
An Introduction to Hybrid Automata

Jean-François Raskin, email: jraskin@ulb.ac.be

Computer Science Department
University of Brussels
Belgium

1 Introduction

Hybrid systems are digital real-time systems embedded in analog environ-
ments. A paradigmatic example of a hybrid system is a digital embedded con-
trol program for an analog plant environment, like a furnace or an airplane: the
controller state moves discretely between control modes, and in each control
mode, the plant state evolves continuously according to physical laws. Those
systems combine discrete and continuous dynamics. Those aspects have been
studied in computer science and in control theory. Computer scientists have
introduced hybrid automata [Hen00], a formal model that combines discrete
control graphs, usually called finite state automata, with continuously evolving
variables. A hybrid automaton exhibits two kinds of state changes: discrete

jump transitions occur instantaneously, and continuous flow transitions occur
when time elapses.

Hybrid systems are often systems that are safety critical. As a conse-
quence, their reliability is a central issue. For example, the correctness of a
digital controller that monitors the temperature of a nuclear reactor is cru-
cial. We present hybrid automata as formal models that define trajectories

(behaviors) of hybrid systems. Properties of a hybrid system assign values
to its trajectories: for example, they can classify trajectories as good or bad.
The behaviors of a hybrid automaton are often complex, and it may thus be
difficult to reason about them. This is why, since the early works on hybrid
automata, the emphasis has been on their computer aided analysis. Model-
checking methods [CGP99] have been studied extensively and tools able to
analyze complex hybrid systems have been developed.

This chapter is organized as follows. First, we introduce the syntax and
semantics of hybrid automata, and show how complex hybrid systems can
be modeled compositionally as products of hybrid automata. Then, we define
safety properties of hybrid automata and show how to model them using
monitors. We show that the verification of those properties reduces naturally
to reachability problems, that is, to decide if there exists a trajectory of the

2 J.-F. Raskin

hybrid system that reaches a given set of states. As hybrid automata can be
very complex mathematical objects, restricted subclasses for which we have
automatic analysis methods have been introduced. In this introduction, we
focus on rectangular hybrid automata and show how they can be used to over-

approximate the behavior of more complex hybrid automata. We close the
chapter by referencing the literature to allow the reader into go deeper in this
flourishing research subject.

2 Hybrid Automata: A Model for Hybrid Systems

To illustrate the main notions about hybrid automata, we use a running ex-
ample throughout the chapter. The components of the running example are
depicted in Fig. 1. It shows a system composed of three devices: (i) a tank that
contains water and that can be heated using a gas burner, (ii) a gas burner
that can be turned on or turned off, and (iii) a thermometer that monitors the
temperature of the water inside the tank and periodically issues signals when
the temperature of the water in the tank is above or below certain thresholds.
Later, we will add to this system a controller that will observe the signals
issued by the thermometer and will issue orders to the gas burner in order to
maintain the temperature of the water within a given range.

Fig. 1. Our running example

We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the

An introduction to hybrid automta 3

temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

4 J.-F. Raskin

• Loc is a finite set {l1, l2, . . . ln} of (control) locations that represent control

modes of the hybrid system.
• Σ is a finite set of event names.
• Edge ⊆ Loc×Σ×Loc is a finite set of labelled edges that represent discrete

changes of control mode in the hybrid system. Those changes are labelled
by event names taken from the finite set of labels Σ.

• X is a finite set {x1, x2, . . . , xm} of real-valued variables. We write Ẋ for
the set of dotted variables {ẋ1, ẋ2, . . . , ẋm} which are used to represent first
derivatives of the variables during continuous evolutions (inside a mode),
and we write X ′ for the primed variables {x′

1, x
′
2, . . . , x

′
m} that are used to

represent updates at the conclusion of discrete changes (from one control
mode to another).

• Init, Inv, Flow are functions that assign three predicates to each location.
Init(l) is a predicate whose free variables are from X and which states the
possible valuations for those variables when the hybrid system starts from
location l. Inv(l) is a predicate whose free variables are from X and which
constrains the possible valuations for those variables when the control of
the hybrid system is in location l. Flow(l) is a predicate whose free variables
are from X ∪ Ẋ and which states the possible continuous evolutions when
the control of the hybrid system is in location l.

• Jump is a function that assigns to each labelled edge a predicate whose
free variables are from X ∪ X ′. Jump(e) states when the discrete change
modeled by e is possible and what the possible updates of the variables
are when the hybrid system makes the discrete change.

The evolution of the temperature of the water in the tank is modeled using
the hybrid automaton of Fig. 3. Locations are drawn as boxes with rounded
corners and edges as arrows. Locations are named t1 to t4. A predicate next
to a location denotes an invariant predicate. Invariant predicates equivalent
to true are omitted. A predicate next to a location within a box denotes an
initial predicate. Initial predicates equivalent to false are omitted. Predicates
inside locations denote flow predicates. Edges are labelled by event names and
update predicates. The hybrid automaton is composed of four locations that
model the four different modes of evolution of the temperature within the
tank as described above. Variable x is used to model the temperature of the
water in the tank.

Location t1 models the behavior of the system when the temperature of the
water is between 20 and 100 degrees as indicated by the invariant 20 ≤ x ≤ 100
and the gas burner is ON. In that case, the dynamics that govern the variable x
is given by the flow predicate ẋ = K(h− x). Location t2 models the behavior
of the system when the temperature of the water has reached 100 degrees.
In that location, the flow predicate ẋ = 0 models the fact that the water
temperature stays constant. Location t3 models the tank system when the
heater is OFF and the temperature of the water is above 20 degrees. In that
case, the flow predicate that governs the evolution of x is ẋ = −Kx. Finally,

An introduction to hybrid automta 5

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location

and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

6 J.-F. Raskin

those behaviors in a formal way, we use timed transition systems, which are
defined as follows.

Definition 2 [Timed Transition System] A timed transition system TTS is a
tuple 〈S, S0, Σ,→〉 where S is a (possibly infinite) set of states, S0 ⊆ S is the
subset of initial states, Σ is a finite set of labels, and →⊆ S × Σ ∪ R≥0 × S
is the transition relation. We write s →d s′ for (s, d, s′) ∈→.

We denote [X → R] the set of valuations that map variables from X to
real numbers. Let p be a predicate over the set of variables X , then [[p]] is the
set of valuations v ∈ [X → R] satisfying p, noted v |= p. Let q be a predicate
over the set of variables X ∪ X ′, then [[q]] is the set of pairs of valuations
(v, v′) ∈ [X → R] × [X ′ → R] such that (v, v′) |= q. Let r be a predicate
over the set of variables X ∪ Ẋ, then [[r]] is the set of pairs of valuations
(v, v̇) ∈ [X → R] × [Ẋ → R] such that (v, v̇) |= r. The TTS associated to a
hybrid automaton is defined as follows.

Definition 3 The timed transition system 〈S, S0, Σ,→〉 of the hybrid au-
tomaton H = 〈Loc, Edge, Σ, X, Init, Inv, Flow, Jump〉, written as [[H]], is defined
as follows:

• S is the set of pairs (l, v) where l ∈ Loc and v ∈ [X → R] such that
v ∈[[Inv(l)]], this set is called the state space of H ;

• S0 is the subset of pairs (l, v) ∈ S such that v ∈[[Init(l)]], this set is called
the initial state space of H ;

• the transitions are either:
– discrete: for each edge e = (l, σ, l′) ∈ Edge, we have (l, v) →σ (l′, v′)

if (l, v) ∈ S, (l′, v′) ∈ S, and we have that (v, v′) ∈[[Jump(e)]];
– continuous: for each nonnegative real δ ∈ R≥0, we have (l, v) →δ

(l′, v′) if l = l′, (l, v) ∈ S, (l′, v′) ∈ S, and there is a differentiable
function f : [0, δ] → Rm, with first derivative ḟ : (0, δ) → Rm, such
that the following conditions hold:
· f(0) = v,
· f(δ) = v′,
· for all reals ε ∈ (0, δ), both f(ε) ∈[[Inv(l)]] and (f(ε), ḟ(ε)) ∈[[Flow(l)]].
The function f is called a witness for the transition (l, v) →δ (l′, v′).

In this transition system, we abstract continuous flows by transitions re-
taining only the information about the source, target and duration of each
flow.

The paths contained in the timed transition system of a hybrid automaton
H are formal representations of the possible trajectories of the hybrid system
modeled by H , i.e., the evolutions of the state of the hybrid system along
time. Formally, a finite path, noted λ, in the timed transition system T =
〈S, S0, Σ,→〉 is a finite sequence alternating between states and transition
labels s0τ0s1τ1 . . . τn−1sn such that at any i, 0 ≤ i ≤ n, si ∈ S and for any
i, 0 ≤ i < n, (si, τi, si+1) ∈→. We call n + 1 the length of the path and

An introduction to hybrid automta 7

it is denoted by |λ|. This definition is extended to infinite paths as follows:
an infinite path λ in the timed transition system T is an infinite sequence
alternating between states and transition labels s0τ0s1τ1 . . . τn−1sn . . . such
that for any i ≥ 0: si ∈ S and (si, τi, si+1) ∈→. The length of an infinite
path is +∞. The duration of a (finite or infinite) path λ is the sum of time
labels that appear along λ. That is, given λ = s0τ0s1τ1 . . . snτn . . . , let J be
a subset of indices j in {0, 1, . . . |λ|} such that τj ∈ R≥0, then the duration of
λ is defined by Duration(λ) =

∑

j∈J τj . We say that a (finite or infinite) path
λ is initial if its first state s0 is an initial state of the TTS, i.e. s0 ∈ S0. We
write PathF (T) for the set of finite initial paths of S and Path∞(T) for the
set of infinite initial paths of S.

Example 1. The following path belongs to PathF ([[Tank]]):

(t4, x 7→ 20)

(1)
︷ ︸︸ ︷
→ON(t1, x 7→ 20)

(2)
︷︸︸︷
→10(t1, x 7→ 88.59 . . .)

(3)
︷ ︸︸ ︷
→2.74...(t1, x 7→ 100)

(4)
︷︸︸︷
→B

(t2, x 7→ 100)

(5)
︷︸︸︷
→5 (t2, x 7→ 100)

(6)
︷ ︸︸ ︷
→OFF(t3, x 7→ 100)

(7)
︷︸︸︷
→8 (t3, x 7→ 54.88 . . .)

Transition (1) is discrete: the control of the tank instantaneously changes
from control location t4 to control location t1. The value of x remains equal
to 20 due to the jump predicate x′ = x expressing that the value of x is
left unchanged by the discrete jump. The witness function for time step (2) is
f(t) = 20e−0.075t+150(1−e−0.075t) on the interval [0, 10]. For time step (3) the
witness function is f(t) = 88.59 . . . e−0.075t + 150(1− e−0.075t) on the interval
[0, 2.75]. Transition (4) is a discrete change that is forced by the invariant
20 ≤ x ≤ 100 that labels location t1. The witness function for time step (5) is
f(t) = 100 on the interval [0, 5]. Transition (6) is a discrete change that can
occur at any time when in location t2. The witness function for time step (7)
is f(t) = 100e−0.075t on the interval [0, 8].

Remark 1. If we are interested in the infinite behaviors of a hybrid automaton,
then we are usually interested in infinite sequences of transitions that do
not converge in time. In fact, trajectories during which an infinite number
of discrete changes occur in a finite amount of time are not realistic. It is
clear that if a controller takes discrete switches say at times 1

2 , 3
4 , 7

8 , 15
16 , . . . ,

then it is not implementable. In this case, we say that the controller is Zeno.
The nonZenoness property of an infinite path can be expressed as follows.
Let T 〈S, S0, Σ,→〉 be a TTS and λ be an infinite path of T . The path λ
is nonZeno if and only if Duration(λ) = +∞. The divergence of time is a
liveness assumption [AS85], and it is the only liveness assumption we need to
consider [Hen92]. Algorithmic methods for checking nonzenoness properties
of timed and hybrid automata are given in [HNSY94].

2.3 Composition

Nontrivial systems consist of several interacting components (three in our
running example). We model each component as a hybrid automaton, and

8 J.-F. Raskin

the components coordinate with each other by shared variables and shared

events. The automaton for the thermometer and for the gas burner are given
in Fig. 4. The thermometer uses the shared variable x to synchronize with
the tank: the behavior of the thermometer depends on the evolution of the
variable x whose evolution is governed by the hybrid automaton that models
the tank. The flow of this variable is not constrained in the thermometer
automaton. In our formalization, the thermometer samples the variable x once
every 1

10 time units and issues the event DW93 if the temperature is below
93 degrees, issues the event UP95 if the temperature is above 95 degrees, and
issues an internal event ε in other cases (this event is not shared with other
components). The sampling rate is enforced using the analog variable z that
evolves with a derivative equal to 1. Such a variable counts time and is called a
clock. The gas burner uses events to synchronize with the tank. The gaz burner
communicates with the tank by synchronizing control switches through the
two shared events ON and OFF. The time needed for the gas burner to turn
off or turn on is fixed at 1

10 time units.
To formalize those intuitions, we use the notion of the product of two

hybrid automata which is defined as follows.

Definition 4 [Automata-Product] Let H1 = 〈Loc1, Edge1, Σ1, X1, Init1, Inv1,
Flow1, Jump1〉 and H2 = 〈Loc2, Edge2, Σ2, X2, Init2, Inv2, Flow2, Jump2〉 be two
hybrid automata such that Loc1∩Loc2 = ∅. Their synchronized product, noted
as H1⊗H2, is the hybrid automaton H = 〈Loc, Edge, Σ, X, Init, Inv, Flow, Jump〉
defined as follows:

• Loc =
{
{l1, l2} | l1 ∈ Loc1 ∧ l2 ∈ Loc2

}
.

• Edge is defined as follows: ({l11, l
2
1}, σ, {l12, l

2
2}) ∈ Edge iff either

1. σ ∈ Σ1 \ Σ2, (l11, σ, l12) ∈ Edge1, and l21 = l22;
2. σ ∈ Σ2 \ Σ1, (l21, σ, l22) ∈ Edge2, and l11 = l12;
3. σ ∈ Σ1 ∩ Σ2, (l11, σ, l12) ∈ Edge1 and (l21, σ, l22) ∈ Edge2.
Conditions (1) and (2) express that unshared events (also called internal

events) are interleaved while condition (3) expresses that shared events
must occur simultaneously in the two automata.

• Σ = Σ1 ∪ Σ2.
• X = X1 ∪ X2.
• for any location {l1, l2} ∈ Loc, we have that Init({l1, l2}) = Init1(l1) ∧

Init2(l2).
• for any location {l1, l2} ∈ Loc, we have that Inv({l1, l2}) = Inv1(l1) ∧

Inv2(l2).
• for any location {l1, l2} ∈ Loc, we have that Flow({l1, l2}) = Flow1(l1) ∧

Flow2(l2).
• for any edge ({l11, l

2
1}, σ, {l12, l

2
2}) ∈ Edge, we have that:

1. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧

∧

x∈X2\X1 x′ = x if σ ∈

Σ1 \ Σ2;
2. Jump({l11, l

2
1}, σ, {l12, l

2
2}) = Jump((l21, σ, l22)) ∧

∧

x∈X1\X2 x′ = x if σ ∈

Σ2 \ Σ1;

An introduction to hybrid automta 9

Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.

10 J.-F. Raskin

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

An introduction to hybrid automta 11

• (R1) the temperature in the tank must never reach 100 degrees;
• (R2) after 15 seconds of operation, the system must be in stable regime,

which means that the temperature of the water in the tank must always
stay between 91 and 97 degrees;

• (R3) during this stable regime, the burner is never continuously ON for
more than two seconds.

The three properties above are safety properties. They impose that the
system should stay within a set of safe states, or equivalently, that the system
should never enter a set of bad states (states where the safety property is
violated). This is clear for property (R1) where the bad states are the states
where the value of x is greater than or equal to 100. We will see later that this
is also the case for the other two properties. In this chapter, we only focus on
safety properties. Pointers to the literature are given in the last section for
other classes of properties.

We propose in Fig. 6, a possible controller for our system. The behavior of
this controller is as follows. The controller observes two events coming from
the thermometer (UP95, DW93) and issues two events toward the gas burner
(TURN-ON, TURN-OFF). Initially, the controller waits in location c1 until it
sees the event DW93. When this event occurs, the control switches instanta-
neously to location c2. There, it immediately switches to c3 by emitting the
event TURN-ON toward the gas burner. In location c3, the controller ignores
the event DW93 and waits for the event UP95. When this event takes place,
the control moves to location c4 where it instantaneously emits the event
TURN-OFF toward the gas burner.

In the next section, we show how to formalize the requirements expressed
informally above and how to prove, using algorithmic methods, that the con-
troller we propose fulfills those requirements.

3.1 Safety properties and monitors

Safety properties

To formalize safety properties, we need some more notation. Let T =
〈S, S0, Σ,→〉 be a TTS. Let λ = s0τ0s1τ1 . . . sn be a finite path in T . We
denote State(λ) for the set of states that appear along the path λ. We say
that a path λ reaches a state s if s ∈ State(λ). We say that a state s is reach-

able in T if s ∈
⋃

λ∈PathF (T) State(λ). The set of states that are reachable in T

is noted Reach(T). A set of states R ⊆ S is called a region. We note R for the
complement of R in the state space of T , that is, R = S \R. We say that T is
safe for R iff Reach(T) ⊆ R. A region R is reachable in T iff R∩Reach(T) 6= ∅.

Definition 5 [Verification Problems] Let H be a hybrid automaton with TTS

[[H]] whose state space is S, and let R ⊆ S be a region. The safety problem

associated to R asks whether Reach([[H]]) ⊆ R.The reachability problem asso-
ciated to R asks whether Reach([[H]]) ∩ R 6= ∅.

12 J.-F. Raskin

Fig. 6. A controller for the system

Those two problems are dual in the following formal sense.

Theorem 1. For any TTS T , for any region R of T , Reach(T) ⊆ R iff

Reach(T) ∩ R = ∅.

Hence, solving a safety problem boils down to solving its dual reachability
problem. In that reachability problem, the region R is often called the set of
bad states.

Monitors

In order to formalize safety requirements, it is often very convenient to use
a monitor automaton, also often called an observer, that “watches” the tra-
jectories of the system and enters “Bad” locations whenever one trajectory
violates a given safety property. Safety verification is then reduced to decid-
ing the reachability of a set of “Bad” locations.

In Fig. 7(a), 7(b), and 7(c), we give the monitors for the safety require-
ments (R1), (R2), and (R3) respectively. The automaton Moni1 monitors the
value of variable x whose dynamics is defined in the tank automaton. As soon
as x reaches the value 100, the control of the monitor can move to location
w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the

An introduction to hybrid automta 13

(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)

14 J.-F. Raskin

temperature of the water inside the tank) at that time is between 91 and 97,
the control moves to location w2 and the control can stay there only if the
temperature stays within this interval of values. On the other hand, if the
value is, or becomes, less than 91, it moves to location w3, and if the value is,
or becomes, greater than 97, it moves to location w4. Locations w3 and w4 are
the Bad locations. It is clear that if no state in which the control of Moni2 is ei-
ther w3 or w4 is reachable in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni2]],
then we know that the controller ensures requirement (R2). Finally, the au-
tomaton Moni3 works as follows. For the first 15 seconds, the control stays in
location w1, if the burner is OFF, or in location w2, if the burner is ON. After
15 seconds, the control moves to location w3 or w4. In w3, each time the event
ON occurs, the variable t is reset and the control moves to location w4 where
t counts time. There, the monitor waits for the next OFF event. If this next
OFF event occurs within 2 time units (t < 2), then the control moves back
to location w3 where the monitor waits for the next ON event. On the other
hand, if the event OFF occurs after 2 time units (t ≥ 2), then the control of
the monitor moves to location w5, a “Bad” location. Again, it is clear that our
system satisfies requirement (R3) if no state where the control of Moni3 is in
location w5 can be reached in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni3]].

3.2 How do we solve reachability problems?

We have seen that safety verification problems can be reduced to reachability
problems. We introduce here some basic notions useful for reachability prob-
lems. Given a TTS T = 〈S, S0, Σ,→〉, we define the following two operators:

• the direct successor operator PostT : 2S → 2S, is an operator that, given
a set of states, returns the set of direct successors of those states in T .
Formally, for any S′ ⊆ S, we have that

PostT (S′) =
{
s ∈ S | ∃s′ ∈ S′ : (∃σ ∈ Σ : s′ →σ s ∨ ∃δ ∈ R≥0 : s′ →δ s)

}
.

• the direct predecessor operator PreT : 2S → 2S , is an operator that, given
a set of states, returns the set of direct predecessors of those states in T .
Formally, for any S′ ⊆ S, we have that

PreT (S′) =
{
s ∈ S | ∃s′ ∈ S′ : (∃σ ∈ Σ : s →σ s′ ∨ ∃δ ∈ R≥0 : s →δ s′)

}
.

The set of reachable states of a hybrid automaton H can be described
as the least solution (for the subset order over sets of states) of equations
constructed using the direct successor or predecessor operators:

• The set of reachable states of a hybrid automaton H with TTS [[H]]=
〈S, S0, Σ,→〉 can be described as the least solution of the following equa-
tion:

X = (S0 ∪ Post[[H]](X)), (1)

where X ranges over sets of states.

An introduction to hybrid automta 15

• Symmetrically, the set of states of this automaton that can reach a given
region R can be described as the least solution of the following equation:

X = (R ∪ Pre[[H]](X)), (2)

where X ranges over sets of states.

As the direct successor and the direct predecessor operators are monotone for
the subset order, we know by the Tarsky theorems that the least solutions of
those equations can be obtained by successive approximations. Unfortunately,
this does not mean that we can effectively solve those equations. In fact, the
fixpoint is not necessarily reached within a finite number of steps. In general,
reachability problems are undecidable for even the simplest class of hybrid
automata (we give detailed references to the literature later). Even applying
the direct successor or predecessor operator to a region one time may be very
difficult as it amounts to solving general differential equations. We do not know
how to do that in general. This is why subclasses of hybrid systems for which
we know how to compute direct successors or predecessors of regions have been
studied in the literature [ACH+95]. In the next section, we study a particularly
interesting one, the rectangular hybrid automata [PV94, HKPV98].

4 Rectangular Hybrid Automata

4.1 Syntactic restrictions

An interval is a convex non-empty subset of the positive real numbers
with greatest lower bound in Q ∪ {−∞} and least upper bound in Q ∪
{+∞}. As usual, intervals can be denoted by (a, b), [a, b), (a, b] or [a, b] where
a ∈ Q ∪ {−∞} and b ∈ Q ∪ {+∞}, and a ≤ b. Let I be an interval, we note

glb(I) for the greatest lower bound of I and lub(I) for the least upper bound

of I. Let X be a set of variables, we note Rect(X) for the following set of
formulas:

Rect(X) 3 φ1, φ2 := ⊥ | > | x ∈ I | φ1 ∧ φ2

, where x belongs to the set of variables X , and I is an interval. Those formulas
are called rectangular predicates. The set of formula Rect(Ẋ) is defined in
the same way, replacing X by Ẋ. Those formulas are called rectangular flow

predicates. We need a last set of formulas. We denote by UpdateRect(X), the
following set of formulas:

UpdateRect(X) 3 φ1, φ2 := ⊥ | > | x ∈ I | x′ ∈ I | x′ = x | φ1 ∧ φ2

where x belongs to the set of variables X , x′ belongs to X ′ the set of primed
copies of variables in X , and I is an interval. Formulas from this set are called
rectangular update predicates.

16 J.-F. Raskin

Definition 6 [Rectangular Automaton] A rectangular automaton is a hybrid
automaton H = 〈Loc, Edge, Σ, X, Init, Inv, Flow, Jump〉 where for any l ∈ Loc,
Init(l) and Inv(l) are rectangular predicates over X , that is, formulas taken in
Rect(X), for any edge e ∈ Edge, Jump(e) is a rectangular update predicate
over X , that is a formula taken in UpdateRect(X), and finally, for any location
l ∈ Loc, Flow(l) is a rectangular flow predicate over Ẋ , that is, a formula taken
in Rect(Ẋ).

It is easy to show that the composition of two rectangular automata is
again a rectangular automaton. The hybrid automata for the gaz burner, the
thermometer, the controller, and the three monitors are all rectangular hybrid
automata.

4.2 Reachability analysis of rectangular hybrid automata

The computation of the Pre and Post operators is easier in the case of rect-
angular hybrid automata. For that class of hybrid automata, we are able to
define a semi-algorithm (no guarantee of termination) for reachability. This
semi-algorithm manipulates regions that are infinite sets of states. Therefore,
we need a way to represent regions in a symbolic way.

A linear term over the set of variables X is a linear combination of the
variables in X with integer coefficients. A linear formula over X is a boolean
combination of inequalities between linear terms over X . Given a linear for-
mula Ψ , we write [[Ψ]] for the set of valuations v of the variables in X such that
v |= Ψ . If we allow quantifiers with linear formulas, we obtain the theory of

reals with addition, noted T(R, 0, 1, +,≤). Note that rectangular predicates,
rectangular flow predicates, and rectangular update predicates are linear for-
mulas over X , Ẋ, and X ∪ X ′ respectively.

Let H = 〈Loc, Edge, Σ, X, Init, Inv, Flow, Jump〉 be a rectangular automa-
ton. A symbolic region R of H is a finite set {(l, Ψl) | l ∈ Loc} of pairs, where
l ∈ Loc is a location of the automaton and Ψl is a linear formula such that
[[Ψl]]⊆[[Inv(l)]]. Let l ∈ Loc and let Flow(l) be the rectangular flow predicate
that labels l. We denote by [[Flow(l)]] (x) the set of values {v̇(x) | v̇ ∈[[Flow(l)]]},
that is the set of possible values of the first derivative of variable x when the
control is in location l. It is easy to show that this set is an interval of the
real numbers with rational lower and upper bounds.

Given a location l ∈ Loc and a set of valuations V ⊆ [X → R], such that

V ⊆[[Inv(l)]]: the forward time closure, noted 〈V 〉↗l of V at l is the set of
valuations of variables in X that are reachable from some valuation v ∈ V by
letting time pass:

〈V 〉↗l =

v′ | ∃v ∈ V, t ∈ R≥0 : ∀x ∈ X :

∧v(x) + t × glb([[Flow(l)]] (x)) ≺1
x v′(x)

∧v′(x) ≺2
x v(x) + t × lub([[Flow(l)]] (x))

∧v′ ∈[[Inv(l)]]

An introduction to hybrid automta 17

where

≺1
x=

{
≤ if glb([[Flow(l)]] (x)) ∈[[Flow(l)]] (x), i.e., the interval is left closed
< if glb([[Flow(l)]] (x)) 6∈[[Flow(l)]] (x), i.e., the interval is left open

where

≺2
x=

{
≤ if lub([[Flow(l)]] (x)) ∈[[Flow(l)]] (x), i.e., the interval is right closed
< if lub([[Flow(l)]] (x)) 6∈[[Flow(l)]] (x), i.e., the interval is right open

The set above can be defined inside T(R, 0, 1, +,≤). As T(R, 0, 1, +,≤) admits
quantifier elimination, it is clear that given any linear formula Ψ , we can
construct a linear formula Φ such that [[Φ]]= 〈[[Ψ]]〉↗l .

Given an edge e ∈ Edge and a set of valuations V ⊆ [X → R], the post-

condition poste(V) of V with respect to e is the set of valuations that are
reachable from some valuation v ∈ V by taking the discrete transition e:

poste(V) = {v′ | ∃v ∈ V : (v, v′) ∈[[Jump(e)]]}.

Again, as T(R, 0, 1, +,≤) admits quantifier elimination, and for any edge e,
Jump(e) is a rectangular update predicate over X , and so a linear formula
over X ∪ X ′, it is clear that if we are given a linear formula Ψ , then we can
construct a linear formula Φ such that [[Φ]]= poste([[Ψ]]).

We can now define the forward time closure and the edge postcondition
operators of H over symbolic regions. Let R = {(l, Ψl ∧ Inv(l)) | l ∈ Loc} be a
symbolic region of H :

• 〈R〉↗ =
⋃

l∈Loc{(l, 〈[[Ψl]]〉
↗
l)}

• post(R) =
⋃

e=(l,σ,l′)∈Edge{(l
′, poste(Ψl))}

From those two operators, we can define our symbolic post operator for rect-
angular automata as follows. Let R = {(l, Ψl) | l ∈ Loc} be a symbolic region
of H :

Post(R) = post(〈R〉↗).

Now, we can use the Tarsky fixpoint theorem to find the least solution of
equation (1) by successive approximations defined as follows:

• R0 = {(l, Init(l)) | l ∈ Loc}
• for any integer i > 0, Ri = Ri−1 ∪ Post(Ri−1)

This approximation schema defines naturally a semi-algorithm for reachabil-
ity. This algorithm is given in Fig. 8.

4.3 Rectangular hybrid automata as abstractions

Let us go back to our running example. Remember that the automata for the
burner, the thermometer, the controller, and the three monitors that we have
defined above are all in the class of rectangular hybrid automata. The only
automaton of our example which is outside the class of rectangular hybrid
automata is the automaton for the tank.

18 J.-F. Raskin

A symbolic algorithm for reachability
begin

R := {(l, Init(l) ∧ Inv(l)) | l ∈ Loc};
Prec := ∅;
while [[R]]6⊆[[Prec]] do

Prec := Prec ∪ R;
R := Post(R);

od

if Bad ∩ Prec = ∅ then return(OK) else return(KO); fi

where [[R]]6⊆[[Prec]] holds if there exist (l, Ψ) ∈ R and (l, Ψ ′) ∈ Prec such that

∀x1, . . . , xm : Ψ(x1, . . . , xn) → Ψ ′(x1, . . . , xn) is not a valid formula.

Fig. 8. Semi-algorithm for the reachability analysis of rectangular hybrid automata

In this subsection, we show how to approximate complex dynamics with
rectangular dynamics in a systematic way. Those systematic approximations
allow us to use automatic tools, like HyTech [HHWT97], to analyze approxi-
mated systems and, in a lot of practical cases, to infer the important properties
of the original (complex) systems. This methodology is closely related to the
theory of abstract interpretation studied by computer scientists [Cou96] and
the approximation techniques used in analysis of dynamical systems [HS74].

We introduced here an approximation schema known as the rectangular

phase-portrait approximation scheme; see [HHWT98] for more details. The
idea of this approximation scheme can be stated as follows. For each con-
trol mode of the hybrid automaton that we want to approximate, the state
space is partitioned into rectangular regions, and within each region, the flow
field is overapproximated using rectangular flows. Those approximations may
be obtained manually, using techniques from dynamical system theory, or in
some cases automatically, when lower and upper bounds on derivatives can
be obtained from bounds on the value of variables within rectangular regions.
The approximations can be arbitrarily precise by approximating over suitably
small regions of the state space.

Let us illustrate that approximation schema on our running example. Let
us consider the location t1 of the tank. In this location, we know that the
possible values for x, the temperature of the water within the tank, are such
that 20 ≤ x ≤ 100 (this is given by the invariant that labels the location)
and the flow of x is given by the flow predicate ẋ = K(h − x). As the second
derivative of x in the interval [20, 100] is never zero, we know that the minimal
value of the first derivative of x in this interval occurs when x = 100 and the
maximal derivative occurs when x = 20. Remember that we have fixed the
value of the constant K to 0.075 and h to 150. With those constants, we
know that the values of the first derivative of x within [20, 100] are bounded
from below by 3.75 and from above by 9.75. It means that if we replace
the flow predicate of location t2 by ẋ ∈ [375100 , 975

100], or by ẋ ∈ [3, 10] to keep
things simple, then we are sure that the resulting automaton will define at

An introduction to hybrid automta 19

least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [Mil71],
and we refer the interested reader to [HHWT98] for a correctness proof. The
automaton obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [HHWT97]. HyTech is a model-checking tool for the reachability
analysis of linear hybrid automata, a class of hybrid automata that subsumes
the class of rectangular hybrid automata. HyTech allows us to describe each
component of the system directly as a rectangular automaton in a textual syn-
tax and to formalize reachability questions using a simple (and yet powerful)
script language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner ⊗Thermo⊗Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.

20 J.-F. Raskin

When running the three verification tasks in HyTech, only the verifica-
tion task of property (R1) is positive in the approximated system; the two
other properties turn out to be false in this approximation. HyTech provides
witness trajectories that lead to bad states, that is, trajectories where the con-
trol of monitors Moni2 and Moni3 enter bad locations. If we look carefully at
those trajectories, we can see that they are not possible in the original system.
In particular, there are continuous transitions that cannot be mimicked by the
concrete system. Those paths are present because of the overapproximation.
To rule out those spurious paths, we have to refine our initial approximation
and get closer to the real dynamics of the temperature of the water in the
tank. For that purpose, we proceed as follows. As suggested above, we must
partition the state space in smaller rectangular regions to capture more pre-
cisely the first derivative of x. To do that, we need to split some control modes
of our original automaton. Consider the control mode modeled by location t1,
that is, when the burner is ON and the temperature is rising following the flow
predicate ẋ = K(h − x). Instead of considering only the rectangular region
20 ≤ x ≤ 100, we will consider the four regions 20 ≤ x ≤ 50, 50 ≤ x ≤ 91,
91 ≤ x ≤ 95, and finally 95 ≤ x ≤ 100. For those regions, we can approximate,
using the same reasoning as above, the first derivative of x by the following
rectangular flow predicates: ẋ ∈ [7, 10] for the first region, ẋ ∈ [4, 8] for the
second region, ẋ ∈ [4, 5] for the third region, and ẋ ∈ [3, 5] for the last region.
This splitting is depicted in Fig. 10. Internal actions are taken to move the
control from one region to the next when the boundaries of the region are
reached. We can also apply this process to location t3 and split this control
mode into 3 locations as follows. Instead of the region 20 ≤ x ≤ 100, we use
the regions 20 ≤ x ≤ 91, 91 ≤ x ≤ 97, and finally 97 ≤ x ≤ 100. The flow
predicates that we obtain are, respectively, ẋ ∈ [−7,−1], ẋ ∈ [−8,−6], and
ẋ ∈ [−8,−7]. Finally, we obtain a new overapproximating automaton that we
denote RectTank2. Fig. 11 shows how the dynamics of the temperature of the
water is approximated within the refined rectangular automaton for the tank
within location t1.

Now if we test the reachability of the Bad location of the monitors Monii,
1 ≤ i ≤ 3, in Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Monii, with HyTech,
we obtain that the “Bad” locations are not reachable in the three cases. This
allows us to conclude that our controller is correct for the original (complex)
system.

5 Beyond this Introduction

We close this chapter by referencing the literature. The interested reader will
find in this section references to articles that will allow her/him to go beyond
this introduction. We have organized the section into subsections devoted
to active areas of research in the field of hybrid automata. Some references
below have already been given above. Those references are not intended to be

An introduction to hybrid automta 21

Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions

22 J.-F. Raskin

exhaustive (some important works may have been forgotten), but they are,
from the point of view of the author, natural papers to look at in order to
delve deeper into notions only sketched in this introductory chapter.

5.1 Analysis: Subclasses, decidability and complexity results

In [AD90, AD94], Alur and Dill have introduced timed automata. This was
the first proposal to extend finite state automata with continuous variables.
Timed automata are a subclass of hybrid automata where continuous variables
are clocks, that is, continuous variables that have constant slopes equal to 1
(they count time), values of clocks are compared to constants, and the only
updates allowed are resets to 0. The reachability problem for timed automata
is decidable (it is PSpace-complete). Symbolic procedures to analyze timed
automata are given in [HNSY94]. The first proposition to extend timed models
to more general hybrid models can be found in [MMP92]. Rectangular hybrid
automata have been proposed in [PV94]. The reachability problem of rectan-
gular hybrid automata is undecidable in the general case, but it is decidable
for the subclass of initialized rectangular hybrid automata [HKPV98]. Other
interesting subclasses of hybrid automata that can be analyzed algorithmi-
cally are integration graphs [KPSY93] and dynamical systems with piecewise
constant derivatives [AMP95]. More details and pointers about analysis and
decidability results related to subclasses of hybrid automata can be found
in [ACH+95, Hen00].

5.2 Beyond monitors: Temporal logics and real-time logics

Temporal logics have proven useful for specification and verification of reactive
systems [Pnu77, CES86]. In this introduction, we have focused only on the
verification of the important class of safety properties: many more involved
properties reduce to safety properties if progress of time is ensured [Hen92].
Nevertheless, there has been a lot of research on suitable formalisms to ex-
press properties of hybrid systems. In particular, temporal logics have been
extended for real-time. The reader interested in real-time logics is refered
to [ACD93, AFH96, RS97, Hen98, HRS98, Ras99] for definitions and verifica-
tion methods related to those logics. As an illustration of the expressive power
of real-time logics, we give here the formalization of the three requirements of
our running example in the logic MITL [AFH96]. The following formulas are
requirements that any infinite trajectory of the tank system must verify. The
� operator is read as “Always” (in the future), �≥15 is read as “always after
15 time units”, ♦<2 is read as “there exists a state distant of less than 2 time
units”. The three requirements are then formalized as follows:

• �(x < 100), meaning that in any trajectory, in any state, the temperature
of the water is strictly less than 100 degrees;

• �≥15(91 ≤ x ≤ 97), meaning that in any trajectory, after 15 time units,
the temperature of the water is always between 91 and 97 degrees;

An introduction to hybrid automta 23

• �≥15(ON → ♦<2OFF), meaning that, in any trajectory, after 15 time units,
any state where the burner is ON is followed within 2 time units by a state
where the burner is OFF.

5.3 Equivalence relations and abstraction

Abstraction methods are used to simplify models and make their analysis
more tractable. Several equivalence relations have been studied for subclasses
of hybrid systems. For example, it can be shown that transition systems of
timed automata admit finite state abstractions, called region graphs, that
are time-abstract bisimilar, see [AD94] for details. Those equivalence re-
sults are used to prove decidability of verification problems on subclasses
of hybrid automata [Hen95, HK96] and allow the use of well-known model-
checking procedures that are guaranteed to terminate in the presence of fi-
nite quotients [HM00]. Other techniques that are not exact but use over-
approximations have been proposed and have proven useful in practice: the
approximation schema proposed in Section 4.3 is detailed and proven cor-
rect in [HHWT98]. Other interesting works about overapproximations can be
found, among others, in [HRP94, AIKY95, ADI03].

5.4 Control synthesis

In this introduction, we have shown how we can model and verify controllers
using hybrid automata. In our example, we have proposed a controller for the
system and proven that the controller was correct for a list of requirements.
A more ambitious goal than algorithmic (controller) verification is algorith-
mic (controller) synthesis. Here are some references about control synthe-
sis [Won97, AMPS98, CHR02, HK99, HHM99].

5.5 Semantics and robustness

The semantics of hybrid automata that we defined in this chapter can be
described as perfect. For example, it is possible to model, with this semantics,
a controller that takes a given transition when a variable of the environment
has exactly a given value. This can be considered as unrealistic because any
implementation of such a controller will measure its environment through
sensors that have finite precision. Alternative semantics that can be considered
as robust are proposed in [GHJ97, HR00, AB01, Frä99].

5.6 Tool support and case studies

Several tools for the automatic analysis of hybrid automata have been imple-
mented. The tools Kronos [DOTY96] and Uppaal [BLL+96] can be used to
analyze the subclass of timed automata. The tool HyTech [HHWT97] allows

24 J.-F. Raskin

the analysis of linear hybrid automata. The tool CHARON [AGH+00] and
the tool d/dt [ADM02] allow the analysis of a more general class of hybrid
automata.

Those tools have been applied successfully to a large set of case studies
in a variety of application domains. Interesting case studies can be found
in [HWT96, Tom98, SMF97, BGK+96, ABI+01].

Acknowledgements

I would like to thank Alessandro Cimatti for reading a first version of this
chapter and for giving invaluable advice to improve it. I would also like to
thank Bram De Wachter, Laurent Doyen, Pierre Ganty, and Gilles Geeraerts
for carefully reading a draft of this chapter and for helping me with several of
the figures.

References

[AB01] E. Asarin and A. Bouajjani. Perturbed turing machines and hybrid
systems. In Proc. of the IEEE Symposium on Logic in Computer Science,
pages 269–278, 2001.

[ABI+01] R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G. J. Pappas, H. Ru-
bin, and J. Schug. Hybrid modeling and simulation of biomolecular net-
works. Lecture Notes in Computer Science, 2034:19–31, 2001.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real
time. Information and Computation, 104(1):2–34, 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[AD90] R. Alur and D.L. Dill. Automata for modeling real-time systems. In M.S.
Paterson, editor, ICALP 90: Automata, Languages, and Programming,
Lecture Notes in Computer Science 443, pages 322–335. Springer-Verlag,
Berlin, 1990.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Com-

puter Science, 126:183–235, 1994.
[ADI03] R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate

abstraction of hybrid systems. In TACAS: International Workshop on

Tools and Algorithms for the Construction and Analysis of Systems,

LNCS, 2003.
[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of

hybrid systems. Lecture Notes in Computer Science, 2404:365–377, 2002.
[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punc-

tuality. Journal of the ACM, 43:116–146, 1996.
[AGH+00] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee.

Modular specification of hybrid systems in CHARON. In HSCC, pages
6–19, 2000.

[AIKY95] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing verification
by successive approximation. Information and Computation, 118(1):142–
157, 1995.

An introduction to hybrid automta 25

[AMP95] E. Asarin, O. Maler, and A. Pnueli. On the analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science,
238:35–65, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and

Control, pages 469–474. Elsevier, Amsterdam, 1998.
[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing

Letters, 21:181–185, 1985.
[BGK+96] J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Lars-

son, P. Pettersson, and W. Yi. Verification of an audio protocol with bus
collision using uppaal. In R. Alur and T.A. Henzinger, editors, CAV 96:

Computer-aided Verification, Lecture Notes in Computer Science 1102,
pages 244–256. Springer-Verlag, Berlin, 1996.

[BLL+96] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Up-

paal: a tool-suite for automatic verification of real-time systems. In
R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems

III, Lecture Notes in Computer Science 1066, pages 232–243. Springer-
Verlag, Berlin, 1996.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal-logic specifications. ACM

Transactions on Programming Languages and Systems, 8(2):244–263,
1986.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control
problems for timed and hybrid systems. In HSCC 02: Hybrid Systems—

Computation and Control, Lecture Notes in Computer Science 2289,
pages 134–148. Springer-Verlag, Berlin, 2002.

[Cou96] P. Cousot. Abstract interpretation. ACM Computing Surveys,
28(2):324–328, June 1996.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos.
In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems

III, Lecture Notes in Computer Science 1066, pages 208–219. Springer-
Verlag, Berlin, 1996.

[Frä99] M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an
infinity of states. In Proc. of CSL’99: Computer Science Logic, LNCS

1683, pages 126–140. Springer-Verlag, Berlin, 1999.
[GHJ97] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata.

In HART 97: Hybrid and Real-Time Systems, Lecture Notes in Computer
Science 1201, pages 331–345. Springer-Verlag, Berlin, 1997.

[Hen92] T.A. Henzinger. Sooner is safer than later. Information Processing

Letters, 43:135–141, 1992.
[Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP

95: Automata, Languages, and Programming, Lecture Notes in Com-
puter Science 944, pages 324–335. Springer-Verlag, Berlin, 1995.

[Hen98] T.A. Henzinger. It’s about time: Real-time logics reviewed. In CONCUR

98: Concurrency Theory, Lecture Notes in Computer Science 1466, pages
439–454. Springer-Verlag, Berlin, 1998.

[Hen00] T.A. Henzinger. The theory of hybrid automata. In M.K. Inan and R.P.
Kurshan, editors, Verification of Digital and Hybrid Systems, NATO ASI

26 J.-F. Raskin

Series F: Computer and Systems Sciences 170, pages 265–292. Springer-
Verlag, Berlin, 2000.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid
games. In CONCUR 99: Concurrency Theory, Lecture Notes in Com-
puter Science 1664, pages 320–335. Springer-Verlag, Berlin, 1999.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker
for hybrid systems. Software Tools for Technology Transfer, pages 110–
122, 1997.

[HHWT98] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of
nonlinear hybrid systems. IEEE Transactions on Automatic Control,
43:540–554, 1998.

[HK96] T.A. Henzinger and P.W. Kopke. State equivalences for rectangular
hybrid automata. In CONCUR 96: Concurrency Theory, Lecture Notes
in Computer Science 1119, pages 530–545. Springer-Verlag, Berlin, 1996.

[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular
hybrid automata. Theoretical Computer Science, 221:369–392, 1999.

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences,
57:94–124, 1998.

[HM00] T.A. Henzinger and R. Majumdar. A classification of symbolic transition
systems. In STACS 00: Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science 1770, pages 13–34. Springer-Verlag, Berlin,
2000.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111:193–
244, 1994.

[HR00] T.A. Henzinger and J.-F. Raskin. Robust undecidability of timed and
hybrid systems. In HSCC 00: Hybrid Systems—Computation and Con-

trol, Lecture Notes in Computer Science 1790, pages 145–159. Springer-
Verlag, Berlin, 2000.

[HRP94] N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid
systems by means of convex approximation. In B. LeCharlier, editor,
SAS 94: Static Analysis Symposium, Lecture Notes in Computer Science
864, pages 223–237. Springer-Verlag, Berlin, 1994.

[HRS98] T.A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-
time languages. In ICALP 98: Automata, Languages, and Program-

ming, Lecture Notes in Computer Science 1443, pages 580–591. Springer-
Verlag, Berlin, 1998.

[HS74] M.W. Hirsh and S. Smale. Differential Equations, Dynamical Systems

and Linear Algebra. Academic Press, 1974.
[HWT96] T.A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control

parameters for a steam boiler. In Formal Methods for Industrial Appli-

cations: Specifying and Programming the Steam Boiler Control, Lecture
Notes in Computer Science 1165, pages 265–282. Springer-Verlag, Berlin,
1996.

[KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class
of decidable hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn,
and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer
Science 736, pages 179–208. Springer-Verlag, Berlin, 1993.

An introduction to hybrid automta 27

[Mil71] R. Milner. An algebraic definition of simulation between programs. In
Second International Joint Conference on Artificial Intelligence, pages
481–489. The British Computer Society, 1971.

[MMP92] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors,
Real Time: Theory in Practice, Lecture Notes in Computer Science 600,
pages 447–484. Springer-Verlag, Berlin, 1992.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, pages 46–57.
IEEE Computer Society Press, Washington D.C., 1977.

[PV94] A. Puri and P. Varaiya. Decidability of hybrid systems with rectan-
gular differential inclusions. In D.L. Dill, editor, CAV 94: Computer-

aided Verification, Lecture Notes in Computer Science 818, pages 95–
104. Springer-Verlag, Berlin, 1994.

[Ras99] J.-F. Raskin. Logics, Automata, and Classical Theories for Deciding

Real Time. PhD thesis, Facultés Universitaires Notre-Dame de la Paix,
Namur, Belgium, 1999.

[RS97] J.-F. Raskin and P.-Y. Schobbens. State-clock logic: a decidable real-
time logic. In O. Maler, editor, HART 97: Hybrid and Real-time Systems,
Lecture Notes in Computer Science 1201, pages 33–47. Springer-Verlag,
Berlin, 1997.

[SMF97] T. Stauner, O. Mueller, and M. Fuchs. Using HYTECH to verify an
automotive control system. In O. Maler, editor, Hybrid and Real-Time

Systems, LNCS 1201, pages 139–153, Grenoble, France, 1997. Springer
Verlag, Berlin.

[Tom98] C. Tomlin. Hybrid Control of Air Traffic Management Systems. PhD
thesis, University of California at Berkeley, 1998.

[Won97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In
Proc. 36th Conference on Decision and Control, pages 4607–4612. IEEE
Press, New-York, 1997.

