
PDSP 2025, Lecture 09, 4 September 2025

matchlist = [

 ("Chennai","RCB","CSK","RCB","CSK",174),

 ("Mohali","DC","PK","PK","PK",175),

 ("Kolkata","KKR","SRH","SRH","KKR",209),

 ("Jaipur","RR","LSG","RR","RR",194),

 ("Ahmedabad","GT","MI","MI","GT",169),

 ("Bengaluru","PK","RCB","RCB","RCB",177),

 ("Chennai","CSK","GT","GT","CSK",207),

 ("Hyderabad","SRH","MI","MI","SRH",278),

 ("Jaipur","RR","DC","DC","RR",186),

 ("Bengaluru","RCB","KKR","KKR","KKR",183),

 ("Lucknow","LSG","PK","LSG","LSG",200),

 ("Ahmedabad","SRH","GT","SRH","GT",163),

 ("Visakhapatnam","DC","CSK","DC","DC",192),

 ("Mumbai","MI","RR","RR","RR",126),

 ("Bengaluru","LSG","RCB","RCB","LSG",182),

 ("Visakhapatnam","KKR","DC","KKR","KKR",273),

 ("Ahmedabad","GT","PK","PK","PK",200),

 ("Hyderabad","CSK","SRH","SRH","SRH",166),

 ("Jaipur","RCB","RR","RR","RR",184),

 ("Mumbai","MI","DC","DC","MI",235),

 ("Lucknow","LSG","GT","LSG","LSG",164),

 ("Chennai","KKR","CSK","CSK","CSK",138),

 ("Mohali","SRH","PK","PK","SRH",183),

 ("Jaipur","RR","GT","GT","GT",197),

 ("Mumbai","RCB","MI","MI","MI",197),

 ("Lucknow","LSG","DC","LSG","DC",168),

 ("Mohali","PK","RR","RR","RR",148),

 ("Kolkata","LSG","KKR","KKR","KKR",162),

 ("Mumbai","CSK","MI","MI","CSK",207),

 ("Bengaluru","SRH","RCB","RCB","SRH",288),

 ("Kolkata","KKR","RR","RR","RR",224),

 ("Ahmedabad","GT","DC","DC","DC",90),

 ("Mohali","MI","PK","PK","MI",193),

 ("Lucknow","CSK","LSG","LSG","LSG",177),

 ("Delhi","SRH","DC","DC","SRH",267),

 ("Kolkata","KKR","RCB","RCB","KKR",223),

 ("Mohali","PK","GT","PK","GT",143),

 ("Jaipur","MI","RR","MI","RR",180),

 ("Chennai","CSK","LSG","LSG","LSG",211),

 ("Delhi","DC","GT","GT","DC",225),

 ("Hyderabad","RCB","SRH","RCB","RCB",207),

 ("Kolkata","KKR","PK","PK","PK",262),

 ("Delhi","DC","MI","MI","DC",258),

 ("Lucknow","LSG","RR","RR","RR",197),

 ("Ahmedabad","GT","RCB","RCB","RCB",201),

 ("Chennai","CSK","SRH","SRH","CSK",213),

 ("Kolkata","DC","KKR","DC","KKR",154),

 ("Lucknow","MI","LSG","LSG","LSG",145),

 ("Chennai","CSK","PK","PK","PK",163),

 ("Hyderabad","SRH","RR","SRH","SRH",202),

 ("Mumbai","KKR","MI","MI","KKR",170),

 ("Bengaluru","GT","RCB","RCB","RCB",148),

 ("Dharamsala","CSK","PK","PK","CSK",168),

 ("Lucknow","KKR","LSG","LSG","KKR",236),

In [1]:

 ("Mumbai","SRH","MI","MI","MI",174),

 ("Delhi","DC","RR","RR","DC",222),

 ("Hyderabad","LSG","SRH","LSG","SRH",166),

 ("Dharamsala","RCB","PK","PK","RCB",242),

 ("Ahmedabad","GT","CSK","CSK","GT",232),

 ("Kolkata","KKR","MI","MI","KKR",158),

 ("Chennai","RR","CSK","RR","CSK",142),

 ("Bengaluru","RCB","DC","DC","RCB",188),

 ("Delhi","DC","LSG","LSG","DC",209),

 ("Guwahati","RR","PK","RR","PK",145),

 ("Mumbai","LSG","MI","MI","LSG",215),

 ("Bengaluru","RCB","CSK","CSK","RCB",219),

 ("Hyderabad","PK","SRH","PK","SRH",215),

 ("Ahmedabad","SRH","KKR","SRH","KKR",160),

 ("Ahmedabad","RCB","RR","RR","RR",173),

 ("Chennai","SRH","RR","RR","SRH",176),

 ("Chennai","SRH","KKR","SRH","KKR",114)

]

List of teams that played IPL 2024

def get_teams(l):

 teamdict = {}

 for m in l:

 team1,team2 = m[1],m[2]

 teamdict[team1] = 1

 teamdict[team2] = 2

 return(sorted(list(teamdict)))

get_teams(matchlist)

['CSK', 'DC', 'GT', 'KKR', 'LSG', 'MI', 'PK', 'RCB', 'RR', 'SRH']

Map

Apply a function to each element in a list

Convert to

In Python, map(f,l) applies f to each element of l

Example

List full names of teams that played in IPL 2024

First, a function to map team abbreviations to full names, using a dictionary

def expand(s):

 teamdict = {'CSK':'Chennai Super Kings',

 'PK':'Punjab Kings',

 'SRH':'Sunrisers Hyderabad',

 'LSG':'Lucknow Super Giants',

 'MI':'Mumbai Indians',

 'RCB':'Royal Challengers Bengaluru',

 'GT':'Gujarat Titans',

 'DC':'Delhi Capitals',

 'KKR':'Kolata Knight Riders',

 'RR':'Rajasthan Royals'}

In [2]:

In [3]:

Out[3]:

f()

[x0, x1, … , xn−1] [f(x0), f(x1), … , f(xn−1)]

In [4]:

 if (s in teamdict):

 return(teamdict[s])

 else:

 return('No info')

Now, we can map this function to the outcome of our earlier function

teams = get_teams(matchlist)

teams

['CSK', 'DC', 'GT', 'KKR', 'LSG', 'MI', 'PK', 'RCB', 'RR', 'SRH']

Output of map is a sequence, but not a list, like range

map(expand,teams)

<map at 0x7f0b226e5ff0>

Explicitly convert it to a list to view the output

list(map(expand,teams))

['Chennai Super Kings',

'Delhi Capitals',

'Gujarat Titans',

'Kolata Knight Riders',

'Lucknow Super Giants',

'Mumbai Indians',

'Punjab Kings',

'Royal Challengers Bengaluru',

'Rajasthan Royals',

'Sunrisers Hyderabad']

Since expand returns No info for unknown keys, the following works

Note that keys need not be of uniform type: 7 is merely an unknown key, not an

invalid one because it is not a string

list(map(expand,['xxx','yyy',7]))

['No info', 'No info', 'No info']

Filter

Check if each item in a list satisfies a property

Retain only such elements

Filter out elements that do not satisfy

In Python, filter(p,l)

Example

In [5]:

In [6]:

Out[6]:

In [7]:

Out[7]:

In [8]:

Out[8]:

In [9]:

Out[9]:

x p(x)

p()

List matches where CSK won the toss

First define the filter function -- returns True or False

def csktosswin(t): # t is expected to be one tuple from matchlist

 return(t[3] == 'CSK')

Now, filter matchlist using this function

list(filter(csktosswin,matchlist))

[('Chennai', 'KKR', 'CSK', 'CSK', 'CSK', 138),

('Ahmedabad', 'GT', 'CSK', 'CSK', 'GT', 232),

('Bengaluru', 'RCB', 'CSK', 'CSK', 'RCB', 219)]

List comprehension

Combine map and filter to create a list

Set comprehension: Squares of positive even integers =

In Python: [f(x) for x in l if p(x)]

Example

Full names of all teams in IPL 2024

[expand(t) for t in get_teams(matchlist)]

['Chennai Super Kings',

'Delhi Capitals',

'Gujarat Titans',

'Kolata Knight Riders',

'Lucknow Super Giants',

'Mumbai Indians',

'Punjab Kings',

'Royal Challengers Bengaluru',

'Rajasthan Royals',

'Sunrisers Hyderabad']

List both teams in matches where CSK won the toss

[(t[1],t[2]) for t in matchlist if t[3] == "CSK"]

[('KKR', 'CSK'), ('GT', 'CSK'), ('RCB', 'CSK')]

Same, with full names

[(expand(t[1]),expand(t[2])) for t in matchlist if t[3] == "CSK"]

[('Kolata Knight Riders', 'Chennai Super Kings'),

('Gujarat Titans', 'Chennai Super Kings'),

('Royal Challengers Bengaluru', 'Chennai Super Kings')]

In [10]:

In [11]:

Out[11]:

{x2 ∣ x ∈ Z, x > 0}

In [12]:

Out[12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

Similar notation works for dictionaries

Create a dictionary matching team abbreviations to full names for teams in IPL 2024

{ t:expand(t) for t in get_teams(matchlist) }

{'CSK': 'Chennai Super Kings',

'DC': 'Delhi Capitals',

'GT': 'Gujarat Titans',

'KKR': 'Kolata Knight Riders',

'LSG': 'Lucknow Super Giants',

'MI': 'Mumbai Indians',

'PK': 'Punjab Kings',

'RCB': 'Royal Challengers Bengaluru',

'RR': 'Rajasthan Royals',

'SRH': 'Sunrisers Hyderabad'}

Recall that uniqd created a list of unique items via keys of a dictionary

Here is a short way to do this using list comprehension

list({ x[2]:1 for x in matchlist})

['CSK', 'PK', 'SRH', 'LSG', 'MI', 'RCB', 'GT', 'DC', 'KKR', 'RR']

Uses the fact that a dictionary d when interpreted as a sequence is implcitly

d.keys()

list(d) looks for a sequence d

Can also do the equivalent of relational algebra selection and projection

Project matchlist onto columns team 1, team 2, target (columns 1,2,5)

where CSK won the toss

Filter by CSK winning the toss (select)

Project onto columns 1,2,5

[(t[1],t[2],t[5]) for t in matchlist if t[3] == "CSK"]

[('KKR', 'CSK', 138), ('GT', 'CSK', 232), ('RCB', 'CSK', 219)]

Can have multiple generators

Like nested loops, the left most generator is the outermost loop

[(i,j) for i in range(3) for j in range(4)]

In [15]:

Out[15]:

In [16]:

Out[16]:

In [17]:

Out[17]:

In [18]:

[(0, 0),

(0, 1),

(0, 2),

(0, 3),

(1, 0),

(1, 1),

(1, 2),

(1, 3),

(2, 0),

(2, 1),

(2, 2),

(2, 3)]

Example: "Small" Pythagorean triples

[(x,y,z) for x in range(1,20) for y in range(1,20) for z in range(1,20)

[(3, 4, 5),

(4, 3, 5),

(5, 12, 13),

(6, 8, 10),

(8, 6, 10),

(8, 15, 17),

(9, 12, 15),

(12, 5, 13),

(12, 9, 15),

(15, 8, 17)]

Avoid duplicates like (3,4,5) , (4,3,5) -- ensure that y > x

y in range(x,20) -- later generator can use value from an earlier one, like in a

nested loop

[(x,y,z) for x in range(1,20) for y in range(x,20) for z in range(x,20)

[(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15)]

Can report the triples in a different order

[(y,x,z) for x in range(1,20) for y in range(x,20) for z in range(x,20)

[(4, 3, 5), (12, 5, 13), (8, 6, 10), (15, 8, 17), (12, 9, 15)]

Mutable and immutable values

Lists and dictionaries can be updated in place

Can reassign l[i] or d[k]

These are mutable values

Numbers (int , float), booleans, strings, tuples cannot be updated in place

Immutable values

Mutability and assignment

Out[18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

Assiging a mutable value creates an alias

Updating through either the old or the new name indirectly affects the other

l = [1,2,3]

newl = l

newl[0] = 4

l, newl

([4, 2, 3], [4, 2, 3])

l[1] = 5

l, newl

([4, 5, 3], [4, 5, 3])

For immutable values, assignment behaves as we would expect

The two names can be updated without affecting each other

It is as though assignment copies the value

x = 17

y = x

y = 19

x, y

(17, 19)

x = 18

x, y

(18, 19)

Mutable and immutable values

Lists and dictionaries are mutable

int , float , bool , str , tuple are immutable

For immutable values, assignment copies the value

x = 5

y = x

y = 7 # Does not affect the value of x

x,y

(5, 7)

In [22]:

In [23]:

Out[23]:

In [24]:

In [25]:

Out[25]:

In [26]:

In [27]:

Out[27]:

In [28]:

In [29]:

Out[29]:

In [30]:

In [31]:

Out[31]:

For mutable values, assigment aliases the new name to point to the same value as

the old name

Updating through either name affects both

l1 = [1,2,3]

l2 = l1

l2[0] = 4

l1,l2

([4, 2, 3], [4, 2, 3])

l1[2] = 6

l1,l2

([4, 2, 6], [4, 2, 6])

Slices and copying lists

A slice creates a new list

l[0:len(l)] is a faithful copy of l

Abbreviate as l[:] , full slice

Assigning a full slice makes a disjoint copy of a list

l1 = [1,2,3]

l2 = l1[:]

l1,l2

([1, 2, 3], [1, 2, 3])

l1[2] = 6

l2[0] = 4

l1, l2

([1, 2, 6], [4, 2, 3])

In [32]:

In [33]:

Out[33]:

In [34]:

In [35]:

Out[35]:

In [36]:

In [37]:

Out[37]:

In [38]:

In [39]:

Out[39]:

