PDSP 2025, Lecture 10, 9 September 2025

Mutable and immutable values

e Lists and dictionaries are mutable
e int, float, bool, str,tupleareimmutable

e For immutable values, assignment copies the value

5
X
7 # Does not affect the value of x

<
nnn

X,y

(5, 7)

e For mutable values, assigment aliases the new name to point to the same value as the old name
e Updating through either name affects both

11 = [1,2,3]
12 =11
12[0] = 4
11,12

([4, 2, 31, [4, 2, 3])
11[2] = 6

11,12

([4, 2, 61, [4, 2, 6])

e We can update a mutable value inside a function
¢ However, we should be careful to use updates that do not reassign the name
e Use l.append(v) vs 1 = 1 + [v]

def bad(l,v):
1=1+ [v]
print(l)
return

def good(l,v):
1.append(v)
print(l)
return

e bad(l,v) appends v within the function, but creates a new copy of 1 in the process, that is different
from the 1 passed as an argument

1=1[1,2,3]
bad(1,4)
[1, 2, 3, 4]
1

[1, 2, 3]

good(1l,v) ontheother hand updates 1 in place, so the effect is visible outside

1

[1, 2, 3]
good(1,4)
[1, 2, 3, 4]
1

[1, 2, 3, 4]

e We can update bad(1l,v) to returnthe modified list, but then we have to reassign 1 to the returned

value

def bad2(l,v):
1=1+ [v]
print(l)
return(l)

1=11,2,3]
returnlist = bad2(1,4)

[1, 2, 3, 4]
1, returnlist

(r¥, 2, 31, 1, 2, 3, 4])

1 =1[1,2,3]
1 = bad2(1,4)
[1, 2, 3, 4]
1

[1, 2, 3, 4]

Slices and copying lists

e Aslice creates a new list
e Fullslice 1[:] is a faithful copy of 1
= Abbreviation for 1[0:len(1)]
¢ Assigning a full slice makes a disjoint copy of a list

11 = [1,2,3]
12 = 11[:]
11,12

(r1, 2, 31, [1, 2, 3])

11[2] = 6
12[0] = 4
11, 12

(r1, 2, o], (4, 2, 31)

Pitfalls of mutability

zerorow = [0,0,0]
zeromat = [zerorow, zerorow, zerorow]

zeromat

[fe, o, o1, (e, o, o1, [0, 0, 0]]
zeromat[2][2] = 33

zeromat

[re, e, 331, [e, o, 33], [0, 0, 33]]

zerorow

[0, 0, 33]

¢ This happens because updating any row in zeromat impliciltly updates zerolist
e And vice versa

zerorow[0] = 11

zeromat

(i1, o, 33], [11, o, 33], [11, O, 33]]

An aside

e Multiplication is repeated addtionnn X m=n4+n-+---+n
N e

m-~times
e For lists, + denotes concatenation
e 1+1+1+1 can be writtenas 1*4

4 +4 + 4
12
4*3
12

[0,0,0] + [0,0,0] + [0,0,0]

(o, 6, 0, 0, 6, 0, 0, 0, 0]

[0,0,0]*3

(e, 0, 0, 0, 0, 0, 0, 0, 0]

e This does not avoid list aliasing issues
zerorow = [0,0,0]
zerolist = [zerorow]*3

zerolist

[[e, 0, 01, [0, 0, 0], [0, O, O]]
zerolist[1][1] = 44

zerolist

[roe, 44, o], [o, 44, 0], [0, 44, 0]]

e Use list comprehension instead
e Each list comprehension creates a new list

[© for i in range(3)] # A list of 3 zeros

[0, 0, 0]

[[6 for i in range(3)] for j in range (3) 1 # 3 disjoint lists of 3 zeros
[[6, 0, 0], [0, 0, 0], [0, O, O]]

zmat = [[0 for i in range(3)] for j in range (3) 1

zmat

[[6, 06, 0], [0, O, O], [0, O, O]]
zmat[1][1] =1

zmat

[fe, o, o], [0, 1, 0], [0, 0, O]]

Calling functions

e Suppose we have a function definition def f(a,b): anda functioncall f(x,y)
e When f(x,y) isexecuted, itis asthough we start f with the assignments

e This explains how/when values can be updated within a function

def factorial(n):
ans = 1
while n >= 1:
ans = ans * n
n=n-1
return(ans)

6
factorial(x)

x
Inn

(6, 720)

Inside the function, the parameter n is decrementedto 0

n is derived from the variable x passed when the function is called
e Since x isimmutable, the implicit assignment n = X copies the value of x into n
Updating n has no effecton x

This also means we cannot write a function swap along the following lines

def swap(x,y):

(x,y) = (y,x)
return

m
n

5
7
swap(m,n)

m,n

(5, 7)

¢ This will not work with mutable values either
e The problem is the reassignment inside the function

listl [1,2,3]
list2 [4,5,6]
swap(listl,list2)

listl, list2

(r1, 2, 31, [4, 5, 6])

Passing mutable values to a function

e Passing an argument is like executing an assignment statement before starting the function
e For mutable values, this aliases the function parameter to the called value
¢ In place changes in the function affect the value outside the function

def concat(l1,12):
11.extend(12)
return

13 = [1,
4 = [4
t(

2,3
5,6
conca 3,1

]
,5,6]
13,14)

13,14

(1, 2, 3, 4, 5, 61, [4, 5, 6])

e If we pass a slice, the value in the function is a disjoint copy

13 = [1,2,3]
14 = [4,5,6]
concat(13[:1,14[:1])

13,14

(r1, 2, 31, (4, 5, 61)

e However, reassigning the variable inside the function creates a new value not connected to the outer
value

def concat2(11,12):

11 =11+ 12
return

13 =1[1,2,3]

14 = [4,5,6]

concat2(13,14)

13,14 # No effect - reassignment in function creates a local copy

(11, 2, 31, [4, 5, 6])

e In fact, our problem with swap() applies to mutable values as well
e The statement (m,n) = (n,m) isareassignmentand creates new values inside the function

swap(13,14)

13,14

(r1, 2, 31, [4, 5, 6])

¢ Be careful not to mix reassignment with in-place modification
e What is the outcome of the following?

def myappend(l,x):
1 = l.append(x)
return(l)

11
11

[1,2]
myappend(11,3)

11

print(l1)

None

e None is a special value in Python that explicitly represents that no value is assigned
e A function that does not return a value returns None
¢ Inthe notebook, the value is "empty", but print() displaysitas None
m Inother words, str(None) convertsthe value None to the string "None"
e None has its own type which is not compatible with any other type, so no operations are legal

str(None)
‘None'
print(None)
None
type(None)

NoneType

e Setting a variable to None is different from leaving it undefined

type(x)
int

del(x)

NameError Traceback (most recent call last)
In[74], line 1
---> 18

NameError: name 'x' is not defined

X = None

e We can test if a variable is set to None
o We will use this later

X == None

True

More on equality

e x ==Yy checksthat x and y contain the same value
e Anassignment 12 = 11 aliases 12 to pointto the samelistas 11
= Naturally, we expect 12 == 11 tobe True

= But there is a stronger relationship, because 11 and 12 are the same value
e X is y checksif x and y refertothe same value

» If x is y holds, it must be that x ==y

= Converse is not true

11 = [1,2,3]
12 =11
13 = 11[:]

11 == 12, 11 == 13
(True, True)
11 is 12, 11 is 13

(True, False)

e X 1s y can also be tested for immutable values, but the outcome is not useful or reliable

X is y # Not useful for immutable values

True

X is y
True

"hello"
t=s

(2]
n

s is t

True

"hello"
t = "hello"

(9]
]

s is t

True

