PDSP 2025, Lecture 12, 16 September 2025

Scope and global variables

The scope of a variable refers to the portion of the program where its value is
available

If we refer to a value that is not defined in a function, it is looked up in the global
context

Arrays

Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[0] points to first memory location in the allocated block
Locate a[i] in memory using index arithmetic
= Skip 1 blocks of memory, each block's size determined by value stored in array
Random access -- accessing the valueat a[i] doesnotdependon i
Useful for procedures like sorting, where we need to swap out of order values
al[i] and aljl
= ali], aljl = aljl, alil
= Cost of such a swap is constant, independent of where the elements to be
swapped are in the array
Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the

modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell
= Think of a list as a train, made up of a linked sequence of cells
The name of the list 1 givesusaccessto L[0] , the first cell
Toreachcell 1[i] , we musttraverse the links from 1[0] to 1[1] to 1[2] ...
to 1[1i-1] Jto 1[i]
= Takes time proportionalto 1
Cost of swapping L[i] and l[j] varies, dependingonvalues i and j
On the other hand, if we are already at 1[1i] modifying the listis easy
» Insert - create a new cell and reroute the links
s Delete - bypass the deleted cell by rerouting the links
Each insert/delete requires a fixed amount of local "plumbing", independent of

where in the list it is performed

Dictionaries

Values are stored in a fixed block of size m

+ Keysare mappedto {0,1,...,m — 1}
« Hash function h : K — S maps a large set of keys K to a smallrange S
« Simple hash function: interpret k£ € K as a bit sequence representing a number ny in
binary, and compute n;, mod m, where |S| = m
« Mismatch in sizes means that there will be collisions -- k1 # ks, but h(k1) = h(ks)
» A good hash function maps keys "randomly" to minimize collisions
e Hash can be used as a signature of authenticity
= Modifying k slightly will drastically alter h(k)
= No easy way to reverse engineer a k' to map to a given h(k)
» Use to check that large files have not been tampered with in transit, either due
to network errors or malicious intervention
 Dictionary uses a hash function to map key values to storage locations
« Lookup requires computing h(k) which takes roughly the same time for any k
» Compare with computing the offset a[i] foranyindex i inanarray
» Collisions are inevitable, different mechanisms to manage this, which we will not
discuss now

o Effectively, a dictionary combines flexibility with random access

Lists in Python

» Flexible size, allow inserting/deleting elements in between

e However, implementation is an array, rather than a list

« Initially allocate a block of storage to the list

» When storage runs out, double the allocation

« Ll.append(x) is efficient, moves the right end of the list one position forward
within the array

e Ll.insert(0,X) insertsavalue at the start, expensive because it requires shifting
all the elements by 1

» We will run experiments to validate these claims

Measuring execution time

e Call time.perf counter()
o Actual return value is meaningless, but difference between two calls measures time

in seconds
import time

time.perf counter()

174232.591312591

« 107 appends to an empty Python list

start = time.perf counter()
L =]
for i in range(10000000):

1.append (i)
elapsed = time.perf counter() - start
print(elapsed)

0.45830543397460133
» Doubling the work approximately doubles the time, linear

start = time.perf counter()
L =1]
for i in range(20000000):
1.append (i)
elapsed = time.perf counter() - start
print(elapsed)

0.9973017750016879

start = time.perf counter()
L =11
for i in range(40000000):
1.append(i)
elapsed = time.perf counter() - start
print(elapsed)

2.0422130890074186
« 10° inserts at the beginning of a Python list

start = time.perf counter()
L =11
for i in range(100000):
l.insert(0,1)
elapsed = time.perf counter() - start
print(elapsed)

1.0743082059780136

e Doubling and tripling the work multiplies the time by 4 and 9, respectively, so

quadratic

start = time.perf counter()
L =1]
for i in range(200000):
l.insert(0,1i)
elapsed = time.perf counter() - start
print(elapsed)

3.0179102800029796

start = time.perf counter()
L =11
for i in range(300000):
l.insert(0,1)
elapsed = time.perf counter() - start
print(elapsed)

8.792953492986271

start = time.perf counter()
L =1]
for i in range(400000):
l.insert(0,1i)
elapsed = time.perf counter() - start
print(elapsed)

19.935622199001955

e Another experiment
o First create a list with 5000, 10000, ... items
e Then do 10000, 20000, ... repetitions of del(l[0]) and Linsert(0,v)

for j in range(1,11):
L =]
for i in range(j*5000):
1.append (i)

start = time.perf counter()
for i in range(j*10000):
del(1[0])
l.insert(0,1)
elapsed = time.perf counter() - start
print(j*10000,elapsed)

10000 0.008301274996483698
20000 0.03995348702301271
30000 0.09486832498805597
40000 0.17343379600788467
50000 0.2747334270097781
60000 0.3940669430012349
70000 0.5423859239963349
80000 0.7112683840095997
90000 0.9038651129812934

100000 1.124114845006261
« Creating 107 entries in an empty dictionary

start = time.perf counter()

d = {}
for i in range(10000000,0,-1):
d[i] = i
elapsed = time.perf counter() - start
print(elapsed)

0.8891144850058481

» Doubling the operations, doubles the time, so linear

 Dictionaries are effectively random access

start = time.perf counter()

d={}

for i in range(20000000,0 ,-1):
d[i] = 1

elapsed = time.perf counter() - start
print(elapsed)

1.7162719670159277

* Insert keys in random order
o Use the library function random.shuffle(1l) to permute the elementsof 1

import random

lhundred = list(range(100))
random. shuffle(lhundred)
print(lhundred)

[6, 5, 37, 16, 9, 3, 99, 66, 13, 49, 60, 22, 36, 95, 2, 89, 53, 70, 26, 2
8, 74, 41, 44, 80, 79, 35, 78, 10, 29, 42, 59, 83, 64, 67, 30, 32, 96, 94,
27, 4, 71, 21, 62, o, 7, 45, 39, 97, 12, 69, 40, 68, 91, 61, 17, 58, 76,
1, 88, 72, 50, 33, 19, 93, 14, 18, 11, 54, 63, 47, 85, 73, 8, 92, 56, 34,
43, 48, 55, 20, 75, 51, 23, 38, 65, 84, 31, 24, 46, 86, 57, 90, 81, 25, 5
2, 82, 15, 98, 87, 77]

. Insert106keysinrandonworder
» Note that we start the counter after we shuffle the list of keys, so we count only the

time required to populate the dictionary

import random

keylist = list(range(1000000,0,-1))

rndkeylist = keylist[:] # Copy keylist into rndkeylis
random.shuffle(rndkeylist)

d = {}
start = time.perf counter()
for i in keylist:
dii] = 1
elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d = {}
start = time.perf counter()
for i in rndkeylist:
dii] = 1
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.06454657801077701
Shuffled keys: 0.08987153199268505

« Double the number of keys to 2 x 10°

import random

keylist = list(range(2000000,0,-1))
rndkeylist = keylist[:]
random.shuffle(rndkeylist)

d = {}
start = time.perf counter()
for i in keylist:

d[i] =1

elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d = {}
start = time.perf counter()
for i in rndkeylist:
d[i] = 1
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.1401691969949752
Shuffled keys: 0.26284310102346353

« Triple the number of keys to 3 x 10°

import random

keylist = list(range(3000000,0,-1))
rndkeylist = keylist[:]
random.shuffle(rndkeylist)

d = {}
start = time.perf counter()
for i in keylist:
d[i] = 1
elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d = {}
start = time.perf counter()
for i in rndkeylist:
dii] = 1
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.25086971500422806
Shuffled keys: 0.5316497589810751

» Using shuffled keys is slower than inserting keys in sequence

» However, even after shuffling, the time taken grows approximately linearly

Implementing a "real" list using dictionaries

def createlist(): # Equivalent of | = [] is | = createlist()
return({})

def listappend(l,x):
if 1 == {}:
1["value"] = x
1["next"] = {}
return

node = 1
while node["next"] !'= {}:
node = node["next"]

node["next"]["value"] = x
node["next"]["next"] = {}

return

def listinsert(l,x):
if 1 == {}:
1["value"] = x
1["next"] = {}
return

newnode = {}

newnode["value"] = 1["value"]
newnode["next"] = 1["next"]
1["value"] = x

1["next"] = newnode

return

def printlist(l):
print (II{II 'end=ll II)

if 1 == {}:
print("}")
return

node = 1

print(node["value"],end="")
while node["next"] !'= {}:
node = node["next"]
print(",",node["value"],end="")
print("}")
return

» Display a small list as nested dictionaries

start = time.perf counter()
1 = createlist()
for i in range(10):
listappend(l,1)
elapsed = time.perf counter() - start
print(elapsed)
print(1l)

0.00026201800210401416

{'value': 0, 'next': {'value': 1, 'next':
3, 'next': {'value': 4, 'next': {'value':
{'value': 7, 'next': {'value': 8, 'next':

{33333}

{'value': 2, 'next': {'value':

5, 'next': {'value':
{'value': 9, 'next':

« Insert 107 elements at the beginning in this implementation of a list

start = time.perf counter()

1 = createlist()

for i in range(1000000):
listinsert(l,1i)

elapsed = time.perf counter() - start

print(elapsed)

0.8786353190080263

6,

"'next':

e Doubling the work doubles the time, so linear

start = time.perf counter()

1l = createlist()

for i in range(2000000):
listinsert(l,1)

elapsed = time.perf counter() - start

print(elapsed)

1.4174943980178796
« Append 10* elements in this implementation of a list

start = time.perf counter()

1 = createlist()

for i in range(10000):
listappend(l,1i)

elapsed = time.perf counter() - start

print(elapsed)

1.7873705030069686
» Halving the work takes 1/4 of the time, so quadratic

start = time.perf counter()
1 = createlist()
for i in range(5000):
listappend(l,1i)
elapsed = time.perf counter() - start
print(elapsed)

0.4203911299991887

Defining our own data structures

e We have implemented a "linked" list using dictionaries

e The fundamental functions like listappend, listinsert, listdelete
modify the underlying list

e Instead of mylist = {} ,wewrote mylist = createlist()

o To check empty list, use a function isempty() ratherthan mylist == {}

o Can we clearly separate the interface from the implementation

o Define the data structure in a more "modular" way

