
PDSP 2025, Lecture 08, 2 September 2025

Nested collections
List of lists, list of tuples, dictionary whose values are lists ...
matchlist is a list of tuples

Use two indices to extract a value
matchlist[3] is ("Jaipur","RR","LSG","RR","RR",194)
matchlist[3][1] is "RR"

matchlist = [

 ("Chennai","RCB","CSK","RCB","CSK",174),

 ("Mohali","DC","PK","PK","PK",175),

 ("Kolkata","KKR","SRH","SRH","KKR",209),

 ("Jaipur","RR","LSG","RR","RR",194),

 ("Ahmedabad","GT","MI","MI","GT",169),

 ("Bengaluru","PK","RCB","RCB","RCB",177),

 ("Chennai","CSK","GT","GT","CSK",207),

 ("Hyderabad","SRH","MI","MI","SRH",278),

 ("Jaipur","RR","DC","DC","RR",186),

 ("Bengaluru","RCB","KKR","KKR","KKR",183),

 ("Lucknow","LSG","PK","LSG","LSG",200),

 ("Ahmedabad","SRH","GT","SRH","GT",163),

 ("Visakhapatnam","DC","CSK","DC","DC",192),

 ("Mumbai","MI","RR","RR","RR",126),

 ("Bengaluru","LSG","RCB","RCB","LSG",182),

 ("Visakhapatnam","KKR","DC","KKR","KKR",273),

 ("Ahmedabad","GT","PK","PK","PK",200),

 ("Hyderabad","CSK","SRH","SRH","SRH",166),

 ("Jaipur","RCB","RR","RR","RR",184),

 ("Mumbai","MI","DC","DC","MI",235),

 ("Lucknow","LSG","GT","LSG","LSG",164),

 ("Chennai","KKR","CSK","CSK","CSK",138),

 ("Mohali","SRH","PK","PK","SRH",183),

 ("Jaipur","RR","GT","GT","GT",197),

 ("Mumbai","RCB","MI","MI","MI",197),

 ("Lucknow","LSG","DC","LSG","DC",168),

 ("Mohali","PK","RR","RR","RR",148),

 ("Kolkata","LSG","KKR","KKR","KKR",162),

 ("Mumbai","CSK","MI","MI","CSK",207),

 ("Bengaluru","SRH","RCB","RCB","SRH",288),

 ("Kolkata","KKR","RR","RR","RR",224),

 ("Ahmedabad","GT","DC","DC","DC",90),

 ("Mohali","MI","PK","PK","MI",193),

 ("Lucknow","CSK","LSG","LSG","LSG",177),

 ("Delhi","SRH","DC","DC","SRH",267),

 ("Kolkata","KKR","RCB","RCB","KKR",223),

 ("Mohali","PK","GT","PK","GT",143),

 ("Jaipur","MI","RR","MI","RR",180),

 ("Chennai","CSK","LSG","LSG","LSG",211),

 ("Delhi","DC","GT","GT","DC",225),

 ("Hyderabad","RCB","SRH","RCB","RCB",207),

 ("Kolkata","KKR","PK","PK","PK",262),

 ("Delhi","DC","MI","MI","DC",258),

 ("Lucknow","LSG","RR","RR","RR",197),

 ("Ahmedabad","GT","RCB","RCB","RCB",201),

 ("Chennai","CSK","SRH","SRH","CSK",213),

 ("Kolkata","DC","KKR","DC","KKR",154),

 ("Lucknow","MI","LSG","LSG","LSG",145),

 ("Chennai","CSK","PK","PK","PK",163),

 ("Hyderabad","SRH","RR","SRH","SRH",202),

 ("Mumbai","KKR","MI","MI","KKR",170),

 ("Bengaluru","GT","RCB","RCB","RCB",148),

 ("Dharamsala","CSK","PK","PK","CSK",168),

 ("Lucknow","KKR","LSG","LSG","KKR",236),

 ("Mumbai","SRH","MI","MI","MI",174),

 ("Delhi","DC","RR","RR","DC",222),

 ("Hyderabad","LSG","SRH","LSG","SRH",166),

 ("Dharamsala","RCB","PK","PK","RCB",242),

In [1]:

 ("Ahmedabad","GT","CSK","CSK","GT",232),

 ("Kolkata","KKR","MI","MI","KKR",158),

 ("Chennai","RR","CSK","RR","CSK",142),

 ("Bengaluru","RCB","DC","DC","RCB",188),

 ("Delhi","DC","LSG","LSG","DC",209),

 ("Guwahati","RR","PK","RR","PK",145),

 ("Mumbai","LSG","MI","MI","LSG",215),

 ("Bengaluru","RCB","CSK","CSK","RCB",219),

 ("Hyderabad","PK","SRH","PK","SRH",215),

 ("Ahmedabad","SRH","KKR","SRH","KKR",160),

 ("Ahmedabad","RCB","RR","RR","RR",173),

 ("Chennai","SRH","RR","RR","SRH",176),

 ("Chennai","SRH","KKR","SRH","KKR",114)

]

List of venues where each team played played IPL 2024

Initially, build a dictionary of dictionaries
Outer keys are team names
Inner dictionary keys are venues where team played

Finally, convert dictionary of dictionaries into dictionary of lists

def get_venues(l):

 venues = {}

 for m in l:

 venue,team1,team2 = m[0],m[1],m[2]

 for t in team1,team2:

 if t in venues:

 venues[t][venue] = 1

 else:

 venues[t] = {venue:1} # Create a dictionary for venues[t]

 # Equivalent to

 # venues[t] = {}

 # venues[t[[venue] = 1

 venuelists = {}

 for t in sorted(venues): # Scan teams in alphabetical order

 venuelists[t] = sorted(list(venues[t])) # Sort venues in alphabetical order

 return(venuelists)

get_venues(matchlist)

In [2]:

In [3]:

{'CSK': ['Ahmedabad',

 'Bengaluru',

 'Chennai',

 'Dharamsala',

 'Hyderabad',

 'Lucknow',

 'Mumbai',

 'Visakhapatnam'],

'DC': ['Ahmedabad',

 'Bengaluru',

 'Delhi',

 'Jaipur',

 'Kolkata',

 'Lucknow',

 'Mohali',

 'Mumbai',

 'Visakhapatnam'],

'GT': ['Ahmedabad',

 'Bengaluru',

 'Chennai',

 'Delhi',

 'Jaipur',

 'Lucknow',

 'Mohali'],

'KKR': ['Ahmedabad',

 'Bengaluru',

 'Chennai',

 'Kolkata',

 'Lucknow',

 'Mumbai',

 'Visakhapatnam'],

'LSG': ['Bengaluru',

 'Chennai',

 'Delhi',

 'Hyderabad',

 'Jaipur',

 'Kolkata',

 'Lucknow',

 'Mumbai'],

'MI': ['Ahmedabad',

 'Delhi',

 'Hyderabad',

 'Jaipur',

 'Kolkata',

 'Lucknow',

 'Mohali',

 'Mumbai'],

'PK': ['Ahmedabad',

 'Bengaluru',

 'Chennai',

 'Dharamsala',

 'Guwahati',

 'Hyderabad',

 'Kolkata',

 'Lucknow',

 'Mohali'],

'RCB': ['Ahmedabad',

 'Bengaluru',

 'Chennai',

 'Dharamsala',

 'Hyderabad',

 'Jaipur',

 'Kolkata',

 'Mumbai'],

'RR': ['Ahmedabad',

 'Chennai',

 'Delhi',

 'Guwahati',

 'Hyderabad',

 'Jaipur',

 'Kolkata',

 'Lucknow',

 'Mohali',

 'Mumbai'],

'SRH': ['Ahmedabad',

Out[3]:

 'Bengaluru',

 'Chennai',

 'Delhi',

 'Hyderabad',

 'Kolkata',

 'Mohali',

 'Mumbai']}

Matrices
Matrix is a list of lists
Each row is a list of values [v1,v2,...vm]
Matrix is a list of rows [row1, row2, ..., rown]

Transpose a matrix
Columns of original matrix are rows of transpose
If input is square, can swap M[i][j] and M[j][i]
If not square, need to construct transpose of correct dimension

def transpose(mat):

 # Extract dimensions of input -- assume well-formed, non-empty

 nrows = len(mat)

 ncols = len(mat[0])

 # Create an empty matrix for the transpose

 trmat = []

 for i in range(ncols):

 trmat.append([])

 # Populate the transpose -- append each M[i][j] to row j of transpose

 for i in range(nrows):

 for j in range(ncols):

 trmat[j].append(mat[i][j])

 return(trmat)

m = [[0,3],[1,4],[2,5]]

mt = transpose(m)

m, mt

([[0, 3], [1, 4], [2, 5]], [[0, 1, 2], [3, 4, 5]])

Strings
Also sequences, of characters
String values can be enclosed in single or double quotes

'Chennai' or "Chennai"
Allows a value that has a quote to be easily embedded

"Fermat's Last Theorem"

'He said, "Thank you!"

If you need to use both single and double quotes inside the string, use a triple quote!
'''He said, "That's great!"'''

s = '''He said, "That's great!"'''

s

'He said, "That\'s great!"'

Python prefers to render strings using single quote
Embedded quotes are "escaped" using \ to remove their special meaning

Like lists and tuples, can access elements of a string by position, or by slices

In [4]:

In [5]:

In [6]:

Out[6]:

In [7]:

In [8]:

Out[8]:

s = "hello"

s[1]

'e'

s[2:4]

'll'

Some languages have a separate type char for a single character
A string is then a sequence of char

In Python, there is only the string type str
A single character is the same as a string of length 1

s[1] == "e" # Logically speaking, s[1] is a single character

True

Concatenate strings using +

s = "hello"

t = "there"

s+t, s, t

('hellothere', 'hello', 'there')

Like tuples, cannot update parts of a string directly

s[3] = "p"

TypeError Traceback (most recent call last)

Cell In[15], line 1

----> 1 s[3] = "p"

TypeError: 'str' object does not support item assignment

Instead, assemble a new string from the old one

s = s[0:3] + "p" + s[4:]

s

'helpo'

Can iterate over strings and check membership, like lists
For iteration, no distinction between a string "xyz" and the list ["x","y","z"]

def vowel(c):

 return(c in "aeiou")

vowel("a"),vowel("b"),

(True, False)

For stringx x in s seems to be interpreted as substring membership

vowel("ae"),vowel("ai"),vowel("io")

(True, False, True)

In [9]:

In [10]:

Out[10]:

In [11]:

Out[11]:

In [12]:

Out[12]:

In [13]:

In [14]:

Out[14]:

In [15]:

In [16]:

In [17]:

Out[17]:

In [18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

Standard example of filtered iteration

def countvowels(s):

 count = 0

 for c in s:

 if vowel(c):

 count = count+1

 return(count)

countvowels("hello")

2

x in s expects x to be a string if s is a string

vowel(7)

TypeError Traceback (most recent call last)

Cell In[23], line 1

----> 1 vowel(7)

Cell In[18], line 2, in vowel(c)

 1 def vowel(c):

----> 2 return(c in "aeiou")

TypeError: 'in <string>' requires string as left operand, not int

vowel("7")

False

vowel("there")

False

We have seen that list() and int() can be use to convert values from one type to another
Likewise str() converts its argument to a string

Almost any value converts sensibly into a "readable" representation
print(v) implicitly converts v to str(v) to display on screen

str([1,2,3])

'[1, 2, 3]'

str(77)

'77'

Can convert a string to a number if the contents can be intepreted sensibly

int('77')

77

int('hello')

ValueError Traceback (most recent call last)

Cell In[29], line 1

----> 1 int('hello')

ValueError: invalid literal for int() with base 10: 'hello'

int('77.5') # 77.5 is a number, but not an int

In [21]:

In [22]:

Out[22]:

In [23]:

In [24]:

Out[24]:

In [25]:

Out[25]:

In [26]:

Out[26]:

In [27]:

Out[27]:

In [28]:

Out[28]:

In [29]:

In [30]:

ValueError Traceback (most recent call last)

Cell In[30], line 1

----> 1 int('77.5') # 77.5 is a number, but not an int

ValueError: invalid literal for int() with base 10: '77.5'

float('77.5')

77.5

float('77')

77.0

In [31]:

Out[31]:

In [32]:

Out[32]:

