton 
onsists of a timed automaton A, a 
ost fun
tionJ that maps every lo
ation and every swit
h to a nonnegative rational number.For a lo
ation s 2 V , J(s) is the 
ost of staying in s per unit time, and for aswit
h e 2 E, J(e) is the 
ost of a dis
rete swit
h 
orresponding to e. The 
ostfun
tion leads to 
osts on the edges of the underlying transition system SA: thetransitions of the form (s; �) Æ! (s; �+Æ) have 
ost Æ �J(s), and transitions due toa swit
h e have 
ost J(e). The optimal rea
hability problem for weighted timedautomata is to determine the 
ost of the shortest path from an initial state to a�nal state, and thus, is a generalization of the 
lassi
al shortest path problem inweighted automata. Formally, given a timed automaton A, and a 
ost fun
tionJ , the optimal 
ost of rea
hing the �nal set V F is the in�mum over 
osts 
su
h that there is a path of 
ost 
 from an initial state to a �nal state. Thesolution to this problem has been proposed in [7℄ (see also [8℄ for an alternativeapproa
h). Consider a path in the underlying graph of the timed automaton froman initial lo
ation to a �nal lo
ation. There 
an be many runs 
orresponding tothe sequen
e of dis
rete swit
hes spe
i�ed by su
h a path, depending on thetime spent between su

essive swit
hes. However, sin
e the 
onstraints imposedby the resets and guards are linear, and so is the 
ost fun
tion, in an optimalrun the times of swit
hes will be at 
orner points (or arbitrarily 
lose to 
ornerpoints if the 
orner points are ruled out by the 
onstraints).In a more general version of the optimal rea
hability problem, we are givena sour
e region (that is, some 
onstraints on the initial values of the 
lo
ks),and we want to 
ompute optimal 
osts for all the states in the sour
e region.



It is possible to 
onstru
t a weighted graph whose nodes are \re�ned" regionsand edges are annotated with parametri
 
osts that are linear fun
tions of the
lo
k values in the sour
e state. The size of this graph, like the region graph, isexponential in the timed automaton. Fixing a sour
e state determines the 
ostson all the edges, and optimal 
ost to rea
h any of the lo
ations (or regions) 
an be
omputed in Pspa
e (see also [12℄). However, the number of parameters is sameas the number of 
lo
ks, and if wish to 
ompute a symboli
 representation of theoptimal 
ost to rea
h a target as a fun
tion of the sour
e state, this approa
hgives a doubly exponential solution.Theorem 10. Given a timed automaton A, and a 
ost fun
tion J , the optimal
ost of rea
hing a �nal state 
an be 
omputed in Pspa
e.3 In
lusion, Equivalen
e and Universality3.1 Unde
idabilityThe universality problem for timed automata is to de
ide, given a timed au-tomaton A, whether A a

epts all timed tra
es, i.e. whether L(A) = T��. Forautomata on dis
rete words, this is de
idable as one 
an 
omplement the automa-ton A and 
he
k for emptiness. This approa
h does not work for timed automatasin
e, as we saw earlier, timed automata are not 
losed under 
omplementation.In fa
t, it turns out that the problem is unde
idable:Theorem 11. The universality problem for timed automata is unde
idable [2℄.The proof pro
eeds by en
oding 
omputations of a 2-
ounter ma
hine (ora Turing ma
hine) using timed words where every unit time interval en
odesa 
on�guration of the ma
hine. Copying between su

essive 
on�gurations isa
hieved by requiring that every event in one interval has a mat
hing eventdistan
e 1 apart in the next interval. While this requirement 
annot be 
apturedby a timed automaton, the 
omplement 
an be a

epted by a nondeterministi
timed automaton that guesses the errors (that is, events with no mat
hes in thefollowing interval).The in
lusion problem is to 
he
k, given two timed automata A and B,whether L(A) � L(B). This is an interesting question from the formal methodsperspe
tive as it 
orresponds to the model-
he
king problem: given a systemmodeled using A and a spe
i�
ation modeled as B, is the set of behaviors ofA 
ontained in the the language de�ned by B?. The equivalen
e problem is to
he
k, given A and B, whether L(A) = L(B).Sin
e the set of all timed words is timed-regular, the universality problemredu
es to both the in
lusion and equivalen
e problems, and we have:Corollary 1. The in
lusion and equivalen
e problems for timed automata areunde
idable.



Due to the interest in model-
he
king timed systems modeled as timed au-tomata, there has been intense resear
h over the years to �nd sub
lasses of timedautomata for whi
h the in
lusion problem is de
idable. We review some of themhere.3.2 Deterministi
 Timed AutomataA timed automaton A is deterministi
 if (1) V 0 
ontains only one lo
ation, (2)there are no swit
hes labeled with �, and (3) for every pair of distin
t swit
hes(s; a; g; �; s0) and (s; a; g0; �0; s00) with the same sour
e lo
ation and label, theguards g and g0 are disjoint (i.e. the sets of 
lo
k valuations that satisfy g and g0are disjoint). These requirements ensure that A has at most one run on a giventimed word, and 
onsequently, 
omplementation 
an be a
hieved by 
omple-menting the set of �nal states. The properties of deterministi
 timed automataare summarized below:Theorem 12. Deterministi
 timed automata are 
losed under union, interse
-tion, and 
omplementation, but not under proje
tion. The language emptiness,universality, in
lusion, and equivalen
e problems for deterministi
 timed au-tomata are Pspa
e-
omplete [2℄.Unlike 
lassi
al automata, deterministi
 timed automata are stri
tly less ex-pressive than the nondeterministi
 ones, and in parti
ular, the language of theautomaton of Figure 1 
annot be spe
i�ed using a deterministi
 timed automa-ton. Given a timed automatonA, the problem of 
he
king whether there exists anequivalent deterministi
 timed automaton is not known to be de
idable (see [35℄for a dis
ussion).An interesting extension of deterministi
 timed automata is bounded 2-waydeterministi
 timed automata [5℄. Automata in this 
lass deterministi
ally tra-verse a timed word from left to right, but 
an stop and reverse dire
tion to readthe word ba
kwards from that point. For example, 
onsider the language 
on-sisting of all words of the form (a; t0)(a; t1) : : : (a; tk)(b; t0) su
h that there existssome i � k with t0 = ti+1 (i.e. there is some a-event whi
h is exa
tly one unit oftime before the b-event). This language is not a

epted by a (forward) determin-isti
 automaton, but 
an be a

epted by an automaton that goes to the end ofthe word, sets a 
lo
k to the time of the last event, and traverses the word ba
k-wards looking for the mat
hing a event. For de
idability, it is required that thereexists a bound n su
h that any symbol of any word is read at most n times. Su
ha bounded timed automaton (even a nondeterministi
 one) 
an be simulated bya single-pass forward nondeterministi
 automaton as it simply needs to guessthe positions where the 
lo
ks are reset on the bounded number of passes. Inthe deterministi
 
ase, the expressive power stri
tly in
reases with the bound n.These deterministi
 bounded two-way automata also preserve the 
ru
ial prop-erty that there is at most one run on ea
h timed word, and 
onsequently, they are
losed under all boolean operations, and 
he
king whether L(A) � L(B), whereA is a timed automaton and B is a bounded 2-way deterministi
 automaton, isde
idable.



3.3 DigitizationAn important sub
lass of timed automata for whi
h the in
lusion problem isde
idable involves the notion of digitization. A timed language L is said to be
losed under digitization if dis
retizing a timed word w 2 L by approximatingthe events in w to the 
losest ti
k of a dis
rete 
lo
k results in a word that isalso in L.Formally, for any t 2 R and for any 0 � " � 1, let [t℄" be bt
, if t < bt
+ ",and dte otherwise. We extend this to timed words: if w = (a0; t0); : : : (ak; tk),then [w℄" = (a0; [t0℄") : : : (ak; [tk℄"). Intuitively, [w℄" is the word obtained whenevents are observed using a dis
rete 
lo
k with o�set ". For a timed language L,[L℄" = f[w℄" j w 2 Lg.A timed language L is 
losed under digitization [22℄ if for every w 2 L andfor every " 2 [0; 1℄, [w℄" 2 L, i.e. if for every " 2 [0; 1℄, [L℄" � L. L is said tobe 
losed under inverse digitization if it is the 
ase that whenever u is a timedword su
h that for every " 2 [0; 1℄, [u℄" 2 L, then u itself belongs to L.For any timed language L, let Z(L) be the set of timed words in L in whi
hevery event happens at an integer time. Note the relation to the sampled seman-ti
s of Se
tion 2.2: for a timed automaton A, L1(A) = Z(L(A)).Lemma 1. [22℄ Let L be 
losed under digitization and L0 be 
losed under inversedigitization. Then L � L0 i� Z(L)� Z(L0).The proof of the above lemma runs as follows: Assume Z(L) � Z(L0). Ifu 2 L, then [u℄" 2 L for every " 2 [0; 1℄ (sin
e L is 
losed under digitization);hen
e [u℄" 2 Z(L)� Z(L0), for every " 2 [0; 1℄, whi
h in turn means that u 2 L0(sin
e L0 is 
losed under inverse digitization).It is easy to see that timed languages over � in whi
h events o

ur onlyat integral times are in one-to-one 
orresponden
e with untimed languages over� [ fpg, where p denotes the passage of one unit of time. For example, thetra
e (a0; 1)(a1; 1)(a2; 3) 
orresponds to the untimed word pa0a1ppa2. For anytimed word in whi
h events o

ur at integral times, let Ti
k (w) denote the
orresponding word over � [ fpg. Given a timed automaton A a

epting L,we 
an e�e
tively 
onstru
t an automaton over � [ fpg a

epting Ti
k (Z(L)),using the region automaton for A. Hen
e, 
he
king Z(L) � Z(L0) boils downto 
he
king in
lusion between two untimed languages, whi
h is de
idable. Thisgives:Theorem 13. [22℄ Given timed automata A and B, where L(A) is 
losed underdigitization and L(B) is 
losed under inverse digitization, the problem of 
he
kingwhether L(A) � L(B) is de
idable.Open timed automata are timed automata where all atomi
 
lo
k 
onstraintsin guards are of the form x < 
 or x > 
, i.e. atomi
 guards of the form x � 
and x � 
 are disallowed. Similarly, 
losed timed automata are those in whi
hall atomi
 guards are of the form x � 
 or x � 
. The following is then true:



Proposition 1. [22, 31℄ Closed timed automata are 
losed under digitization,and open timed automata are 
losed under inverse digitization.Corollary 2. Given a 
losed timed automaton A and an open timed automatonB, the problem of 
he
king if L(A) � L(B) is de
idable.Turning to the universality problem, sin
e 
he
king whether a timed automa-ton A a

epts all timed words is the same as asking whether T�� � L(A), andsin
e T�� is 
losed under digitization, it follows that:Theorem 14. [22, 31℄ The universality problem for open timed automata (orany 
lass of timed automata that are 
losed under inverse digitization) is de
id-able.Note that the above 
ru
ially uses the fa
t that our de�nition of timed wordsallows several events to happen at the same time, i.e. the timed words are weaklymonotoni
. If this were disallowed and it was required that time stri
tly elapsebetween events, then we have as universe the set of all strongly monotoni
 words,whi
h is not 
losed under digitization. It turns out that 
he
king universality ofopen timed automata is unde
idable in the domain of strongly monotoni
 words.Also, for 
losed timed automata, universality is unde
idable regardless of whetherthe universe is weakly or strongly monotoni
 [31℄.Note that open timed automata are de�ned synta
ti
ally by pla
ing restri
-tions on the stru
ture of the automata while 
losure under digitization is asemanti
 property of languages. Given automata A and B, one 
an always 
he
kwhether Z(L(A)) � Z(L(B)). If we 
ould de
ide whether A is 
losed underdigitization and whether B is 
losed under inverse digitization, we would knowwhether we 
an use the above test to 
he
k language in
lusion. It turns out thatthe former is de
idable but the latter is not:Theorem 15. [31℄ Given a timed automaton A, 
he
king whether L(A) is 
losedunder digitization is de
idable, while the problem of 
he
king whether L(A) is
losed under inverse digitization is unde
idable (even if A is a 
losed timed au-tomaton).3.4 Robust Timed AutomataSin
e the unde
idability of universality and in
lusion problems were shown us-ing the fa
t that events that are pre
isely one unit (or an integral number ofunits) apart 
an be related, and hen
e used to 
ount, this led to the belief thatintrodu
ing some fuzziness in a

eptan
e 
ould alleviate the problem. Also, inpra
ti
e, no timed system 
an be modeled and observed with su
h arbitrarya

ura
y a timed automaton provides.The de�nition of robust timed automata addresses this. Given a timed au-tomaton, under the robust semanti
s a word is a

epted if and only if a densesubset \around" the word is a

epted by the timed automaton. In this de�nition,a word that is a

epted by the timed automaton may be reje
ted in the robust



semanti
s if it is an isolated a

epted tra
e, while a word that is reje
ted by thetimed automaton 
an be a

epted under the robust semanti
s if it is surroundedby a dense set of a

epted tra
es.Formally, let us �rst de�ne a metri
 d on timed words. Let w and w0 betwo timed words. If untime(w) 6= untime(w0), then d(w;w0) =1. Otherwise, ifw = (a0; t0) : : : (ak ; tk) and w0 = (a0; t00) : : : (ak; t0k), then d(w;w0) = maxfjti �t0ij j 0 � i � kg. In other words, the distan
e between two timed words (whoseuntimed 
omponents are identi
al) is the maximum di�eren
e in time between
orresponding events in the two words. We refer to open and 
losed sets of timedwords with regard to this metri
.The robust semanti
s 
an now be de�ned as follows. Given a timed automatonA a

epting L, let L
 denote the smallest 
losed set 
ontainingL. Then the robustlanguage a

epted by the automaton, LR(A), is the interior of L
, whi
h is thelargest open set 
ontained within L
.In this subse
tion, to 
learly distinguish between the standard semanti
s andthe robust one, we refer to the former as pre
ise semanti
s. In the original paper[20℄, the robust semanti
s of a timed automaton was de�ned as a 
olle
tion oftubes as opposed to a 
olle
tion of timed words. A tube is any set of timedwords whi
h is open (i.e. for ea
h timed word in the tube, some "-neighborhoodshould be 
ontained in the tube). Here we adopt a slightly di�erent semanti
sby de�ning the robust semanti
s to be the set of all timed words whi
h belongto some tube that is robustly a

epted.The robust language of any timed automaton is, by de�nition, open. Also,it turns out that the (pre
ise) languages a

epted by open timed automata arealso open. However, open timed automata and robust timed automata havein
omparable expressive power (i.e. there are timed languages that are a

eptedby open timed automata whi
h are not a

eptable by robust timed automataand vi
e versa) [31℄.Despite the involved de�nition of robust a

eptan
e, emptiness for robusttimed automata is de
idable:Theorem 16. [20℄ The emptiness problem for robust timed automata is Pspa
e-
omplete.The proof pro
eeds by showing that for any timed automaton A, we 
an
onstru
t an open timed automaton Ao su
h that both a

ept the same robustlanguages, i.e. LR(A) = LR(Ao). Sin
e the pre
ise language of this open timedautomaton is open, i.e. L(Ao) is open, it follows that the robust language ofA is nonempty i� the pre
ise language of Ao is nonempty (i.e. LR(A) 6= ; i�L(Ao) 6= ;), whi
h is de
idable. One 
an in fa
t show that the untimed language
orresponding to the robust language a

epted by A is regular (as is true for thepre
ise semanti
s).However, it turns out that despite robustness, robust timed languages are not
losed under 
omplement (and hen
e not determinizable) [20, 26℄. We give a newproof here. Consider the timed automaton A depi
ted in Figure 5, whi
h a

epts(in the pre
ise semanti
s) the language L 
onsisting of all timed words w su
h



a aa, x := 0 a, y := 0 b, x < 1b, x < 1b, y > 1 b, y > 1Fig. 5. A non
omplementable robust automatonthat the untimed word of w is in a�b� and there are two 
onse
utive a-eventsat times t and t0 su
h that there are no b-events in the range [t+ 1; t0 + 1℄. It iseasy to see that the robust language a

epted by A is also L.The robust 
omplement of A, denoted by L, 
onsists of the set of all words wsu
h that either the untimed word of w is not in a�b� or for every two 
onse
utivea-events, there is at least one b-event in the open range (t+ 1; t0 + 1). We showthat L is not robustly a

eptable by any timed automaton. We 
laim that a wordis in the untimed language of L i� it is in ��:b:��:a:�� or is of the form ambnwhere n � m�1. This 
laim will show that L 
annot be robustly a

epted, sin
euntime(L) is non-regular. The only interesting part is to show that there is noword whose untimed word is ambn with n < m�1. Assume there is su
h a word� . By robust a

eptan
e, we 
an �nd a word � 0 
lose to � whose untimed wordis the same as that of � but where all a-events o

ur at di�erent times. Then, itis easy to see that the a-events de�ne m� 1 intervals whi
h 
annot be �lled byn b-events and hen
e � 0 is not in the language, whi
h is a 
ontradi
tion.The above me
hanism of sandwi
hing a related event in an interval one unitaway from a pair of 
onse
utive events, gives a way to maintain 
ounters. Asimilar me
hanism is used to en
ode 
on�gurations of a Turing ma
hine in [24℄,where the authors show that a robust timed automaton 
an a

ept all wrong
on�guration sequen
es of a Turing ma
hine, making universality of robust timedautomata unde
idable.Turning to the notions de�ned in the last subse
tion, the languages de�nedby robust automata are 
losed under inverse digitization [31℄. However, unlikeregular timed languages, 
he
king whether the robust language of a timed au-tomaton is 
losed under digitization is unde
idable [31℄.Also, in sharp 
ontrast to the pre
ise semanti
s of timed automata, it turnsout that the dis
rete-time language a

epted by robust timed automata neednot be regular. That is, there are robust timed automata A su
h that Z(LR(A))is not regular. Consequently, there are timed languages that 
an be a

epted bytimed automata under the robust semanti
s whi
h 
annot be a

epted by timedautomata under the pre
ise semanti
s (and vi
e versa).The nonregularity of Z(LR(A)) seems to render digitization te
hniques inap-pli
able for 
he
king in
lusion of robust timed automata. In fa
t, the de
idabilitystatus of the integral language emptiness under the robust semanti
s (i.e. given



an automaton A, to 
he
k whether Z(LR(A)) 6= ;) is not known. Also, introdu
-ing impre
ision using in�nitesimal 
lo
k drift (re
all the de�nition of A" fromSe
tion 2.4) as a way of de�ning semanti
s, and its relationship to the robustsemanti
s has not been studied.3.5 Restri
ting Resour
esOne approa
h to get a more tra
table sub
lass is to restri
t the resour
es a timedautomaton 
an use. The original proof showing that in
lusion of timed automatais unde
idable also showed that timed automata with two 
lo
ks already rendersthe in
lusion problem unde
idable [2℄.For timed automata with one 
lo
k, however, a re
ent result shows that
he
king in
lusion (i.e. 
he
king if L(A) � L(B)) is de
idable when B has onlyone 
lo
k [32℄. The proof is based on te
hniques used to solve problems on in�nitegraphs akin to those used to solve problems involving 
overability in Petri nets.The paper [32℄ also shows that the problem of 
he
king whether L(A) � L(B)is de
idable if the only 
onstant that appears in the guards of B is 0. The proofgoes by showing that B 
an be determinized. The essen
e of the idea is this:Consider the region automaton for B. The only information we need to maintainis whether ea
h 
lo
k is 0 or greater than 0|the ordering of fra
tional parts of
lo
ks need not be re
orded as any region has at most one timed su

essor (theone with every 
lo
k greater than 0). Using now a 
lo
k, we 
an simulate a subset
onstru
tion on the region automaton and turn it into a timed automaton wherethe 
lo
k is reset on every event and is used to 
he
k whether any amount oftime has elapsed sin
e the last event.Theorem 17. [32℄ The problem of 
he
king, given two timed automata A andB, whether L(A) � L(B), is de
idable if B does not have any �-labeled swit
hesand either:{ B uses only one 
lo
k, or{ B uses guards involving the 
onstant 0 only.The above results are the only known de
idability results in this 
ategory.In fa
t, the following relaxations of these restri
tions on a given automaton A,renders the universality problem unde
idable [32℄:{ A has two 
lo
ks and a one-event alphabet, or{ A has two 
lo
ks and uses a single non-zero 
onstant in the guards, or{ A has a single lo
ation and a one-event alphabet, or{ A has a single lo
ation and uses a single non-zero 
onstant in the guards.3.6 Event Clo
k AutomataThe essential power of nondeterminism in timed automata lies in its ability toreset 
lo
ks nondeterministi
ally, as will be
ome 
lear later in this subse
tion.The 
lass of event-re
ording automata [4℄ are timed automata with a �xed set of




lo
ks, a 
lo
k xa for ea
h a 2 �, where xa gets reset every time a o

urs. Thereare no �-labeled swit
hes. Event-re
ording automata thus have swit
hes labeled(a; g) instead of (a; g; �), as it is impli
itly assumed that � = fxag.An event-re
ording automaton A 
an be easily determinized. First, we 
antransform A to an automaton B su
h that if G is the set of guards used on thetransitions, then G is \minimal" in the sense that for any two guards g and g0in G, there is no 
lo
k valuation that satis�es both g and g0. Then, we 
an doa subset 
onstru
tion on this automaton. Let B = hV; V 0; V F ; X;Ei. Then, we
an build a deterministi
 event re
ording automaton C = h2V ; fV 0g; F;X;E0iwhere for any S � V , a 2 �, g 2 G, (S; a; g; S0) 2 E0 where S0 = fv0 2 V j 9v 2S:(v; a; g; v0) 2 Eg. The set F 
ontains the sets S � V su
h that S \ V F 6= ;.It is easy to see that C is deterministi
 and a

epts the same language as Bdoes. Note that a similar 
onstru
tion fails for timed automata sin
e for a setS, there 
ould be two states v; v0 2 S with edges (v; g; �; v1) and (v0; g; �0; v01),where � 6= �0.An event-re
ording automaton at any point on the input word has a

ess toa 
lo
k xa, for ea
h a 2 �, whose value is the time that has elapsed sin
e thelast a-event. Event 
lo
k automata are an extension in whi
h the automaton alsohas a

ess to a prophe
y 
lo
k ya (for ea
h a 2 �) whose value at any point isthe time that must elapse before the next a-event happens. For, example, in thetimed word (a; 0:4)(b; 0:5)(a; 0:7)(b; 0; 9)(a; 0:95), when reading the third eventin the word, the 
lo
k xa = 0:3 and ya = 0:25.Observe that prophe
y 
lo
ks add to the expressiveness: the language oftimed words su
h that the untimed word is in a�b and there is some a eventone time unit before b, is not a

epted by any event re
ording automaton, oreven any deterministi
 timed automaton, but 
an easily be a

epted by an event
lo
k automaton. For every event 
lo
k automaton, we 
an 
onstru
t a (nonde-terministi
) timed automaton that a

epts the same language. Event-re
ording
lo
ks xa do not 
ause any problem, of 
ourse, as we 
an reset the 
lo
k xa atea
h a-event. To handle prophe
y 
lo
ks is more tri
ky. The timed automatonsimulates the event-
lo
k automaton, and if at an event a guard demands yb < 
,then we 
an take the a
tion and postpone the 
he
king of this 
onstraint. We dothis by resetting a new 
lo
k zyb<
 and 
he
k at the next b-event that zyb<
 < 
holds. If we meet another transition before the next b-event whi
h also demandsyb < 
 hold, then we 
an ignore it as 
he
king yb < 
 at an earlier position isa stronger 
ondition. Similarly, 
onstraints of the form yb > 
 
an be handled.Note that the resulting automaton 
an be nondeterministi
 as multiple edgesthat demand di�erent 
onstraints on the prophe
y 
lo
ks 
an be enabled.Sin
e the values of any 
lo
k of an event 
lo
k automaton at any time dependsonly on the word w (and not on the run of the automaton), it turns out thatevent-
lo
k automata 
an be 
omplemented. Let A be an event 
lo
k automatonand let the guard 
onstraints G used in A be \minimal". Also, let us assume thatthe guards of swit
hes with identi
al sour
e lo
ation and identi
al label 
overthe set of all 
lo
k valuations so that some guard is always enabled. Let � be



the set of all (a; g) where a 2 � and g 2 G. Note that the transitions of A arelabeled using symbols in � and that � is �nite.Consider words in ��. For any word � 2 ��, we 
an asso
iate a set of timedwords tw(�) 
orresponding to it. Formally, if � = (a0; g0) : : : (an; gn), then tw(�)
ontains the set of all timed words of the form (a0; t0) : : : (an; tn) where, for anyi � n, the set of event-re
ording and prophe
y 
lo
ks at (ai; ti) satisfy the guardgi. In fa
t, if we denote the set of symboli
 words a

epted by A as Lsym(A)(whi
h is a regular subset of ��), it is easy to see that L(A) = S�2Lsym(A) tw(�)[18℄.Noti
e that for any timed word w, there is a word � 2 �� su
h that w 2tw(�). In fa
t, this symboli
 word is unique, by the minimality of the guards.Consequently, the timed words 
orresponding to words in �� n Lsym(A) formthe 
omplement of L(A), i.e. tw(Lsym(A)) = L(A). Hen
e we 
an 
omplementthe event 
lo
k automaton A by 
onstru
ting an automaton A0 a

epting the
omplement of Lsym(A) and by viewing A0 as an event 
lo
k automaton. We
an indeed even build a deterministi
 automaton for Lsym(A) and by viewing itas an event-
lo
k automaton we would get a deterministi
 event 
lo
k automatonequivalent to A. For event-re
ording automata A, this 
onstru
tion in fa
t yieldsa deterministi
 timed automaton equivalent to A.We have the following results:Theorem 18. [4℄ Event 
lo
k automata are e�e
tively 
losed under 
omplemen-tation. Further, given a timed automaton A and an event 
lo
k automaton B,the problem of 
he
king whether L(A) � L(B) is Pspa
e-
omplete.Choosing re
ording 
lo
ks xa and prophe
y 
lo
ks ya, for every symbol a 2�, is rather arbitrary, and one 
an generalize the notion of events with the
orresponding re
ording and predi
ting 
lo
ks. For example, the o

urren
e oftwo a's exa
tly one unit of time apart 
an be an event for whi
h we may wantto keep re
ording and prophe
y 
lo
ks. The property we would like to maintainis that the events are determined by the word, and not by a parti
ular run of anautomaton on the word.The 
lass of re
ursive event 
lo
k automata [25℄ are de�ned using this prin
i-ple. These automata 
onsist of a �nite 
olle
tion of automata, one at ea
h levelf1; : : : ; kg. The automaton at ea
h level Ai uses events that are de�ned by theautomaton at level Ai�1 (A1 is a simple event 
lo
k automaton). The notion ofevents is 
omplex: essentially ea
h automaton Ai 
omes as a pair of event 
lo
kautomata (Ali; Ari ) and an event is generated by Ai at time t if the pre�x ofthe word till time t is a

epted by Ali and the suÆx from time t is a

epted byAri . The automaton at level i then uses 
lo
ks of the form xj and yj , (j < i),where xj and yj are re
ording and prophe
y 
lo
ks for events de�ned by theautomaton Aj . The main result is that 
he
king if L(A) � L(B) is de
idable,when A is a timed automaton and B is a re
ursive event-
lo
k automaton. The
lass of languages de�ned by re
ursive event-
lo
k automata has logi
al 
hara
-terizations using real-time temporal logi
s [25, 34, 18℄, but its expressive power
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Fig. 6. The various 
lasses of timed languages.An arrow from C to D denotes that the 
lass de�ned by C is a sub
lass of that de�nedby D. Dotted lines emphasize that 
ertain 
lasses are not 
omparable.with respe
t to deterministi
 bounded two-way automata has not been studied.The relationship among various 
lasses is summarized in Figure 6.3.7 Resour
e-bounded In
lusionWe present in this se
tion a result that shows that 
he
king whether a timedautomaton with limited resour
es 
an exhibit an eviden
e to the fa
t that L(A)is not a subset of L(B), is de
idable. This result is derived from ideas in [1, 19℄.The resour
es of a timed automaton are the following: the number of 
lo
ksthat it uses, the granularity 1=m with whi
h it makes observations of the 
lo
ks,and the maximum 
onstant it uses. The maximum 
onstant, however, is notimportant, as for any timed automaton A, there exists an equivalent timed au-tomaton B with �-transitions whi
h uses the same number of 
lo
ks, has thesame granularity as A, but with maximum 
onstant 1 in the guards. We 
an
onstru
t B su
h that it simulates A, ex
ept that it keeps tra
k of bx
, for ea
h
lo
k x, in its 
ontrol state, and uses the 
lo
k only to keep tra
k of x� bx
.The number of 
lo
ks and the granularity of observation are however important|in
reasing the number of 
lo
ks or de
reasing the granularity from say 1=m to1=2m stri
tly in
reases the 
lass of languages a timed automaton 
an a

ept.



Given timed automata A and B, and resour
es (k; 1=m), we now want toknow whether there is an automaton C with granularity (k; 1=m) whi
h 
an bean eviden
e to the fa
t that L(A) is not 
ontained in L(B). More pre
isely, isthere su
h a C su
h that L(A)\L(C) 6= ; but L(B)\L(C) = ;? We show thatthis is a de
idable problem.Let us �x resour
es (k; 1=m). Let Xk = fx1; : : : ; xkg be a set of k-
lo
ks andlet G1=m denote the set of all minimal guards formed using boolean 
ombinationsof 
onstraints of the form xi � 1=m and xi < 1=m, where xi 2 Xk. Let � =f(a; g; �) j a 2 �0; g 2 G1=m; � � Xkg. Note that for any timed automaton Cwhi
h has minimal guards on transitions, the symboli
 language it a

epts is asubset of ��.Ea
h word � 2 �� de�nes a set of timed words tw(�) over � whi
h isbasi
ally the set of timed words that would be a

epted by a timed automatonalong a run that is labeled with �. The question of the existen
e of a C thatwitnesses that L(A) is not a subset of L(B) boils down to �nding whether thereis some symboli
 word � 2 �� su
h that tw(�)\L(A) 6= ; and tw(�)\L(B) = ;.The following lemma will help 
apture the set of all su
h witnesses:Lemma 2. [19℄ Let D be any timed automaton over � and let � be a symboli
alphabet for granularity (k; 1=m) as above. Then, the set of all � 2 �� su
h thattw(�) \ tw(D) 6= ; is regular.The proof follows using the interse
tion 
onstru
tion for timed automata. LetE be the automaton a

epting ��. Essentially, the automaton we are lookingfor is the region automaton a

epting the produ
t of D and E. When we take aprodu
t transition, however, we label this transition with the �-label that wasinvolved in the transition.Consequently, RA, the set of all words � in �� su
h that tw(�) \ L(A) 6= ;is regular, and the set RB of all words � in �� su
h that tw(�) \ L(B) = ;, isalso regular. We 
an now 
he
k whether RA \ RB is empty, whi
h is de
idable,and we have:Theorem 19. Given timed automata A and B, and a resour
e 
onstraint (k; 1=m),the problem of 
he
king whether there is an automaton C with granularity (k; 1=m)su
h that L(A) \ L(C) 6= ; and L(B) \ L(C) = ; is de
idable.4 Dis
ussionThis survey attempts to 
olle
t, unify, and explain sele
ted results 
on
erningrea
hability and language in
lusion for timed automata and its variants. Thetheoreti
al questions studied in the literature, but not addressed in this survey,in
lude timed !-languages, 
onne
tions to monadi
 logi
s, regular expressions,and 
ir
uits, bran
hing-time equivalen
es su
h as timed (bi)simulations, model
he
king of real-time temporal logi
s, analysis of parametri
 timed automata,and games and 
ontroller synthesis.



The rea
hability problem is the most relevant problem in the 
ontext of for-mal veri�
ation, and its 
omplexity 
lass is Pspa
e. A large number of heuris-ti
s have been proposed to eÆ
iently implement the rea
hability algorithm. Allthese involve sear
hing the region automaton, either expli
itly, or using symboli
en
oding of regions using zones (see [6, 29, 16, 36, 11℄ for sample tools). Many ofthese optimizations have been devised so as to avoid enumerating all possible nu-meri
al 
ombinations of the (integral) 
lo
k values. We believe that new insights
an be obtained by exploring the following theoreti
al question [27℄. Consider thespe
ial 
ase when the graph formed by lo
ations and edges of a timed automatonA is a
y
li
. Even in this 
ase, the region automaton 
an be exponential, andthe shortest path to a target region 
an be of exponential length. However, it iseasy to see that the problem is in NP: the number of dis
rete swit
hes along thepath to the target is linear, it suÆ
es to guess the regions when these dis
reteswit
hes o

ur, and it is easy to verify the feasibility of the guess. The problem
an also be shown to be NP-hard. The NP upper bound also holds if we allow asingle self-loop swit
h on ea
h lo
ation. We 
onje
ture that this bound 
ontinuesto hold when the strongly 
onne
ted 
omponents in the graph are small: if thenumber of edges in ea
h strongly-
onne
ted 
omponent of the graph formed bythe lo
ations and edges of a timed automaton is bounded, then the rea
habilityproblem is in NP.The fa
t that the language \some two a symbols are distan
e 1 apart" is timedregular has led to the belief that timed automata are too powerful in terms ofpre
ision and unbounded nondeterminism, 
ausing non
omplementability andunde
idable language in
lusion problem. The various solutions su
h as event
lo
k automata, robust automata, open timed automata, have been proposed toaddress this issue. However, no solution has emerged as a 
onvin
ing alternative,and resear
h in obtaining a 
lass of automata with properties more attra
tivethan those of timed automata 
ontinues. We believe that introdu
ing a smalldrift in the 
lo
ks of timed automata is a natural and simple way to introdu
eimpre
ision. Let us 
all a timed regular language L to be a perturbed languageif there exists a timed automaton A and an error " > 0 su
h that L = L(A").We 
onje
ture that the 
lass of perturbed languages has a de
idable languagein
lusion problem.A
knowledgments We thank Patri
ia Bouyer, Deepak D'Souza, Tom Hen-zinger, Joel Ouaknine and Jean-Fran
ois Raskin for useful 
omments on thedraft of this manus
ript.Referen
es1. R. Alur, C. Cour
oubetis, and T. Henzinger. The observational power of 
lo
ks.In CONCUR '94: Fifth International Conferen
e on Con
urren
y Theory, LNCS836, pages 162{177. Springer-Verlag, 1994.2. R. Alur and D. Dill. A theory of timed automata. Theoreti
al Computer S
ien
e,126:183{235, 1994.



3. R. Alur, T. Feder, and T. Henzinger. The bene�ts of relaxing pun
tuality. Journalof the ACM, 43(1):116{146, 1996.4. R. Alur, L. Fix, and T. Henzinger. Event-
lo
k automata: a determinizable 
lass oftimed automata. Theoreti
al Computer S
ien
e, 211:253{273, 1999. A preliminaryversion appears in Pro
. CAV'94, LNCS 818, pp. 1{13.5. R. Alur and T. Henzinger. Ba
k to the future: Towards a theory of timed reg-ular languages. In Pro
eedings of the 33rd IEEE Symposium on Foundations ofComputer S
ien
e, pages 177{186, 1992.6. R. Alur and R. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III:Control and Veri�
ation, LNCS 1066, pages 220{231. Springer-Verlag, 1996.7. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.In Hybrid Systems: Computation and Control, Fourth International Workshop,LNCS 2034, pages 49{62, 2001.8. G. Behrman, T. Hune, A. Fehnker, K. Larsen, P. Petersson, J. Romijn, andF. Vaandrager. Minimum-
ost rea
hability for pri
ed timed automata. In Hy-brid Systems: Computation and Control, Fourth International Workshop, LNCS2034, pages 147{161, 2001.9. B. B�erard and C. Dufourd. Timed automata and additive 
lo
k 
onstraints. In-formation Pro
essing Letters, 75(1{2):1{7, 2000.10. B. Berard, P. Gastin, and A. Petit. On the power of non-obervable a
tions in timedautomata. In Pro
eedings of the 13th Annual Symposium on Theoreti
al Aspe
tsof Computer S
ien
e, LNCS 1046, pages 257{268, 1996.11. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods inSystem Design, 24(3):281{320, 2004.12. P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as 
heaply as possible. InPro
. 7th Int. Workshop on Hybrid Systems: Computation and Control (HSCC2004), LNCS 2993, pages 203{218. Springer, 2004.13. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable?In Computer Aided Veri�
ation, 14th International Conferen
e, LNCS 2404, pages464{479, 2000.14. F. Cassez, T. Henzinger, and J. Raskin. A 
omparison of 
ontrol problems fortimed and hybrid systems. In Hybrid Systems: Computation and Control, FifthInternational Workshop, LNCS 2289, pages 134{148, 2002.15. C. Cour
oubetis and M. Yannakakis. Minimum and maximum delay problemsin real-time systems. In Pro
eedings of the Third Workshop on Computer-AidedVeri�
ation, LNCS 575, pages 399{409. Springer-Verlag, 1991.16. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In HybridSystems III: Veri�
ation and Control, LNCS 1066, pages 208{219. Springer-Verlag,1996.17. M. De Wulf, L. Doyen, N. Markey, and J. Raskin. Robustness and implementabilityof timed automata. In Pro
. FORMATS, 2004.18. D. D'Souza. A logi
al 
hara
terisation of event re
ording automata. In Pro
.6th Int. Symp. on Formal Te
hniques in Real-Time and Fault-Tolerant Systems(FTRTFT'00), LNCS 1926, pages 240{251. Springer, 2000.19. D. D'Souza and P. Madhusudan. Timed 
ontrol synthesis for external spe
i�
a-tions. In Pro
eedings of the 19th Symposium on Theoreti
al Aspe
ts of ComputerS
ien
e, LNCS 2285, pages 571{582. Springer, 2002.20. V. Gupta, T. Henzinger, and R. Jagadeesan. Robust timed automata. In Hybridand Real Time Systems: International Workshop (HART'97), LNCS 1201, pages48{62. Springer, 1997.



21. T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What's de
idable about hybridautomata. Journal of Computer and System S
ien
es, 57:94{124, 1998.22. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital 
lo
ks? In ICALP92: Automata, Languages, and Programming, LNCS 623, pages 545{558. Springer-Verlag, 1992.23. T. Henzinger, X. Ni
ollin, J. Sifakis, and S. Yovine. Symboli
 model-
he
king forreal-time systems. Information and Computation, 111(2):193{244, 1994.24. T. Henzinger and J. Raskin. Robust unde
idability of timed and hybrid systems. InHybrid Systems: Computation and Control, Third International Workshop, LNCS1790, pages 145{159, 2000.25. T. Henzinger, J. Raskin, and P. S
hobbens. The regular real-time languages. InICALP'98: Automata, Languages, and Programming, LNCS 1443, pages 580{593.1998.26. P. Herrmann. Timed automata and re
ognizability. Information Pro
essing Letters,65(6):313{318, 1998.27. S. La Torre, S. Mukhopadhyay, and R. Alur. Sub
lasses of timed automata withNP-
omplete rea
hability problem. Te
hni
al report, 2003. Unpublished.28. F. Laroussinie, N. Markey, and P. S
hnoebelen. Model 
he
king timed automatawith one or two 
lo
ks. In Pro
eedings of the 15th International Conferen
e onCon
urren
y Theory (CONCUR 2004). Springer, 2004.29. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer InternationalJournal of Software Tools for Te
hnology Transfer, 1, 1997.30. J. Miller. De
idability and 
omplexity results for timed automata and semi-linearhybrid automata. In Pro
eedings of the Third International Workshop on HybridSystems: Computation and Control (HSCC 2000), LNCS 1790, pages 296{309.Springer, 2000.31. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and de
idabilityfor timed automata. In Pro
eedings of the 18th IEEE Symposium on Logi
 inComputer S
ien
e, 2003.32. J. Ouaknine and J. Worrell. On the language in
lusion problem for timed automata:Closing a de
idability gap. In Pro
eedings of the 19th IEEE Symposium on Logi
in Computer S
ien
e, 2004.33. A. Puri. Dynami
al properties of timed automata. In Pro
eedings of the 5thInternational Symposium on Formal Te
hniques in Real Time and Fault TolerantSystems, LNCS 1486, pages 210{227, 1998.34. J. Raskin and P. S
hobbens. The logi
 of event 
lo
ks { de
idability, 
omplex-ity, and expressiveness. Journal of Automata, Languages, and Combinatori
s,4(3):247{286, 1999.35. S. Tripakis. Folk theorems on determinization and minimization of timed au-tomata. In Pro
. FORMATS, 2003.36. F. Wang. EÆ
ient data stru
tures for fully symboli
 veri�
ation of real-time soft-ware systems. In TACAS '00: Sixth International Conferen
e on Tools and Algo-rithms for the Constru
tion and Analysis of Software, LNCS 1785, pages 157{171,2000.


