
Deision Problems for Timed Automata: A Survey?Rajeev Alur and P. MadhusudanUniversity of PennsylvaniaAbstrat. Finite automata and regular languages have been useful ina wide variety of problems in omputing, ommuniation and ontrol,inluding formal modeling and veri�ation. Traditional automata do notadmit an expliit modeling of time, and onsequently, timed automata [2℄were introdued as a formal notation to model the behavior of real-timesystems. Timed automata aept timed languages onsisting of sequenesof events tagged with their ourrene times. Over the years, the formal-ism has been extensively studied leading to many results establishingonnetions to iruits and logi, and muh progress has been made indeveloping veri�ation algorithms, heuristis, and tools. This paper pro-vides a survey of the theoretial results onerning deision problemsof reahability, language inlusion and language equivalene for timedautomata and its variants, with some new proofs and omparisons. Weonlude with a disussion of some open problems.1 Timed AutomataA timed automaton is a �nite automaton augmented with a �nite set of (real-valued) loks . The verties of the automaton are alled loations, and edges arealled swithes. While swithes are instantaneous, time an elapse in a loation.A lok an be reset to zero simultaneously with any swith. At any instant,the reading of a lok equals the time elapsed sine the last time it was reset.With eah swith we assoiate a lok onstraint, and require that the swithmay be taken only if the urrent values of the loks satisfy this onstraint.Timed automata aept (or, equivalently, generate) timed words, that is, stringsof symbols tagged with ourrene times. Let IR denote the set of nonnegativereal numbers, and let Q denote the set of nonnegative rational numbers. Atimed word over an alphabet � is a sequene (a0; t0); (a1; t1) � � � (ak; tk), whereeah ai 2 �, eah ti 2 IR, and the ourrene times inrease monotonially:t0 � t1 � � � � � tk. The set of all timed words over � is denoted T��. A timedlanguage over � is a subset of T��.The untimed word orresponding to a timed word (a0; t0); (a1; t1) � � � (ak; tk)is the word a0a1 : : : ak obtained by deleting the ourrene times. The untimedlanguage untime(L) of a timed language L onsists of all the untimed wordsorresponding to the timed words in L. For an alphabet �, we use �� to denote? This researh was partially supported by NSF award ITR/SY 0121431.



� [ f�g (where � is not in �), and for a subset �0 � �, and a timed wordw = (a0; t0); (a1; t1) � � � (ak; tk) over �, the projetion of w over �0 is obtainedfrom w by deleting all (ai; ti) suh that ai 62 �0. The projetion operation extendsto timed languages as well.To de�ne timed automata formally, we need to say what type of lok on-straints are allowed as guards. For a set X of loks, the set �(X) of lokonstraints g is de�ned by the grammarg := x �  j  � x j x <  j  < x j g ^ gwhere x 2 X and  2 Q. A lok valuation � for a set X of loks assigns areal value to eah lok; that is, it is a mapping from X to IR. For Æ 2 IR, � + Ædenotes the lok valuation whih maps every lok x to the value �(x) + Æ. ForY � X , �[Y := 0℄ denotes the lok valuation for X whih assigns 0 to eahx 2 Y , and agrees with � over the rest of the loks.A timed automaton A over an alphabet � is a tuple hV; V 0; V F ; X;Ei, where{ V is a �nite set of loations,{ V 0 � V is a set of initial loations,{ V F � V is a set of �nal loations,{ X is a �nite set of loks,{ E � V � �� � �(X) � 2X � V is a set of swithes. A swith hs; a; g; �; s0irepresents an edge from loation s to loation s0 on symbol a. The guard gis a lok onstraint over X that spei�es when the swith is enabled, andthe update � � X gives the loks to be reset to 0 with this swith.The semantis of a timed automaton A is de�ned by assoiating an in�nite-stateautomaton SA over the alphabet � [ IR. A state of SA is a pair (s; �) suh thats is a loation of A and � is a lok valuation for X . A state (s; �) is an initialstate if s is an initial loation (i.e. s 2 V 0) and �(x) = 0 for all loks x. A state(s; �) is a �nal state if s is a �nal loation (i.e. s 2 V F ). There are two types oftransitions in SA:Elapse of time: for a state (s; �) and a time inrement Æ 2 IR, (s; �) Æ! (s; �+Æ).Loation swith: for a state (s; �) and a swith hs; a; g; �; s0i suh that � sat-is�es the guard g, (s; �) a! (s0; �[� := 0℄).For a timed word w = (a0; t0); (a1; t1) � � � (ak; tk) over ��, a run of A over w isa sequeneq0 t0! q00 a0! q1 t1�t0! q01 a1! q2 t2�t1! q02 a2! q3 ! � � � ak! qk+1suh that q0 is an initial state of SA. The run is aepting if qk+1 is a �nal stateof SA. The timed automaton A aepts a timed word w over � if there existsa timed word w0 over �� suh that A has an aepting run over w0 and theprojetion of w0 to � is w. The set of timed words aepted by A is denotedL(A).



s1 s2a; x := 0a; b a; b x 6= 1
Fig. 1. A non-omplementable timed automatona; x = 1; x := 0

�; x = 1; x := 0Fig. 2. �-transitions inrease expressivenessA timed language L � T�� is said to be timed regular if there exists a timedautomaton A suh that L(A) = L. The losure properties of timed regularlanguages are summarized below:Theorem 1. The set of timed regular languages is losed under union, inter-setion, and projetion, but not under omplementation [2℄.The losure under union and intersetion is established by extending the lassialprodut onstrution to timed automata. Closure under projetion is immediatesine swithes an be labeled with �.For the non-losure under omplementation, we give a new proof here. Let� = fa; bg. Let L be the timed language onsisting of timed words w ontainingan a event at some time t suh that no event ours at time t + 1. The (non-deterministi) timed automaton shown in Figure 1 (with initial loation s1 and�nal loation s2) aepts L.We laim that L, the omplement of L, is not timed regular. Consider thetimed language L0 onsisting of timed words w suh that the untimed word ofw is in a�b�, all the a events happen before time 1, and no two a events happenat the same time. Verify that L0 is timed regular. Observe that a word of theform anbm belongs to untime(L \ L0) i� m � n. Sine timed regular languagesare losed under intersetion, the untimed language of a timed regular languageis regular (see Setion 2), and the language fanbm j m � ng is not regular, itfollows that L is not timed regular.Unlike lassial automata, �-labeled swithes add to the expressive power oftimed automata [10℄. For example, the automaton of Figure 2 aepts timedwords w over fag suh that every ourrene time is an integer and no two a-



events our at the same time. This language annot be aepted by a timedautomaton if �-labeled swithes are disallowed: if the largest onstant in a timedautomaton A is  and A does not have �-labeled swithes, then A annot distin-guish between the words (a; + 1) and(a; + 1:1).The more reent de�nitions of timed automata also admit labeling of eahloation with a lok onstraint alled its invariant, and require that time anelapse in a loation only as long as its invariant stays true [23℄. While this is auseful modeling onept to enfore upper bounds (without introduing \error"loations), it does not add to the expressive power.Timed languages an also be de�ned using timed state sequenes : a timedstate sequene is a mapping from a pre�x of the reals to a �nite alphabet thatan be represented by a sequene (ao; I0)(a1; I1) : : : (ak; Ik), where I0; I1; : : : Ikis a sequene of adjoining intervals (e.g. [0; 1:1)[1:1; 1:2℄(1:2; 1:7)). Timed statesequenes an be generated by timed automata in whih loations are labeledwith observations [23, 3℄. This dual view does not hange the ore results, butsome expressiveness results do di�er in the two views [34℄.2 Reahability and Language Emptiness2.1 Region AutomataGiven a timed automaton A, to hek whether the language L(A) is empty, wemust determine if some �nal state is reahable from an initial state in the in�nite-state system SA. The solution to this reahability problem involves onstrutionof a �nite quotient. The onstrution uses an equivalene relation on the state-spae that equates two states with the same loation if they agree on the integralparts of all lok values and on the ordering of the frational parts of all lokvalues. The integral parts of the lok values are needed to determine whetheror not a partiular lok onstraint is met, whereas the ordering of the frationalparts is needed to deide whih lok will hange its integral part �rst. This isformalized as follows. First, assume that all the onstants in the given timedautomaton A are integers (if A uses rational onstants, we an simply multiplyeah onstant with the least-ommon-multiple of all the denominators to getan automaton with the same timed language modulo saling). For any Æ 2 IR,hÆi denotes the frational part of Æ, and bÆ denotes the integral part of Æ;Æ = bÆ+ hÆi. For eah lok x 2 X , let x be the largest integer  suh that x isompared with  in some lok onstraint appearing in a guard. The equivalenerelation �=, alled the region equivalene, is de�ned over the set of all lokvaluations for X . For two lok valuations � and �, � �= � i� all the followingonditions hold:1. For all loks x 2 X , either b�(x) and b�(x) are the same, or both �(x)and �(x) exeed x.2. For all loks x; y with �(x) � x and �(y) � y, h�(x)i � h�(y)i i� h�(x)i �h�(y)i.3. For all loks x 2 X with �(x) � x, h�(x)i = 0 i� h�(x)i = 0.



A lok region for A is an equivalene lass of lok valuations indued by �=.Note that there are only a �nite number of regions, at most k! �4k ��x2X(x+1),where k is the number of loks. Thus, the number of lok regions is exponentialin the enoding of the lok onstraints.The key property of region equivalene is its stability: for any loation s, andlok valuations � and �0 suh that � �= �0, (a) for any Æ 2 IR, if (s; �) Æ! (s; �+Æ)then there exists Æ0 2 IR suh that (s; �0) Æ0! (s; �0+Æ0) and (�+Æ) �= (�0+Æ0), and(b) for every label a 2 �� and state (t; �), if (s; �) a! (t; �) then there exists �0suh that (s; �0) a! (t; �0) and � �= �0. Thus, if two states are equivalent, then ana-labeled disrete swith from one an be mathed by a orresponding disreteswith from the other leading to an equivalent target state, and if the automatonan wait for Æ units in one state, then it an wait for Æ0 units, possibly di�erentfrom Æ, resulting in equivalent states. For this reason, the region equivalene isa time-abstrat bisimulation.For a timed automaton A, the quotient of SA with respet to the regionequivalene is alled the region automaton of A, and is denoted R(A): vertiesof R(A) are of the form (s; r), where s is a loation and r is a lok region; thereis an edge (s; r) a! (s0; r0) in R(A) for a 2 �� i� for some lok valuations � 2 rand �0 2 r0, (s; �) a! (s0; �0) in SA, or, a = � and (s; �) Æ! (s0; �0) for someÆ 2 IR. The initial and �nal states of SA are used to de�ne the initial and �nalverties of R(A). Now, the language of R(A) is the untimed language of L(A).Theorem 2. For a timed regular language L, untime(L) is a regular language [2℄.Consequently, R(A) an be used to solve language emptiness for A, and alsoto answer reahability queries for A. Thus, emptiness and reahability an besolved in time linear in the number of verties and edges of the region automaton,whih is linear in the number of loations and edges of A, exponential in thenumber of loks, and exponential in the enoding of the onstants. Tehnially,these problems are Pspae-omplete.Theorem 3. The language emptiness question for timed automata is Pspae-omplete, and an be solved in time O(m � k! � 4k � ( � 0 + 1)k), where m is thenumber of swithes in A, k is the number of loks in A,  is largest numerator inthe onstants in the lok onstraints in A, and 0 is the least-ommon-multipleof the denominators of all the onstants in the lok onstraints of A [2℄.In [15℄ it was also shown that for timed automata with three loks, reah-ability is already Pspae-omplete. A reent result [28℄ shows that for timedautomata with one lok, reahability is Nlogspae-omplete and for timedautomata with two loks, it is NP-hard. The reahability problem remainsPspae-hard even if we bound the magnitudes of onstants [15℄.2.2 Cyle detetionA timed !-word is an in�nite sequene of the form � = (a0; t0)(a1; t1) : : : (ai; ti); : : :,with ai 2 �, ti 2 IR, and t0 � t1 � � � � ti � � � � , and timed !-language is a set



of timed !-words. Reasoning in terms of in�nite timed words, as in the untimedsetting, is useful for heking liveness properties. The notion of a run of a timedautomaton A naturally extends to timed !-words. A timed !-word � is aeptedby A using the B�uhi ondition, if there is a run of A on � that repeatedly hits(in�nitely often) some �nal loation in V F . The set of !-words aepted by Ais denoted by L!(A). Cheking whether L!(A) is nonempty, for a given A, anbe done by heking whether there is a yle in the region graph of A whih isreahable from an initial state and ontains some state in V F .For in�nite words, it is natural to require that time diverges, that is, thesequene t0; t1; : : : ti; : : : grows without bound. Timed words that do not divergedepit an in�nite number of events that our in a �nite amount of time. Torestrit L!(A) only to divergent words, we an transform the timed automatonby adding a new lok x whih is reset to 0 whenever it beomes 1 (using an�-edge) and the timed automaton hits the new �nal set V 0F only if the run hadpassed through VF in the last one unit of time.Theorem 4. Given a timed automaton A, the problem of heking emptiness ofL!(A) is Pspae-omplete.Most of the results in this survey hold for timed !-languages also.2.3 Sampled SemantisIn the disrete-time or sampled semantis for timed automata, the disreteswithes, or the events, are required to our only at integral multiples of agiven sampling rate f . This an be formalized as follows. Given a timed automa-ton A and a sampling rate f 2 Q, we de�ne an automaton SfA: the states, initialstates and �nal states of SfA are the same as the states, initial states, and �nalstates of SA, and the transitions of SfA are the transitions of SA that are labeledwith either a 2 �� or with m:f (where m 2 N). The sampled timed languageLf (A) is de�ned using the automaton SfA. Note that time of ourrene of anysymbol in the timed words in Lf (A) is an integral multiple of the sampling fre-queny f . To hek emptiness of Lf (A), observe that in any reahable state ofSfA, the values of all loks are integral multiples of f , and this an lead to aredued searh spae ompared to the region automata. However, the omplexitylass of the reahability and yle-detetion problems stays unhanged (here Lf!denotes the set of !-words where events our at sampling rate f):Theorem 5. Given a timed automaton A and a sampling rate f 2 Q, the prob-lem of heking the emptiness of Lf (A) (or Lf!(A)) is Pspae-omplete.If the sampling rate f is unknown, the resulting problems are the disrete-time reahability and disrete-time yle-detetion problems with unknown sam-pling rate: given a timed automaton A, does there exist a rational number f 2 Qsuh that Lf (A) (or Lf!(A)) is nonempty. Disrete-time reahability for unknownsampling rate is deidable sine it is equivalent to the question of whether L(A)



l1 l2a; y = 1; y := 0b; x > 1; x := 0Fig. 3. Sampled semantis is di�erent from the standard semantisis empty: if L(A) is nonempty, we an �nd a word in L(A) where events our atrational times, and by hoosing an appropriate f , show that it is an f -sampledword. However, the disrete-time yle-detetion problem with unknown sam-pling rate is undeidable:Theorem 6. Given A, the problem of heking whether Sf2QLf!(A) is nonempty,is undeidable [14℄.The undeidability proof is by redution from the halting problem for two-ounter mahines. Given a two-ounter mahine M , one an onstrut a timedautomaton AM and a loation sF suh that for any integer n, the loation sFis reahable in the disrete-time semantis with the sampling rate 1=n i� thetwo-ounter mahine M has a halting run in whih both the ounters do notexeed the value n.To see that L!(A) an be nonempty while for eah f , Lf!(A) = ;, onsider theautomaton in Figure 3. While the a-events our at integer times, the b-eventshave to our loser and loser to the a-events, and �xing any sampling rate fmakes the !-language empty.2.4 Choie of Clok Constraints and UpdatesThe lok onstraints in the guards of a timed automaton ompare loks withonstants. Suh onstraints allow us to express (onstant) lower and upperbounds on delays. Consider the following generalization of lok onstraints:for a set X of loks, the set �d(X) of lok onstraints g is de�ned by thegrammarg := x �  j  � x j x� y �  j x <  j  < x j x� y <  j g ^ gwhere x; y are loks in X and  2 Q. Inluding suh \diagonal" lok onstraintsthat ompare lok di�erenes with onstants does not hange the omplexityof reahability. Similarly, we an relax the allowed updates on swithes. In theoriginal de�nition, eah swith is tagged with a set � whih spei�es whih loksshould be reset to zero. A more general update map � maps loks in X to Q[Xspeifying the assignments x := �(x). Thus, x an be assigned to an arbitraryrational onstant, or to the value of another lok. Both these modi�ations an



be handled by modifying the region onstrution. In fat, both these extensionsdo not add to the expressive power.Theorem 7. If the lok onstraints for guards are hosen from the set �d(X),and the swithes are annotated with the update maps, the expressive power oftimed automata stays unhanged, and the language emptiness problem staysPspae-omplete.However, a variety of extensions have been shown to allow de�nition of lan-guages that are not timed regular, and lead to undeidability of the emptinessproblem. We summarize some notable ones:1. Allowing guards of the form x = 2y renders reahability problem for timedautomata undeidable [2℄.2. Allowing guards of the form x+ y � , where � 2 f<;�g leads to undeid-ability if there are four or more loks, but is deidable for automata withtwo loks [9℄.3. Allowing updates of the form x := x � 1 renders reahability problem fortimed automata undeidable [13℄.4. Allowing updates of the form x := x + 1 keeps the reahability problemPspae-omplete if the lok onstraints are hosen from �(X), but rendersit undeidable if the guards are hosen from �d(X) [13℄.5. Allowing guards that ompare loks with irrational onstants renders reah-ability problem for timed automata undeidable [30℄.The �rst result above implies that allowing onstraints involving additionof lok variables leads to undeidability of the reahability problem. With anenabling ondition of the form y = 2x, one an express a onstraint of thekind \the time delay between the symbols a and b is the same as the timedelay between b and " (reset a lok x while reading a, reset a lok y whilereading b, and require y = 2x while reading ). This an be exploited to opythe ounter values, and enode on�gurations of a two-ounter mahine, leadingto undeidability. The seond result is of similar nature. The third result saysthat one annot allow derements. Sine loks inrease with elapse of time,with derements they an at as ounters, and thus be used to enode ountermahines. The fourth result says that expliit inrements an be allowed in theoriginal region onstrution, but in the presene of guards of the \diagonal" formx�y � , suh inrements allow enoding of ounter values using the di�erenesbetween loks. Bouyer et al have also studied nondeterministi updates (forexample, x is reset to a value hosen nondeterministially from intervals suhas [0; ℄ or [y;1)), and their impat on the deidability with and without the\diagonal" onstraints [13℄. Finally, [30℄ onsiders timed automata where guardonstraints ompare loks with irrational onstants, and shows that if � 2 (0; 1)is an irrational number, then timed automata where the onstants are taken fromf0; 1; �; 3� �g have an undeidable emptiness problem.



l1 l2a; (x < 1) ^ (y > 1)Fig. 4. Clok drift, however small, inuenes reahability2.5 Choie of Clok RatesAn interesting generalization of timed automata is retangular automata in whihloks inrease at a rate that is bounded by onstants [21℄. Suh a lok an beused to approximate a ontinuous variable. A retangular automaton A over analphabet � is a tuple hV; V 0; V F ; X;E; low; highi, where the omponents V , V 0,V F , X , and E are as in a timed automaton, and low and high are funtions fromX to Q. When time elapses eah lok x inreases at a rate bounded by low(x)from below, and by high(x) from above. The transition system SA assoiatedwith the retangular automaton A is de�ned as in ase of timed automata. Theonly di�erene is in the transitions orresponding to elapse of time: for a state(s; �), a time inrement Æ 2 IR, and a lok valuation �, (s; �) Æ! (s; �) holdsif for eah lok x 2 X , there exists a rate low(x) � rx � high(x) suh that�(x) = �(x) + Æ � rx.Theorem 8. The language aepted by a retangular automaton is timed reg-ular, and the language emptiness problem for retangular automata is Pspae-omplete [21℄.The emptiness problem for retangular automata is solved by translating retan-gular automata to equivalent timed automata. Consider a retangular automatonA. We obtain an equivalent automaton B as follows. For every lok x of A, Bhas two loks: xl whose rate is low(x) and xh whose rate is high(x). We wouldlike xl and xh to trak the lower and upper bounds, respetively, on the possiblevalues of the lok x whose rate an vary in the interval [low(x); high(x)℄. Con-sider a swith of A with guard x � . The orresponding swith in B has guardxl � , and update xh := . Analogously, the guard x � d is replaed by the on-straint xh � d, with an aompanying adjustment xl := d. This transformationpreserves answers to reahability questions, and in fat, timed languages. Theautomaton B has loks that have �xed rates, and an easily be transformedinto a timed automaton simply by saling. Note that in retangular automata,a variable does not hange its rate from one loation to another, the enablingonditions ompare variables with onstants, and updates reset variables to on-stants. Relaxing any of these restritions results in undeidability [21℄.Retangular automata are also useful to introdue \errors" in the loks. Fora timed automaton A, and a onstant ", let A" be the retangular automatonobtained from A by setting low(x) = 1 � " and high(x) = 1 + " for all loks



x. Thus, the loks in A" have a drift bounded by ". A loation s of a timedautomaton A is said to be limit-reahable if s is reahable in the perturbedautomaton A", for every " > 0. Obviously, reahability implies limit reahability,but not vie versa [33℄. For instane, the language of the automaton of Figure 4is nonempty as long as the there is a non-zero drift for the two loks. It ispossible to ompute the set of limit-reahable loations by modifying the searhin the region automaton R(A). For example, in Figure 4, in the initial loation,the region 0 < x = y < 1 is reahable. Sine it touhes the region 0 < x < y = 1,whih, in turn, touhes the region 0 < x < 1 < y, the latter is delared limit-reahable, and this makes the disrete swith to the �nal loation possible. Theomputation, in general, requires identifying the so-alled limit-yles in theregion graph [33℄.Theorem 9. Given a timed automaton A, the problem of deiding whether aloation is limit reahable is Pspae-omplete [33℄.Instead of perturbing the lok rates, if we perturb the guards, that is, replaeevery x �  by x �  + " and every x �  by x �  � ", and ask if a loationis reahable for every positive perturbation " of the guards, then the problem issolvable by similar tehniques [17℄.2.6 Weighted Automata and Optimal ReahabilityA weighted timed automaton onsists of a timed automaton A, a ost funtionJ that maps every loation and every swith to a nonnegative rational number.For a loation s 2 V , J(s) is the ost of staying in s per unit time, and for aswith e 2 E, J(e) is the ost of a disrete swith orresponding to e. The ostfuntion leads to osts on the edges of the underlying transition system SA: thetransitions of the form (s; �) Æ! (s; �+Æ) have ost Æ �J(s), and transitions due toa swith e have ost J(e). The optimal reahability problem for weighted timedautomata is to determine the ost of the shortest path from an initial state to a�nal state, and thus, is a generalization of the lassial shortest path problem inweighted automata. Formally, given a timed automaton A, and a ost funtionJ , the optimal ost of reahing the �nal set V F is the in�mum over osts suh that there is a path of ost  from an initial state to a �nal state. Thesolution to this problem has been proposed in [7℄ (see also [8℄ for an alternativeapproah). Consider a path in the underlying graph of the timed automaton froman initial loation to a �nal loation. There an be many runs orresponding tothe sequene of disrete swithes spei�ed by suh a path, depending on thetime spent between suessive swithes. However, sine the onstraints imposedby the resets and guards are linear, and so is the ost funtion, in an optimalrun the times of swithes will be at orner points (or arbitrarily lose to ornerpoints if the orner points are ruled out by the onstraints).In a more general version of the optimal reahability problem, we are givena soure region (that is, some onstraints on the initial values of the loks),and we want to ompute optimal osts for all the states in the soure region.



It is possible to onstrut a weighted graph whose nodes are \re�ned" regionsand edges are annotated with parametri osts that are linear funtions of thelok values in the soure state. The size of this graph, like the region graph, isexponential in the timed automaton. Fixing a soure state determines the ostson all the edges, and optimal ost to reah any of the loations (or regions) an beomputed in Pspae (see also [12℄). However, the number of parameters is sameas the number of loks, and if wish to ompute a symboli representation of theoptimal ost to reah a target as a funtion of the soure state, this approahgives a doubly exponential solution.Theorem 10. Given a timed automaton A, and a ost funtion J , the optimalost of reahing a �nal state an be omputed in Pspae.3 Inlusion, Equivalene and Universality3.1 UndeidabilityThe universality problem for timed automata is to deide, given a timed au-tomaton A, whether A aepts all timed traes, i.e. whether L(A) = T��. Forautomata on disrete words, this is deidable as one an omplement the automa-ton A and hek for emptiness. This approah does not work for timed automatasine, as we saw earlier, timed automata are not losed under omplementation.In fat, it turns out that the problem is undeidable:Theorem 11. The universality problem for timed automata is undeidable [2℄.The proof proeeds by enoding omputations of a 2-ounter mahine (ora Turing mahine) using timed words where every unit time interval enodesa on�guration of the mahine. Copying between suessive on�gurations isahieved by requiring that every event in one interval has a mathing eventdistane 1 apart in the next interval. While this requirement annot be apturedby a timed automaton, the omplement an be aepted by a nondeterministitimed automaton that guesses the errors (that is, events with no mathes in thefollowing interval).The inlusion problem is to hek, given two timed automata A and B,whether L(A) � L(B). This is an interesting question from the formal methodsperspetive as it orresponds to the model-heking problem: given a systemmodeled using A and a spei�ation modeled as B, is the set of behaviors ofA ontained in the the language de�ned by B?. The equivalene problem is tohek, given A and B, whether L(A) = L(B).Sine the set of all timed words is timed-regular, the universality problemredues to both the inlusion and equivalene problems, and we have:Corollary 1. The inlusion and equivalene problems for timed automata areundeidable.



Due to the interest in model-heking timed systems modeled as timed au-tomata, there has been intense researh over the years to �nd sublasses of timedautomata for whih the inlusion problem is deidable. We review some of themhere.3.2 Deterministi Timed AutomataA timed automaton A is deterministi if (1) V 0 ontains only one loation, (2)there are no swithes labeled with �, and (3) for every pair of distint swithes(s; a; g; �; s0) and (s; a; g0; �0; s00) with the same soure loation and label, theguards g and g0 are disjoint (i.e. the sets of lok valuations that satisfy g and g0are disjoint). These requirements ensure that A has at most one run on a giventimed word, and onsequently, omplementation an be ahieved by omple-menting the set of �nal states. The properties of deterministi timed automataare summarized below:Theorem 12. Deterministi timed automata are losed under union, interse-tion, and omplementation, but not under projetion. The language emptiness,universality, inlusion, and equivalene problems for deterministi timed au-tomata are Pspae-omplete [2℄.Unlike lassial automata, deterministi timed automata are stritly less ex-pressive than the nondeterministi ones, and in partiular, the language of theautomaton of Figure 1 annot be spei�ed using a deterministi timed automa-ton. Given a timed automatonA, the problem of heking whether there exists anequivalent deterministi timed automaton is not known to be deidable (see [35℄for a disussion).An interesting extension of deterministi timed automata is bounded 2-waydeterministi timed automata [5℄. Automata in this lass deterministially tra-verse a timed word from left to right, but an stop and reverse diretion to readthe word bakwards from that point. For example, onsider the language on-sisting of all words of the form (a; t0)(a; t1) : : : (a; tk)(b; t0) suh that there existssome i � k with t0 = ti+1 (i.e. there is some a-event whih is exatly one unit oftime before the b-event). This language is not aepted by a (forward) determin-isti automaton, but an be aepted by an automaton that goes to the end ofthe word, sets a lok to the time of the last event, and traverses the word bak-wards looking for the mathing a event. For deidability, it is required that thereexists a bound n suh that any symbol of any word is read at most n times. Suha bounded timed automaton (even a nondeterministi one) an be simulated bya single-pass forward nondeterministi automaton as it simply needs to guessthe positions where the loks are reset on the bounded number of passes. Inthe deterministi ase, the expressive power stritly inreases with the bound n.These deterministi bounded two-way automata also preserve the ruial prop-erty that there is at most one run on eah timed word, and onsequently, they arelosed under all boolean operations, and heking whether L(A) � L(B), whereA is a timed automaton and B is a bounded 2-way deterministi automaton, isdeidable.



3.3 DigitizationAn important sublass of timed automata for whih the inlusion problem isdeidable involves the notion of digitization. A timed language L is said to belosed under digitization if disretizing a timed word w 2 L by approximatingthe events in w to the losest tik of a disrete lok results in a word that isalso in L.Formally, for any t 2 R and for any 0 � " � 1, let [t℄" be bt, if t < bt+ ",and dte otherwise. We extend this to timed words: if w = (a0; t0); : : : (ak; tk),then [w℄" = (a0; [t0℄") : : : (ak; [tk℄"). Intuitively, [w℄" is the word obtained whenevents are observed using a disrete lok with o�set ". For a timed language L,[L℄" = f[w℄" j w 2 Lg.A timed language L is losed under digitization [22℄ if for every w 2 L andfor every " 2 [0; 1℄, [w℄" 2 L, i.e. if for every " 2 [0; 1℄, [L℄" � L. L is said tobe losed under inverse digitization if it is the ase that whenever u is a timedword suh that for every " 2 [0; 1℄, [u℄" 2 L, then u itself belongs to L.For any timed language L, let Z(L) be the set of timed words in L in whihevery event happens at an integer time. Note the relation to the sampled seman-tis of Setion 2.2: for a timed automaton A, L1(A) = Z(L(A)).Lemma 1. [22℄ Let L be losed under digitization and L0 be losed under inversedigitization. Then L � L0 i� Z(L)� Z(L0).The proof of the above lemma runs as follows: Assume Z(L) � Z(L0). Ifu 2 L, then [u℄" 2 L for every " 2 [0; 1℄ (sine L is losed under digitization);hene [u℄" 2 Z(L)� Z(L0), for every " 2 [0; 1℄, whih in turn means that u 2 L0(sine L0 is losed under inverse digitization).It is easy to see that timed languages over � in whih events our onlyat integral times are in one-to-one orrespondene with untimed languages over� [ fpg, where p denotes the passage of one unit of time. For example, thetrae (a0; 1)(a1; 1)(a2; 3) orresponds to the untimed word pa0a1ppa2. For anytimed word in whih events our at integral times, let Tik (w) denote theorresponding word over � [ fpg. Given a timed automaton A aepting L,we an e�etively onstrut an automaton over � [ fpg aepting Tik (Z(L)),using the region automaton for A. Hene, heking Z(L) � Z(L0) boils downto heking inlusion between two untimed languages, whih is deidable. Thisgives:Theorem 13. [22℄ Given timed automata A and B, where L(A) is losed underdigitization and L(B) is losed under inverse digitization, the problem of hekingwhether L(A) � L(B) is deidable.Open timed automata are timed automata where all atomi lok onstraintsin guards are of the form x <  or x > , i.e. atomi guards of the form x � and x �  are disallowed. Similarly, losed timed automata are those in whihall atomi guards are of the form x �  or x � . The following is then true:



Proposition 1. [22, 31℄ Closed timed automata are losed under digitization,and open timed automata are losed under inverse digitization.Corollary 2. Given a losed timed automaton A and an open timed automatonB, the problem of heking if L(A) � L(B) is deidable.Turning to the universality problem, sine heking whether a timed automa-ton A aepts all timed words is the same as asking whether T�� � L(A), andsine T�� is losed under digitization, it follows that:Theorem 14. [22, 31℄ The universality problem for open timed automata (orany lass of timed automata that are losed under inverse digitization) is deid-able.Note that the above ruially uses the fat that our de�nition of timed wordsallows several events to happen at the same time, i.e. the timed words are weaklymonotoni. If this were disallowed and it was required that time stritly elapsebetween events, then we have as universe the set of all strongly monotoni words,whih is not losed under digitization. It turns out that heking universality ofopen timed automata is undeidable in the domain of strongly monotoni words.Also, for losed timed automata, universality is undeidable regardless of whetherthe universe is weakly or strongly monotoni [31℄.Note that open timed automata are de�ned syntatially by plaing restri-tions on the struture of the automata while losure under digitization is asemanti property of languages. Given automata A and B, one an always hekwhether Z(L(A)) � Z(L(B)). If we ould deide whether A is losed underdigitization and whether B is losed under inverse digitization, we would knowwhether we an use the above test to hek language inlusion. It turns out thatthe former is deidable but the latter is not:Theorem 15. [31℄ Given a timed automaton A, heking whether L(A) is losedunder digitization is deidable, while the problem of heking whether L(A) islosed under inverse digitization is undeidable (even if A is a losed timed au-tomaton).3.4 Robust Timed AutomataSine the undeidability of universality and inlusion problems were shown us-ing the fat that events that are preisely one unit (or an integral number ofunits) apart an be related, and hene used to ount, this led to the belief thatintroduing some fuzziness in aeptane ould alleviate the problem. Also, inpratie, no timed system an be modeled and observed with suh arbitraryauray a timed automaton provides.The de�nition of robust timed automata addresses this. Given a timed au-tomaton, under the robust semantis a word is aepted if and only if a densesubset \around" the word is aepted by the timed automaton. In this de�nition,a word that is aepted by the timed automaton may be rejeted in the robust



semantis if it is an isolated aepted trae, while a word that is rejeted by thetimed automaton an be aepted under the robust semantis if it is surroundedby a dense set of aepted traes.Formally, let us �rst de�ne a metri d on timed words. Let w and w0 betwo timed words. If untime(w) 6= untime(w0), then d(w;w0) =1. Otherwise, ifw = (a0; t0) : : : (ak ; tk) and w0 = (a0; t00) : : : (ak; t0k), then d(w;w0) = maxfjti �t0ij j 0 � i � kg. In other words, the distane between two timed words (whoseuntimed omponents are idential) is the maximum di�erene in time betweenorresponding events in the two words. We refer to open and losed sets of timedwords with regard to this metri.The robust semantis an now be de�ned as follows. Given a timed automatonA aepting L, let L denote the smallest losed set ontainingL. Then the robustlanguage aepted by the automaton, LR(A), is the interior of L, whih is thelargest open set ontained within L.In this subsetion, to learly distinguish between the standard semantis andthe robust one, we refer to the former as preise semantis. In the original paper[20℄, the robust semantis of a timed automaton was de�ned as a olletion oftubes as opposed to a olletion of timed words. A tube is any set of timedwords whih is open (i.e. for eah timed word in the tube, some "-neighborhoodshould be ontained in the tube). Here we adopt a slightly di�erent semantisby de�ning the robust semantis to be the set of all timed words whih belongto some tube that is robustly aepted.The robust language of any timed automaton is, by de�nition, open. Also,it turns out that the (preise) languages aepted by open timed automata arealso open. However, open timed automata and robust timed automata haveinomparable expressive power (i.e. there are timed languages that are aeptedby open timed automata whih are not aeptable by robust timed automataand vie versa) [31℄.Despite the involved de�nition of robust aeptane, emptiness for robusttimed automata is deidable:Theorem 16. [20℄ The emptiness problem for robust timed automata is Pspae-omplete.The proof proeeds by showing that for any timed automaton A, we anonstrut an open timed automaton Ao suh that both aept the same robustlanguages, i.e. LR(A) = LR(Ao). Sine the preise language of this open timedautomaton is open, i.e. L(Ao) is open, it follows that the robust language ofA is nonempty i� the preise language of Ao is nonempty (i.e. LR(A) 6= ; i�L(Ao) 6= ;), whih is deidable. One an in fat show that the untimed languageorresponding to the robust language aepted by A is regular (as is true for thepreise semantis).However, it turns out that despite robustness, robust timed languages are notlosed under omplement (and hene not determinizable) [20, 26℄. We give a newproof here. Consider the timed automaton A depited in Figure 5, whih aepts(in the preise semantis) the language L onsisting of all timed words w suh



a aa, x := 0 a, y := 0 b, x < 1b, x < 1b, y > 1 b, y > 1Fig. 5. A nonomplementable robust automatonthat the untimed word of w is in a�b� and there are two onseutive a-eventsat times t and t0 suh that there are no b-events in the range [t+ 1; t0 + 1℄. It iseasy to see that the robust language aepted by A is also L.The robust omplement of A, denoted by L, onsists of the set of all words wsuh that either the untimed word of w is not in a�b� or for every two onseutivea-events, there is at least one b-event in the open range (t+ 1; t0 + 1). We showthat L is not robustly aeptable by any timed automaton. We laim that a wordis in the untimed language of L i� it is in ��:b:��:a:�� or is of the form ambnwhere n � m�1. This laim will show that L annot be robustly aepted, sineuntime(L) is non-regular. The only interesting part is to show that there is noword whose untimed word is ambn with n < m�1. Assume there is suh a word� . By robust aeptane, we an �nd a word � 0 lose to � whose untimed wordis the same as that of � but where all a-events our at di�erent times. Then, itis easy to see that the a-events de�ne m� 1 intervals whih annot be �lled byn b-events and hene � 0 is not in the language, whih is a ontradition.The above mehanism of sandwihing a related event in an interval one unitaway from a pair of onseutive events, gives a way to maintain ounters. Asimilar mehanism is used to enode on�gurations of a Turing mahine in [24℄,where the authors show that a robust timed automaton an aept all wrongon�guration sequenes of a Turing mahine, making universality of robust timedautomata undeidable.Turning to the notions de�ned in the last subsetion, the languages de�nedby robust automata are losed under inverse digitization [31℄. However, unlikeregular timed languages, heking whether the robust language of a timed au-tomaton is losed under digitization is undeidable [31℄.Also, in sharp ontrast to the preise semantis of timed automata, it turnsout that the disrete-time language aepted by robust timed automata neednot be regular. That is, there are robust timed automata A suh that Z(LR(A))is not regular. Consequently, there are timed languages that an be aepted bytimed automata under the robust semantis whih annot be aepted by timedautomata under the preise semantis (and vie versa).The nonregularity of Z(LR(A)) seems to render digitization tehniques inap-pliable for heking inlusion of robust timed automata. In fat, the deidabilitystatus of the integral language emptiness under the robust semantis (i.e. given



an automaton A, to hek whether Z(LR(A)) 6= ;) is not known. Also, introdu-ing impreision using in�nitesimal lok drift (reall the de�nition of A" fromSetion 2.4) as a way of de�ning semantis, and its relationship to the robustsemantis has not been studied.3.5 Restriting ResouresOne approah to get a more tratable sublass is to restrit the resoures a timedautomaton an use. The original proof showing that inlusion of timed automatais undeidable also showed that timed automata with two loks already rendersthe inlusion problem undeidable [2℄.For timed automata with one lok, however, a reent result shows thatheking inlusion (i.e. heking if L(A) � L(B)) is deidable when B has onlyone lok [32℄. The proof is based on tehniques used to solve problems on in�nitegraphs akin to those used to solve problems involving overability in Petri nets.The paper [32℄ also shows that the problem of heking whether L(A) � L(B)is deidable if the only onstant that appears in the guards of B is 0. The proofgoes by showing that B an be determinized. The essene of the idea is this:Consider the region automaton for B. The only information we need to maintainis whether eah lok is 0 or greater than 0|the ordering of frational parts ofloks need not be reorded as any region has at most one timed suessor (theone with every lok greater than 0). Using now a lok, we an simulate a subsetonstrution on the region automaton and turn it into a timed automaton wherethe lok is reset on every event and is used to hek whether any amount oftime has elapsed sine the last event.Theorem 17. [32℄ The problem of heking, given two timed automata A andB, whether L(A) � L(B), is deidable if B does not have any �-labeled swithesand either:{ B uses only one lok, or{ B uses guards involving the onstant 0 only.The above results are the only known deidability results in this ategory.In fat, the following relaxations of these restritions on a given automaton A,renders the universality problem undeidable [32℄:{ A has two loks and a one-event alphabet, or{ A has two loks and uses a single non-zero onstant in the guards, or{ A has a single loation and a one-event alphabet, or{ A has a single loation and uses a single non-zero onstant in the guards.3.6 Event Clok AutomataThe essential power of nondeterminism in timed automata lies in its ability toreset loks nondeterministially, as will beome lear later in this subsetion.The lass of event-reording automata [4℄ are timed automata with a �xed set of



loks, a lok xa for eah a 2 �, where xa gets reset every time a ours. Thereare no �-labeled swithes. Event-reording automata thus have swithes labeled(a; g) instead of (a; g; �), as it is impliitly assumed that � = fxag.An event-reording automaton A an be easily determinized. First, we antransform A to an automaton B suh that if G is the set of guards used on thetransitions, then G is \minimal" in the sense that for any two guards g and g0in G, there is no lok valuation that satis�es both g and g0. Then, we an doa subset onstrution on this automaton. Let B = hV; V 0; V F ; X;Ei. Then, wean build a deterministi event reording automaton C = h2V ; fV 0g; F;X;E0iwhere for any S � V , a 2 �, g 2 G, (S; a; g; S0) 2 E0 where S0 = fv0 2 V j 9v 2S:(v; a; g; v0) 2 Eg. The set F ontains the sets S � V suh that S \ V F 6= ;.It is easy to see that C is deterministi and aepts the same language as Bdoes. Note that a similar onstrution fails for timed automata sine for a setS, there ould be two states v; v0 2 S with edges (v; g; �; v1) and (v0; g; �0; v01),where � 6= �0.An event-reording automaton at any point on the input word has aess toa lok xa, for eah a 2 �, whose value is the time that has elapsed sine thelast a-event. Event lok automata are an extension in whih the automaton alsohas aess to a prophey lok ya (for eah a 2 �) whose value at any point isthe time that must elapse before the next a-event happens. For, example, in thetimed word (a; 0:4)(b; 0:5)(a; 0:7)(b; 0; 9)(a; 0:95), when reading the third eventin the word, the lok xa = 0:3 and ya = 0:25.Observe that prophey loks add to the expressiveness: the language oftimed words suh that the untimed word is in a�b and there is some a eventone time unit before b, is not aepted by any event reording automaton, oreven any deterministi timed automaton, but an easily be aepted by an eventlok automaton. For every event lok automaton, we an onstrut a (nonde-terministi) timed automaton that aepts the same language. Event-reordingloks xa do not ause any problem, of ourse, as we an reset the lok xa ateah a-event. To handle prophey loks is more triky. The timed automatonsimulates the event-lok automaton, and if at an event a guard demands yb < ,then we an take the ation and postpone the heking of this onstraint. We dothis by resetting a new lok zyb< and hek at the next b-event that zyb< < holds. If we meet another transition before the next b-event whih also demandsyb <  hold, then we an ignore it as heking yb <  at an earlier position isa stronger ondition. Similarly, onstraints of the form yb >  an be handled.Note that the resulting automaton an be nondeterministi as multiple edgesthat demand di�erent onstraints on the prophey loks an be enabled.Sine the values of any lok of an event lok automaton at any time dependsonly on the word w (and not on the run of the automaton), it turns out thatevent-lok automata an be omplemented. Let A be an event lok automatonand let the guard onstraints G used in A be \minimal". Also, let us assume thatthe guards of swithes with idential soure loation and idential label overthe set of all lok valuations so that some guard is always enabled. Let � be



the set of all (a; g) where a 2 � and g 2 G. Note that the transitions of A arelabeled using symbols in � and that � is �nite.Consider words in ��. For any word � 2 ��, we an assoiate a set of timedwords tw(�) orresponding to it. Formally, if � = (a0; g0) : : : (an; gn), then tw(�)ontains the set of all timed words of the form (a0; t0) : : : (an; tn) where, for anyi � n, the set of event-reording and prophey loks at (ai; ti) satisfy the guardgi. In fat, if we denote the set of symboli words aepted by A as Lsym(A)(whih is a regular subset of ��), it is easy to see that L(A) = S�2Lsym(A) tw(�)[18℄.Notie that for any timed word w, there is a word � 2 �� suh that w 2tw(�). In fat, this symboli word is unique, by the minimality of the guards.Consequently, the timed words orresponding to words in �� n Lsym(A) formthe omplement of L(A), i.e. tw(Lsym(A)) = L(A). Hene we an omplementthe event lok automaton A by onstruting an automaton A0 aepting theomplement of Lsym(A) and by viewing A0 as an event lok automaton. Wean indeed even build a deterministi automaton for Lsym(A) and by viewing itas an event-lok automaton we would get a deterministi event lok automatonequivalent to A. For event-reording automata A, this onstrution in fat yieldsa deterministi timed automaton equivalent to A.We have the following results:Theorem 18. [4℄ Event lok automata are e�etively losed under omplemen-tation. Further, given a timed automaton A and an event lok automaton B,the problem of heking whether L(A) � L(B) is Pspae-omplete.Choosing reording loks xa and prophey loks ya, for every symbol a 2�, is rather arbitrary, and one an generalize the notion of events with theorresponding reording and prediting loks. For example, the ourrene oftwo a's exatly one unit of time apart an be an event for whih we may wantto keep reording and prophey loks. The property we would like to maintainis that the events are determined by the word, and not by a partiular run of anautomaton on the word.The lass of reursive event lok automata [25℄ are de�ned using this prini-ple. These automata onsist of a �nite olletion of automata, one at eah levelf1; : : : ; kg. The automaton at eah level Ai uses events that are de�ned by theautomaton at level Ai�1 (A1 is a simple event lok automaton). The notion ofevents is omplex: essentially eah automaton Ai omes as a pair of event lokautomata (Ali; Ari ) and an event is generated by Ai at time t if the pre�x ofthe word till time t is aepted by Ali and the suÆx from time t is aepted byAri . The automaton at level i then uses loks of the form xj and yj , (j < i),where xj and yj are reording and prophey loks for events de�ned by theautomaton Aj . The main result is that heking if L(A) � L(B) is deidable,when A is a timed automaton and B is a reursive event-lok automaton. Thelass of languages de�ned by reursive event-lok automata has logial hara-terizations using real-time temporal logis [25, 34, 18℄, but its expressive power
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Fig. 6. The various lasses of timed languages.An arrow from C to D denotes that the lass de�ned by C is a sublass of that de�nedby D. Dotted lines emphasize that ertain lasses are not omparable.with respet to deterministi bounded two-way automata has not been studied.The relationship among various lasses is summarized in Figure 6.3.7 Resoure-bounded InlusionWe present in this setion a result that shows that heking whether a timedautomaton with limited resoures an exhibit an evidene to the fat that L(A)is not a subset of L(B), is deidable. This result is derived from ideas in [1, 19℄.The resoures of a timed automaton are the following: the number of loksthat it uses, the granularity 1=m with whih it makes observations of the loks,and the maximum onstant it uses. The maximum onstant, however, is notimportant, as for any timed automaton A, there exists an equivalent timed au-tomaton B with �-transitions whih uses the same number of loks, has thesame granularity as A, but with maximum onstant 1 in the guards. We anonstrut B suh that it simulates A, exept that it keeps trak of bx, for eahlok x, in its ontrol state, and uses the lok only to keep trak of x� bx.The number of loks and the granularity of observation are however important|inreasing the number of loks or dereasing the granularity from say 1=m to1=2m stritly inreases the lass of languages a timed automaton an aept.



Given timed automata A and B, and resoures (k; 1=m), we now want toknow whether there is an automaton C with granularity (k; 1=m) whih an bean evidene to the fat that L(A) is not ontained in L(B). More preisely, isthere suh a C suh that L(A)\L(C) 6= ; but L(B)\L(C) = ;? We show thatthis is a deidable problem.Let us �x resoures (k; 1=m). Let Xk = fx1; : : : ; xkg be a set of k-loks andlet G1=m denote the set of all minimal guards formed using boolean ombinationsof onstraints of the form xi � 1=m and xi < 1=m, where xi 2 Xk. Let � =f(a; g; �) j a 2 �0; g 2 G1=m; � � Xkg. Note that for any timed automaton Cwhih has minimal guards on transitions, the symboli language it aepts is asubset of ��.Eah word � 2 �� de�nes a set of timed words tw(�) over � whih isbasially the set of timed words that would be aepted by a timed automatonalong a run that is labeled with �. The question of the existene of a C thatwitnesses that L(A) is not a subset of L(B) boils down to �nding whether thereis some symboli word � 2 �� suh that tw(�)\L(A) 6= ; and tw(�)\L(B) = ;.The following lemma will help apture the set of all suh witnesses:Lemma 2. [19℄ Let D be any timed automaton over � and let � be a symbolialphabet for granularity (k; 1=m) as above. Then, the set of all � 2 �� suh thattw(�) \ tw(D) 6= ; is regular.The proof follows using the intersetion onstrution for timed automata. LetE be the automaton aepting ��. Essentially, the automaton we are lookingfor is the region automaton aepting the produt of D and E. When we take aprodut transition, however, we label this transition with the �-label that wasinvolved in the transition.Consequently, RA, the set of all words � in �� suh that tw(�) \ L(A) 6= ;is regular, and the set RB of all words � in �� suh that tw(�) \ L(B) = ;, isalso regular. We an now hek whether RA \ RB is empty, whih is deidable,and we have:Theorem 19. Given timed automata A and B, and a resoure onstraint (k; 1=m),the problem of heking whether there is an automaton C with granularity (k; 1=m)suh that L(A) \ L(C) 6= ; and L(B) \ L(C) = ; is deidable.4 DisussionThis survey attempts to ollet, unify, and explain seleted results onerningreahability and language inlusion for timed automata and its variants. Thetheoretial questions studied in the literature, but not addressed in this survey,inlude timed !-languages, onnetions to monadi logis, regular expressions,and iruits, branhing-time equivalenes suh as timed (bi)simulations, modelheking of real-time temporal logis, analysis of parametri timed automata,and games and ontroller synthesis.



The reahability problem is the most relevant problem in the ontext of for-mal veri�ation, and its omplexity lass is Pspae. A large number of heuris-tis have been proposed to eÆiently implement the reahability algorithm. Allthese involve searhing the region automaton, either expliitly, or using symbolienoding of regions using zones (see [6, 29, 16, 36, 11℄ for sample tools). Many ofthese optimizations have been devised so as to avoid enumerating all possible nu-merial ombinations of the (integral) lok values. We believe that new insightsan be obtained by exploring the following theoretial question [27℄. Consider thespeial ase when the graph formed by loations and edges of a timed automatonA is ayli. Even in this ase, the region automaton an be exponential, andthe shortest path to a target region an be of exponential length. However, it iseasy to see that the problem is in NP: the number of disrete swithes along thepath to the target is linear, it suÆes to guess the regions when these disreteswithes our, and it is easy to verify the feasibility of the guess. The probleman also be shown to be NP-hard. The NP upper bound also holds if we allow asingle self-loop swith on eah loation. We onjeture that this bound ontinuesto hold when the strongly onneted omponents in the graph are small: if thenumber of edges in eah strongly-onneted omponent of the graph formed bythe loations and edges of a timed automaton is bounded, then the reahabilityproblem is in NP.The fat that the language \some two a symbols are distane 1 apart" is timedregular has led to the belief that timed automata are too powerful in terms ofpreision and unbounded nondeterminism, ausing nonomplementability andundeidable language inlusion problem. The various solutions suh as eventlok automata, robust automata, open timed automata, have been proposed toaddress this issue. However, no solution has emerged as a onvining alternative,and researh in obtaining a lass of automata with properties more attrativethan those of timed automata ontinues. We believe that introduing a smalldrift in the loks of timed automata is a natural and simple way to introdueimpreision. Let us all a timed regular language L to be a perturbed languageif there exists a timed automaton A and an error " > 0 suh that L = L(A").We onjeture that the lass of perturbed languages has a deidable languageinlusion problem.Aknowledgments We thank Patriia Bouyer, Deepak D'Souza, Tom Hen-zinger, Joel Ouaknine and Jean-Franois Raskin for useful omments on thedraft of this manusript.Referenes1. R. Alur, C. Couroubetis, and T. Henzinger. The observational power of loks.In CONCUR '94: Fifth International Conferene on Conurreny Theory, LNCS836, pages 162{177. Springer-Verlag, 1994.2. R. Alur and D. Dill. A theory of timed automata. Theoretial Computer Siene,126:183{235, 1994.
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