PDSP 2025, Lecture 11, 11 September 2025

Scope and global variables

e The scope of a variable refers to the portion of the program where its value is
available

o If we refer to a value that is not defined in a function, it is looked up in the
global context

def f():
y = X + 22
print(y)
return
X =17
f()
29

e As soon as we assign a variable a value inside a function, all instances of that
variable are treated as local to the function

e This decision is static based on the program text. In the code below, we cannot
be sure that the assignment x = 33 will execute, but Python still denotes x
to be localto f()

e Though the check is based on the static program text, the error is flagged only
when the function executes. The definition of f() does not trigger an error
though the problem is evident in the text of the function.

def f():
y = X + 22
print(y)
if y > 1000:
x = 33
return

X =7
()



UnboundLocalError Traceback (most recent call las
t)
In[4], line 2

1 x=17
----> 2 [f(0)
In[3], line 2, in f()
1 def f():
----> 2 y =X + 22
3 print(y)
4 if y > 1000:

UnboundLocalError: cannot access local variable 'x' where it is not associ
ated with a value

e This static check applies even if it is impossible for the local assignment to be
executed

def checky():

y =X+ 2
return
if False:
x =17
X =8
checky ()
UnboundLocalError Traceback (most recent call las

1)
In[6], line 2
1 x=28
----> 2 checky()

In[5], line 2, in ()
1 def checky():
----> 2 y =X + 2
3 return
4 if False:

UnboundLocalError: cannot access local variable 'x' where it is not associ
ated with a value

e More examples of using global values within a function without redefining the
variable

def display count():
print(count)
return

def display upto count():
for i in range(count):



print(count+i)
return

o Ifwe call display count() without a global definition for count we get an
error

display count()

NameError Traceback (most recent call las
t)

In[9], line 1
----> 1 display count()

In[7], line 2, in ()
1 def display count():
ccoo® 2 print(count)
3 return

NameError: name 'count' is not defined

e If count is available in the global context, the two functions work as expected
count = 7

display count()
7

display upto count()

7
8
9
10
11
12
13

o If we try to update count inside the function, both occurrences become local

e The occurrence on the right hand side of the assignment generates an error
because its value is now undefined

e Once again, this static error is only triggered at run-time when the function
executes

def increment local(k):
count = count+k
return

increment local(2)



UnboundLocalError Traceback (most recent call las
t)

In[14], line 1
----> 1 increment local(2)

In[13], line 2, in (k)
1 def increment local(k):
ce=cm 2 count = count+k
3 return

UnboundLocalError: cannot access local variable 'count' where it is not as
sociated with a value

e Reassigning a variable within a function disconnects it from the external
variable with the same name

def reset local(k):
count = k
return

reset local(77)

count

7

e We can declare a variable to be global to override Python's default scope
rules

e global tells Python to treat the variable inside the function as one from the
global context

def increment global(k):
global count
count = count+k
return

increment global(8)

display count()
15

e The default rule about local scope applies to mutable values as well

def concat local():

11 = 11 + 12
return

11 = [1,2,3]

12 = [4,5,6]

concat local()



UnboundLocalError Traceback (most recent call las
t)
In[22], line 3
111 =1[1,2,3]
2 12 = [4,5,6]
----> 3 concat local()

In[21], line 2, in ()
1 def concat local():
cooc® B 11 = 11 + 12
3 return

UnboundLocalError: cannot access local variable 'l1' where it is not assoc
iated with a value

def concat global():

global 11
11 = 11 + 12
return

11 = [1,2,3]

12 = [4,5,6]

concat global()

11, 12

(1, 2, 3, 4, 5, 6], [4, 5, 6])

e We can define a value inside a function and "export" it outside by declaring it
global

del(1l1)
del(12)

def concat global():
global 11
11 =1[1,2,3]
11 =11 + 12
return

12 = [4,5,6]
concat global()

11

(1, 2, 3, 4, 5, 6]

¢ The following would work with dynamic scoping -- based on execution of
program
= init() defines b andthencalls seta() , sowith dynamic scoping, b
is known to seta()



e Python uses static scoping -- based on text of program -- so this code generates
an error

e Most languages use static scoping because dynamic scoping makes it hard to
reason about correctness

def seta():
a=b+5
print(a)
def init():
b=7
seta()
init()
NameError Traceback (most recent call las
t)
In[30], line 9
6 b=7
7 seta()
----> 9 dnit()
In[30], line 7, in ()
5 def init():
6 b=7
cooo> 7 seta()
In[30], line 2, in ()
1 def seta():
coos> 2 a=Db+5
3 print(a)

NameError: name 'b' is not defined



