
PDSP 2025, Lecture 12, 16 September 2025

Scope and global variables

The scope of a variable refers to the portion of the program where its value is

available

If we refer to a value that is not defined in a function, it is looked up in the global

context

Arrays

Contiguous block of memory

Typically size is declared in advance, all values are uniform

a[0] points to first memory location in the allocated block

Locate a[i] in memory using index arithmetic

Skip i blocks of memory, each block's size determined by value stored in array

Random access -- accessing the value at a[i] does not depend on i

Useful for procedures like sorting, where we need to swap out of order values

a[i] and a[j]

a[i], a[j] = a[j], a[i]

Cost of such a swap is constant, independent of where the elements to be

swapped are in the array

Inserting or deleting a value is expensive

Need to shift elements right or left, respectively, depending on the location of the

modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell

Think of a list as a train, made up of a linked sequence of cells

The name of the list l gives us access to l[0] , the first cell

To reach cell l[i] , we must traverse the links from l[0] to l[1] to l[2]

to l[i-1]] to l[i]

Takes time proportional to i

Cost of swapping l[i] and l[j] varies, depending on values i and j

On the other hand, if we are already at l[i] modifying the list is easy

Insert - create a new cell and reroute the links

Delete - bypass the deleted cell by rerouting the links

Each insert/delete requires a fixed amount of local "plumbing", independent of

where in the list it is performed

Dictionaries

Values are stored in a fixed block of size

…

m

Keys are mapped to

Hash function maps a large set of keys to a small range

Simple hash function: interpret as a bit sequence representing a number in

binary, and compute , where

Mismatch in sizes means that there will be collisions -- , but

A good hash function maps keys "randomly" to minimize collisions

Hash can be used as a signature of authenticity

Modifying slightly will drastically alter

No easy way to reverse engineer a to map to a given

Use to check that large files have not been tampered with in transit, either due

to network errors or malicious intervention

Dictionary uses a hash function to map key values to storage locations

Lookup requires computing which takes roughly the same time for any

Compare with computing the offset a[i] for any index i in an array

Collisions are inevitable, different mechanisms to manage this, which we will not

discuss now

Effectively, a dictionary combines flexibility with random access

Lists in Python

Flexible size, allow inserting/deleting elements in between

However, implementation is an array, rather than a list

Initially allocate a block of storage to the list

When storage runs out, double the allocation

l.append(x) is efficient, moves the right end of the list one position forward

within the array

l.insert(0,x) inserts a value at the start, expensive because it requires shifting

all the elements by 1

We will run experiments to validate these claims

Measuring execution time

Call time.perf_counter()

Actual return value is meaningless, but difference between two calls measures time

in seconds

import time

time.perf_counter()

174232.591312591

 appends to an empty Python list

start = time.perf_counter()

l = []

for i in range(10000000):

{0, 1, … , m − 1}

h : K → S K S

k ∈ K nk

nk mod m |S| = m

k1 ≠ k2 h(k1) = h(k2)

k h(k)

k′ h(k)

h(k) k

In [1]:

In [2]:

Out[2]:

107

In [3]:

 l.append(i)

elapsed = time.perf_counter() - start

print(elapsed)

0.45830543397460133

Doubling the work approximately doubles the time, linear

start = time.perf_counter()

l = []

for i in range(20000000):

 l.append(i)

elapsed = time.perf_counter() - start

print(elapsed)

0.9973017750016879

start = time.perf_counter()

l = []

for i in range(40000000):

 l.append(i)

elapsed = time.perf_counter() - start

print(elapsed)

2.0422130890074186

 inserts at the beginning of a Python list

start = time.perf_counter()

l = []

for i in range(100000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

1.0743082059780136

Doubling and tripling the work multiplies the time by and , respectively, so

quadratic

start = time.perf_counter()

l = []

for i in range(200000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

3.0179102800029796

start = time.perf_counter()

l = []

for i in range(300000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

8.792953492986271

In [4]:

In [5]:

105

In [6]:

4 9

In [7]:

In [8]:

start = time.perf_counter()

l = []

for i in range(400000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

19.935622199001955

Another experiment

First create a list with 5000, 10000, ... items

Then do 10000, 20000, ... repetitions of del(l[0]) and l.insert(0,v)

for j in range(1,11):

 l = []

 for i in range(j*5000):

 l.append(i)

 start = time.perf_counter()

 for i in range(j*10000):

 del(l[0])

 l.insert(0,i)

 elapsed = time.perf_counter() - start

 print(j*10000,elapsed)

10000 0.008301274996483698

20000 0.03995348702301271

30000 0.09486832498805597

40000 0.17343379600788467

50000 0.2747334270097781

60000 0.3940669430012349

70000 0.5423859239963349

80000 0.7112683840095997

90000 0.9038651129812934

100000 1.124114845006261

Creating entries in an empty dictionary

start = time.perf_counter()

d = {}

for i in range(10000000,0,-1):

 d[i] = i

elapsed = time.perf_counter() - start

print(elapsed)

0.8891144850058481

Doubling the operations, doubles the time, so linear

Dictionaries are effectively random access

start = time.perf_counter()

d = {}

for i in range(20000000,0 ,-1):

 d[i] = i

In [9]:

In [10]:

107

In [11]:

In [12]:

elapsed = time.perf_counter() - start

print(elapsed)

1.7162719670159277

Insert keys in random order

Use the library function random.shuffle(l) to permute the elements of l

import random

lhundred = list(range(100))

random.shuffle(lhundred)

print(lhundred)

[6, 5, 37, 16, 9, 3, 99, 66, 13, 49, 60, 22, 36, 95, 2, 89, 53, 70, 26, 2

8, 74, 41, 44, 80, 79, 35, 78, 10, 29, 42, 59, 83, 64, 67, 30, 32, 96, 94,

27, 4, 71, 21, 62, 0, 7, 45, 39, 97, 12, 69, 40, 68, 91, 61, 17, 58, 76,

1, 88, 72, 50, 33, 19, 93, 14, 18, 11, 54, 63, 47, 85, 73, 8, 92, 56, 34,

43, 48, 55, 20, 75, 51, 23, 38, 65, 84, 31, 24, 46, 86, 57, 90, 81, 25, 5

2, 82, 15, 98, 87, 77]

Insert keys in random order

Note that we start the counter after we shuffle the list of keys, so we count only the

time required to populate the dictionary

import random

keylist = list(range(1000000,0,-1))

rndkeylist = keylist[:] # Copy keylist into rndkeylis

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.06454657801077701

Shuffled keys: 0.08987153199268505

Double the number of keys to

import random

keylist = list(range(2000000,0,-1))

rndkeylist = keylist[:]

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

In [13]:

106

In [14]:

2 × 106

In [15]:

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.1401691969949752

Shuffled keys: 0.26284310102346353

Triple the number of keys to

import random

keylist = list(range(3000000,0,-1))

rndkeylist = keylist[:]

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.25086971500422806

Shuffled keys: 0.5316497589810751

Using shuffled keys is slower than inserting keys in sequence

However, even after shuffling, the time taken grows approximately linearly

Implementing a "real" list using dictionaries

def createlist(): # Equivalent of l = [] is l = createlist()

 return({})

def listappend(l,x):

 if l == {}:

 l["value"] = x

 l["next"] = {}

 return

 node = l

 while node["next"] != {}:

 node = node["next"]

 node["next"]["value"] = x

 node["next"]["next"] = {}

3 × 106

In [16]:

In [17]:

 return

def listinsert(l,x):

 if l == {}:

 l["value"] = x

 l["next"] = {}

 return

 newnode = {}

 newnode["value"] = l["value"]

 newnode["next"] = l["next"]

 l["value"] = x

 l["next"] = newnode

 return

def printlist(l):

 print("{",end="")

 if l == {}:

 print("}")

 return

 node = l

 print(node["value"],end="")

 while node["next"] != {}:

 node = node["next"]

 print(",",node["value"],end="")

 print("}")

 return

Display a small list as nested dictionaries

start = time.perf_counter()

l = createlist()

for i in range(10):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

print(l)

0.00026201800210401416

{'value': 0, 'next': {'value': 1, 'next': {'value': 2, 'next': {'value':

3, 'next': {'value': 4, 'next': {'value': 5, 'next': {'value': 6, 'next':

{'value': 7, 'next': {'value': 8, 'next': {'value': 9, 'next':

{}}}}}}}}}}}

Insert elements at the beginning in this implementation of a list

start = time.perf_counter()

l = createlist()

for i in range(1000000):

 listinsert(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

0.8786353190080263

In [18]:

107

In [19]:

Doubling the work doubles the time, so linear

start = time.perf_counter()

l = createlist()

for i in range(2000000):

 listinsert(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

1.4174943980178796

Append elements in this implementation of a list

start = time.perf_counter()

l = createlist()

for i in range(10000):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

1.7873705030069686

Halving the work takes 1/4 of the time, so quadratic

start = time.perf_counter()

l = createlist()

for i in range(5000):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

0.4203911299991887

Defining our own data structures

We have implemented a "linked" list using dictionaries

The fundamental functions like listappend , listinsert , listdelete

modify the underlying list

Instead of mylist = {} , we wrote mylist = createlist()

To check empty list, use a function isempty() rather than mylist == {}

Can we clearly separate the interface from the implementation

Define the data structure in a more "modular" way

In [20]:

104

In [21]:

In [22]:

