
Lecture 17, 14 October 2025

String formatting -- positional arguments

x = 7

y = 22

message = "First one is {1}, second one is {0}"

message.format(x,y)

'First one is 22, second one is 7'

x = 7

y = 22

message1 = "First one is {1}, second one is {0}. To repeat, first one is

message1.format(x,y)

'First one is 22, second one is 7. To repeat, first one is 22.'

Raising an exception in List()

Inserting a negative value raises ValueError

Use string formatting to add negative value to error message

class List:

 def __init__(self,initlist = []):

 self.value = None

 self.next = None

 for x in initlist:

 self.append(x)

 return

 def isempty(self):

 return(self.value == None)

 def appendi(self,v): # append, iterative

 if v < 0:

 raise ValueError("Negative input:{0}".format(v))

 if self.isempty():

 self.value = v

 return

 temp = self

 while temp.next != None:

 temp = temp.next

 temp.next = List()

 temp.next.value = v

 return

 def appendr(self,v): # append, recursive

 if v < 0:

 raise ValueError("Negative input:{0}".format(v))

 if self.isempty():

In [1]:

Out[1]:

In [2]:

Out[2]:

In [3]:

 self.value = v

 elif self.next == None:

 self.next = List([v])

 else:

 self.next.appendr(v)

 return

 def append(self,v):

 self.appendr(v)

 return

 def insert(self,v):

 if v < 0:

 raise ValueError("Negative input:{0}".format(v))

 if self.isempty():

 self.value = v

 return

 newnode = List()

 newnode.value = v

 # Exchange values in self and newnode

 (self.value, newnode.value) = (newnode.value, self.value)

 # Switch links

 (self.next, newnode.next) = (newnode, self.next)

 return

 def delete(self,v): # delete, recursive

 if self.isempty():

 return

 if self.value == v:

 self.value = None

 if self.next != None:

 self.value = self.next.value

 self.next = self.next.next

 return

 else:

 if self.next != None:

 self.next.delete(v)

 if self.next.value == None:

 self.next = None

 return

 def __str__(self):

 # Iteratively create a Python list from linked list

 # and convert that to a string

 selflist = []

 if self.isempty():

 return(str(selflist))

 temp = self

 selflist.append(temp.value)

 while temp.next != None:

 temp = temp.next

 selflist.append(temp.value)

 return(str(selflist))

l = List([1,-2,3])

print(l)

--

-

ValueError Traceback (most recent call las

t)

Cell In[4], line 1

----> 1 l = List([1,-2,3])

 2 print(l)

Cell In[3], line 6, in List.__init__(self, initlist)

 4 self.next = None

 5 for x in initlist:

----> 6 self.append(x)

 7 return

Cell In[3], line 39, in List.append(self, v)

 38 def append(self,v):

---> 39 self.appendr(v)

 40 return

Cell In[3], line 29, in List.appendr(self, v)

 27 def appendr(self,v): # append, recursive

 28 if v < 0:

---> 29 raise ValueError("Negative input:{0}".format(v))

 30 if self.isempty():

 31 self.value = v

ValueError: Negative input:-2

String formatting with output specification

"Value {0:8.2f}".format(747.3)

'Value 747.30'

"Value {0:6.2f} {0:27.7f}".format(99999999947.3444,22)

'Value 99999999947.34 99999999947.3444061'

Modifying behaviour of print()

x = 5

y = 7

print(x,y)

print(y)

5 7

7

x = 5

y = 7

print(x,y,sep=":")

In [4]:

In [5]:

Out[5]:

In [6]:

Out[6]:

In [7]:

In [8]:

5:7

l = list(range(20))

for x in l:

 print(x,end=", ")

print("Where are we?")

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, Wher

e are we?

for x in l:

 print(x,end=", ")

print()

print("Where are we?")

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

Where are we?

Working with files

Reading files

Open a file in mode "r"

fh = open("oz.txt","r")

read() returns a string with the entire file

Note the \n characters indicating end of line ("new line")

contents = fh.read()

contents

'I met a traveller from an antique land\nWho said: Two vast and trunkles

s legs of stone\nStand in the desaet. Near them, on the sand,\nHalf sun

k, a shattered visage lies, whose frown,\nAnd wrinkled lip, and sneer of

cold command,\nTell that its sculptor well those passions read\nWhich ye

t survive, stamped on these lifeless things,\nThe hand that mocked them

and the heart that fed:\nAnd on the pedestal these words appear:\n"My na

me is Ozymandias, King of Kings:\nLook on my works, ye Mighty, and despa

ir!"\nNo thing beside remains. Round the decay\nOf that colossal wreck,

boundless and bare\nThe lone and level sands stretch far away. \n'

After reading the file, we are at the end

End of file is indicated by read() returning the empty string

fh.read()

''

fh.read()

''

In [9]:

In [10]:

In [11]:

In [12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

In [15]:

Out[15]:

To re-read the file, we have to close it and open it again

fh.close()

readline() reads one line

Unlike input() , the line that is read includes the terminating `\n'

fh = open("oz.txt","r")

line1 = fh.readline()

line1

'I met a traveller from an antique land\n'

readlines() returns the entire file as a list of lines

Each line is terminated by \n

fh.close()

fh = open("oz.txt","r")

alllines = fh.readlines()

alllines

['I met a traveller from an antique land\n',

'Who said: Two vast and trunkless legs of stone\n',

'Stand in the desaet. Near them, on the sand,\n',

'Half sunk, a shattered visage lies, whose frown,\n',

'And wrinkled lip, and sneer of cold command,\n',

'Tell that its sculptor well those passions read\n',

'Which yet survive, stamped on these lifeless things,\n',

'The hand that mocked them and the heart that fed:\n',

'And on the pedestal these words appear:\n',

'"My name is Ozymandias, King of Kings:\n',

'Look on my works, ye Mighty, and despair!"\n',

'No thing beside remains. Round the decay\n',

'Of that colossal wreck, boundless and bare\n',

'The lone and level sands stretch far away. \n']

readlines() returns the lines from the current position

In the following example, the list returned is from the second line onwards

fh.close()

fh = open("oz.txt","r")

line1 = fh.readline() # Read first line

alllines = fh.readlines() # From second line onwards

alllines

In [16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

['Who said: Two vast and trunkless legs of stone\n',

'Stand in the desaet. Near them, on the sand,\n',

'Half sunk, a shattered visage lies, whose frown,\n',

'And wrinkled lip, and sneer of cold command,\n',

'Tell that its sculptor well those passions read\n',

'Which yet survive, stamped on these lifeless things,\n',

'The hand that mocked them and the heart that fed:\n',

'And on the pedestal these words appear:\n',

'"My name is Ozymandias, King of Kings:\n',

'Look on my works, ye Mighty, and despair!"\n',

'No thing beside remains. Round the decay\n',

'Of that colossal wreck, boundless and bare\n',

'The lone and level sands stretch far away. \n']

Stripping white space

We can strip off leading and trailing "white space" (blank, tab, newline) from a string

rstrip() removes trailing whitespace

Note that strings are immutable, so the function returns a new string, leaving the

original untouched

teststr = " abc \n"

teststr

' abc \n'

teststr.rstrip()

' abc'

teststr

' abc \n'

lstrip() removes leading whitespace

teststr.lstrip()

'abc \n'

strip() removes whitespace at both ends

teststr.strip()

'abc'

Can use these to quickly remove \n from lines that we read from a file

In the first loop below, there is a blank line between actual lines because of the \n

in the input line followed by the newline inserted by print()

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

Out[23]:

In [24]:

Out[24]:

fh.close()

fh = open("oz.txt","r")

for l in fh.readlines():

 print(l)

I met a traveller from an antique land

Who said: Two vast and trunkless legs of stone

Stand in the desaet. Near them, on the sand,

Half sunk, a shattered visage lies, whose frown,

And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them and the heart that fed:

And on the pedestal these words appear:

"My name is Ozymandias, King of Kings:

Look on my works, ye Mighty, and despair!"

No thing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away.

If we strip each line before printing, the blank lines are eliminated

fh.close()

fh = open("oz.txt","r")

for l in fh.readlines():

 print(l.rstrip())

I met a traveller from an antique land

Who said: Two vast and trunkless legs of stone

Stand in the desaet. Near them, on the sand,

Half sunk, a shattered visage lies, whose frown,

And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them and the heart that fed:

And on the pedestal these words appear:

"My name is Ozymandias, King of Kings:

Look on my works, ye Mighty, and despair!"

No thing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away.

Writing files

In [25]:

In [26]:

Open a file in mode "w"

Opening a non-existent file for reading generates an error

Opening a non-existent file for writing creates a new file

If the file already exists, write will overwrite the contents

infile = open("newfile.txt","r")

--

-

FileNotFoundError Traceback (most recent call las

t)

Cell In[27], line 1

----> 1 infile = open("newfile.txt","r")

File ~/python-venv/lib/python3.13/site-packages/IPython/core/interactivesh

ell.py:343, in _modified_open(file, *args, **kwargs)

 336 if file in {0, 1, 2}:

 337 raise ValueError(

 338 f"IPython won't let you open fd={file} by default "

 339 "as it is likely to crash IPython. If you know what you ar

e doing, "

 340 "you can use builtins' open."

 341)

--> 343 return io_open(file, *args, **kwargs)

FileNotFoundError: [Errno 2] No such file or directory: 'newfile.txt'

outfile = open("newfile.txt","w")

outfile.close()

fh.write(s) writes the string s to the file associated with file handle fh

Need to add \n ourselves to ensure the end of line

fh.writelines(sl) writes a list of strings ls

Again, we need to ensure \n is present at the end of each string in the list

The name of the function is misleading

It is more accurate to call it writestrings() since we have to insert \n

manually

The following loop copies the input to the output

Each line that is read includes the \n

Hence each line that is written also has the corresponding \n

However, after this loop, typically the output file will be empty

Need to close the file handle for the buffer to be "flushed" to the disk

infile = open("oz.txt","r")

outfile = open("newfile.txt","w")

for l in infile.readlines():

 outfile.write(l)

In [27]:

In [28]:

In [29]:

In [30]:

outfile.close()

Close all file handles when you are done with them

infile = open("oz.txt","r")

outfile = open("newfile.txt","w")

for l in infile.readlines():

 outfile.write(l)

infile.close()

outfile.close()

We can also read all the lines into a list using readlines() and write them out

using writelines()

infile = open("oz.txt","r")

outfile = open("newfile.txt","w")

contents = infile.readlines()

outfile.writelines(contents)

infile.close()

outfile.close()

Appending output

We can append our writes at the end of a file

Open the file with mode "a" instead of "w"

After the following, newfile.txt should have two copies of oz.txt

infile = open("oz.txt","r")

outfile = open("newfile.txt","a")

contents = infile.readlines()

outfile.writelines(contents)

infile.close()

outfile.close()

There are other functions we have not discussed

fh.seek(n) moves to position n in the file

After reading a file, use fh.seek(0) to return to the start

fh.read(n) reads n characters from the current position

infile = open("oz.txt","r")

c1 = infile.read()

infile.seek(0)

c2 = infile.read(20)

c1

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

'I met a traveller from an antique land\nWho said: Two vast and trunkles

s legs of stone\nStand in the desaet. Near them, on the sand,\nHalf sun

k, a shattered visage lies, whose frown,\nAnd wrinkled lip, and sneer of

cold command,\nTell that its sculptor well those passions read\nWhich ye

t survive, stamped on these lifeless things,\nThe hand that mocked them

and the heart that fed:\nAnd on the pedestal these words appear:\n"My na

me is Ozymandias, King of Kings:\nLook on my works, ye Mighty, and despa

ir!"\nNo thing beside remains. Round the decay\nOf that colossal wreck,

boundless and bare\nThe lone and level sands stretch far away. \n'

c2

'I met a traveller fr'

Out[36]:

In [37]:

Out[37]:

