PDSP 2025, Lecture 08, 2 September 2025

Nested collections

o List of lists, list of tuples, dictionary whose values are lists ...

e matchlist isa list of tuples

e Use two indices to extract a value
= matchlist[3] is ("Jaipur","RR","LSG","RR","RR",194)
= matchlist[3][1] is "RR"

matchlist = [
("Chennai", "RCB","CSK","RCB","CSK",174),
("Mohali","DC","PK","PK","PK",175),
("Kolkata", "KKR","SRH", "SRH", "KKR",209),
("Jaipur","RR","LSG","RR","RR",194),
("Ahmedabad","GT","MI","MI","GT",169),
("Bengaluru","PK","RCB","RCB","RCB",177),
("Chennai", "CSK","GT","GT","CSK",207),
("Hyderabad", "SRH","MI","MI", "SRH",b278),
("Jaipur","RR","DC","DC","RR",186),
("Bengaluru", "RCB", "KKR", "KKR", "KKR",183),
("Lucknow", "LSG","PK","LSG","LSG",200),
("Ahmedabad", "SRH", "GT","SRH","GT",163),
("Visakhapatnam","DC", "CSK","DC","DC",192),
("Mumbai", "MI","RR","RR","RR",126),
("Bengaluru","LSG","RCB","RCB","LSG",182),
("Visakhapatnam", "KKR","DC", "KKR", "KKR",273),
("Ahmedabad", "GT", "PK", "PK","PK",200),
("Hyderabad", "CSK", "SRH", "SRH","SRH",166),
("Jaipur","RCB","RR","RR","RR",184),
("Mumbai","M1","DC","DC","MI",235),
("Lucknow", "LSG","GT","LSG","LSG",164),
("Chennai", "KKR","CSK","CSK","CSK",138),
("Mohali", "SRH","PK","PK","SRH",183),
("Jaipur","RR","GT","GT","GT",197),
("Mumbai", "RCB","MI","MI","MI",6197),
("Lucknow","LSG","DC","LSG","DC",168),
("Mohali", "PK","RR","RR","RR",148),
("Kolkata", "LSG", "KKR", "KKR", "KKR" ,162) ,
("Mumbai", "CSK","MI","MI","CSK",6207),
("Bengaluru","SRH","RCB", "RCB", "SRH",288),
("Kolkata", "KKR","RR","RR","RR",224),
("Ahmedabad","GT","DC","DC","DC",90),
("Mohali","MI","PK","PK","MI",193),
("Lucknow", "CSK","LSG","LSG","LSG",177),
("Delhi", "SRH","DC","DC","SRH",267),
("Kolkata", "KKR", "RCB", "RCB", "KKR",223),
("Mohali", "PK","GT","PK","GT",143),
("Jaipur","MI","RR","MI","RR",180),
("Chennai", "CSK","LSG", "LSG", "LSG",211),
("Delhi","DC","GT","GT","DC",225),
("Hyderabad", "RCB","SRH", "RCB", "RCB",207),
("Kolkata", "KKR", "PK","PK","PK",262),
("Delhi","DC","MI","MI","DC",258),
("Lucknow","LSG","RR","RR","RR",197),
("Ahmedabad", "GT", "RCB", "RCB", "RCB",201),
("Chennai", "CSK","SRH", "SRH","CSK",213),
("Kolkata","DC", "KKR","DC","KKR",154),
("Lucknow","MI","LSG","LSG","LSG",6145),
("Chennai", "CSK","PK","PK","PK",163),
("Hyderabad", "SRH", "RR", "SRH", "SRH",202),
("Mumbai", "KKR","MI","MI", "KKR",170),
("Bengaluru","GT","RCB","RCB","RCB",148),
("Dharamsala", "CSK","PK","PK","CSK",168)
("Lucknow", "KKR","LSG","LSG", "KKR",236),
("Mumbai", "SRH","MI","MI",6"MI",174),
("Delhi","DC","RR","RR","DC",222),

("Hyderabad", "LSG","SRH", "LSG", "SRH",166),

("Dharamsala", "RCB", "PK","PK","RCB",242),

("Ahmedabad", "GT", "CSK", "CSK", "GT",232),,
("Kolkata","KKR","MI","MI","KKR",158),
("Chennai,"RR","CSK", "RR", "CSK",142),
("Bengaluru”,"RCB","DC","DC", "RCB",188)
("Delhi","DC","LSG","LSG","DC",209),
("Guwahati,"RR","PK","RR","PK",145),
("Mumbai”, "LSG","MI","MI","LSG",215),
("Bengaluru”, "RCB", "CSK","CSK", "RCB",219),
("Hyderabad", "PK", "SRH", "PK", "SRH" , 215) ,
("Ahmedabad”, "SRH", "KKR" , "SRH" , "KKR", 160) ,
("Ahmedabad", "RCB", "RR", "RR", "RR", 173) ,
("Chennai,"SRH","RR","RR", "SRH",176),
("Chennai®,"SRH", "KKR","SRH", "KKR",114)

List of venues where each team played played IPL 2024

¢ Initially, build a dictionary of dictionaries
= Quter keys are team names
= Inner dictionary keys are venues where team played
¢ Finally, convert dictionary of dictionaries into dictionary of lists

def get venues(l):
venues = {}
for m in 1:
venue, teaml,team2 = m[0] ,m[1],m[2]
for t in teaml,team2:
if t in venues:
venues|[t][venue] =1
else:
venues[t] = {venue:1l} # Create a dictionary for venues[t]
Equivalent to
venues[t] = {}
venues[t[[venue] = 1
venuelists = {}

for t in sorted(venues): # Scan teams in alphabetical order
venuelists[t] = sorted(list(venues[t])) # Sort venues in alphabetical order
return(venuelists)

get venues(matchlist)

{'CSK': ['Ahmedabad',
'Bengaluru’',
'Chennai’,
'Dharamsala’,
'"Hyderabad"',
"Lucknow',
'"Mumbai',
'Visakhapatnam'],

'DC': ['Ahmedabad',
'Bengaluru’',
'Delhi',

'Jaipur',
'Kolkata',
"Lucknow',
'Mohali',
'"Mumbai',
'Visakhapatnam'],

'GT': ['Ahmedabad',
'Bengaluru',
'Chennai’,
'Delhi',

'Jaipur',
"Lucknow',
'Mohali'],

'KKR': ['Ahmedabad',
'Bengaluru’',
'Chennai’,
'Kolkata',
"Lucknow',
'"Mumbai',
'Visakhapatnam'],

'LSG': ['Bengaluru',
'Chennai’,
'Delhi',
'"Hyderabad"',
'Jaipur',
'Kolkata',
"Lucknow',
'"Mumbai'l],

'MI': ['Ahmedabad',
'Delhi',
'"Hyderabad',
'Jaipur',
'Kolkata',
"Lucknow',
'Mohali',
'"Mumbai'l],

'"PK': ['Ahmedabad',
'Bengaluru',
'Chennai’,
'Dharamsala’,
'Guwahati',
'"Hyderabad"',
'Kolkata',
"Lucknow',
'Mohali'],

'RCB': ['Ahmedabad',
'Bengaluru’,
'Chennai’,
'Dharamsala’,
'"Hyderabad"',
'Jaipur',
'Kolkata',
'Mumbai'l],

'RR': ['Ahmedabad',
'Chennai’,
'Delhi',
'Guwahati',
'"Hyderabad"',
'Jaipur',
'Kolkata',
"Lucknow',
'Mohali',
'Mumbai'l],

'SRH': ['Ahmedabad',

'Bengaluru',
'Chennai',
'Delhi',
'Hyderabad"',
'Kolkata',
'Mohali',
'Mumbai']}

Matrices

e Matrix is a list of lists
e Eachrow is a list of values [v1l,v2,...vm]

e Matrixis alistof rows [rowl, row2, ., rown]

Transpose a matrix

e Columns of original matrix are rows of transpose
o Ifinputis square, canswap M[i][j] and M[j][1i]
¢ If not square, need to construct transpose of correct dimension

def transpose(mat):

Extract dimensions of input -- assume well-formed, non-empty
nrows = len(mat)
ncols = len(mat[0])
Create an empty matrix for the transpose
trmat = []
for i in range(ncols):

trmat.append([])
Populate the transpose -- append each M[i][j] to row j of transpose
for i in range(nrows):

for j in range(ncols):

trmat[j].append(mat[i][j])

return(trmat)

m= [[0,3],[1,4],[2,5]1]
mt = transpose(m)

m, mt

(rre, 31, I[1, 41, [2, 511, ([0, 1, 2], [3, 4, 5]])

Strings

¢ Also sequences, of characters

e String values can be enclosed in single or double quotes
= 'Chennai' or "Chennai"

¢ Allows a value that has a quote to be easily embedded
= "Fermat's Last Theorem"
= 'He said, "Thank you!"

o If you need to use both single and double quotes inside the string, use a triple quote!
= '''He said, "That's great!"''"'

s = '''He said, "That's great!"'"'
s

'He said, "That\'s great!"'

e Python prefers to render strings using single quote
e Embedded quotes are "escaped" using \ to remove their special meaning

o Like lists and tuples, can access elements of a string by position, or by slices

s = "hello"

s[1]

e

s[2:4]
I'L'LI
e Some languages have a separate type char for a single character
= Astring is then a sequence of char

¢ In Python, there is only the string type str
= Asingle character is the same as a string of length 1

s[1] == "e" # Logically speaking, s[1] is a single character

True

e Concatenate strings using +

s = "hello"
t = "there"
s+t, s, t

('hellothere', 'hello', 'there')

o Like tuples, cannot update parts of a string directly

s3] = "p"

TypeError Traceback (most recent call last)
In[15], line 1
----> 1 8[3] =

TypeError: 'str' object does not support item assignment
¢ Instead, assemble a new string from the old one
s = s[0:3] + "p" + s[4:]
s

"helpo’

e Can iterate over strings and check membership, like lists
e For iteration, no distinction between a string "xyz" and thelist ["x","y","z"]

def vowel(c):
return(c in "aeiou")

vowel("a"),vowel("b"),
(True, False)
e Forstringx x in s seems to be interpreted as substring membership

vowel("ae"),vowel("ai"),vowel("io")

(True, False, True)

¢ Standard example of filtered iteration

def countvowels(s):
count = 0
for c in s:
if vowel(c):
count = count+1l
return(count)

countvowels("hello")

2

e X in s expects x tobeastringif s isa string

TypeError Traceback (most recent call last)
In[23], line 1
----> 1 vowel(7)

In[18], line 2, in (c)
1 def vowel(c):
soes 2 return(c in)

TypeError: 'in <string>' requires string as left operand, not int

vowel("7")

False

vowel("there")

False

e We have seen that list() and int() can be use to convertvalues from one type to another
o Likewise str() convertsitsargument to a string

= Almost any value converts sensibly into a "readable" representation
= print(v) implicitly converts v to str(v) to display on screen

str([1,2,3])

‘1, 2, 31"
str(77)
177

e Can convert a string to a number if the contents can be intepreted sensibly
int('77")
77

int('hello')

ValueError Traceback (most recent call last)
In[29], line 1

----> 1)

ValueError: invalid literal for int() with base 10: 'hello'

int('77.5"'") # 77.5 is a number, but not an int

ValueError Traceback (most recent call last)
Cell In[30], line 1
ea> 1 _ # 77.5 is a number, but not an int
ValueError: invalid literal for int() with base 10: '77.5'
In [31]: float('77.5")

Outl[31l: 77.5

In [32]: float('77")

Outl321: 77.0

