
PDSP 2025, Lecture 07, 28 August 2025

Dictionaries

A list is a collection indexed by position

A list can be thought of as a function

A list maps positions to values

Generalize this to a function

Instead of positions, index by an abstract key

dictionary: maps keys, rather than positions, to values

Notation:

d = {k1:v1, k2:v2} , enumerate a dictionary explicitly

d[k1] , value in dictionary d1 corresponding to key k1

{} , empty dictionary ([] for lists, () for tuples)

d = {'a':1,'b':17,'c':0}

d['b']

17

d['d'] # Invalid key

--

-

KeyError Traceback (most recent call las

t)

Cell In[3], line 1

----> 1 d['d'] # Invalid key

KeyError: 'd'

d['d'] = 17

d['d']

17

An assignment d[k] = v serves two purposes

If there is no key k , create the key and assign it the value v

If there is already a key k , replace its current value by v

In a list, we cannot create a value at a new position through an assignment

If l is [0,1,2,3] , l[4] = 4 generate IndexError

If d = {'a':1,'b':17,'c':0} , d['d'] = 19 extends d with a new

key-value pair

Iteration

d.keys() generates a sequence of all keys in d

f : {0, 1, … , n − 1} → {v0, v1, … , vn−1}

f : {k0, k1, … , kn−1} → {v0, v1, … , vn−1}

In [1]:

In [2]:

Out[2]:

In [3]:

In [4]:

In [5]:

Out[5]:

Iterate over keys using for k in d.keys():

for k in d: also works --- d is implicitly intepreted as d.keys()

Though the keys do not form a sequence, Python will generate them in the

order in which they were created

Similarly, d.values() is the sequence of values present

d = {'a':1,'b':17,'c':0}

list(d.keys()), list(d.values())

(['a', 'b', 'c'], [1, 17, 0])

d = {'b':17,'c':0,'a':1}

list(d.keys()), list(d.values())

(['b', 'c', 'a'], [17, 0, 1])

Example

Count frequency of numbers in a list

Maintain a counter for each value that appears in the list

Dictionary freqd where each key is a number v and freqd[v] is a positive

integer

The first time we see a number, need to create a key and assign it the value 1

If there is already a key for the current number, increment its count

Test if a key k is present using k in d.keys() (or, shorter, k in d)

def frequency(l):

 freqd = {}

 for v in l:

 if v in freqd: # Check if v is already a key

 freqd[v] = freqd[v] + 1

 else: # Create a new key with count 1

 freqd[v] = 1

 return(freqd)

d = frequency([1,2,1,3,1,4,2,3,1,5,6,2,7])

d

{1: 4, 2: 3, 3: 2, 4: 1, 5: 1, 6: 1, 7: 1}

Keys are listed in the order they are inserted

This is guaranteed by current versions of Python, need not hold for dictionaries in

general

d2 = frequency([1,2,1,3,1,4,2,3,1,5,7,2,6])

d2

In [6]:

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:

In [12]:

Out[12]:

In [13]:

In [14]:

{1: 4, 2: 3, 3: 2, 4: 1, 5: 1, 7: 1, 6: 1}

List membership

v in l returns True iff value v is in l

Implicit iteration, same as

def element(l,v):

 for x in l:

 if x == v:

 return(True)

 return(False)

Linear scan of the list, examine all elements (worst case) if v is not in l

Extract unique elements from a list

Standard loop builds a new list of unique elements

Check if each element in the original list is already in the new list before adding

def uniq(l):

 uniqlist = []

 for x in l:

 if not (x in uniqlist): # Implicit nested loop

 uniqlist.append(x)

 return(uniqlist)

Complexity

Worst case is when original list has no duplicates

l[k] will be compared to k elements in newl before being added to newl

Takes steps, which is

Proportional to

Using a dictionary

Cannot have duplicate keys in a dictionary

Create a dictionary whose keys are values in the original list

Value associated with key is not important

If we see the same value twice, the key will be updated, not duplicated

In the end, return the list of keys

def uniqd(l):

 uniqdict = {}

 for x in l:

 uniqdict[x] = 1

 return(list(uniqdict))

Complexity

Out[14]:

In [15]:

1 + 2 + ⋯ n − 1
n(n − 1)

2
n2

In [16]:

Creating/updating a key in a dictionary takes a fixed amount of time, independent of

the size of the dictionary

Assuming the hash function works well and there are no (or very few) collisions

This works effectively in time proportional to , the length of the list

We can experimentally verify this by applying both functions to a large list without

duplicates

In the examples below, we have asked for the length of the list rather than the

list itself to avoid large outputs cluttering the page

len(uniq(list(range(50000)))) # Takes a long time

50000

len(uniqd(list(range(100000)))) # Almost instantaneous

100000

len(uniqd(list(range(10000000)))) # Python can do about 10^7 ops/sec

10000000

"Classical" solution is to sort the list

In the sorted list, duplicates are bunched together

Scan the sorted list and retain an element if it is different from the previous one

Sorting takes time -- we will see this later

Scanning for duplicates takes time

Overall

def uniqs(l):

 if l == []:

 return([])

 lsorted = sorted(l)

 uniqlist,previous = [l[0]],l[0]

 for x in lsorted[1:]:

 if x != previous:

 uniqlist.append(x)

 previous = x

 return(uniqlist)

len(uniqs(list(range(50000))))

50000

len(uniqs(list(range(10000000))))

10000000

Only marginally slower than uniqd

n

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

Out[19]:

n log n

n

n log n

In [20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

Intersection of two lists

For each element v of l1 check if v occurs in l2

Nested loop

def intersect(l1,l2):

 commonlist = []

 for x in l1:

 for y in l2:

 if x == y:

 if not(x in commonlist):

 commonlist.append(x)

 return(commonlist)

len(intersect(list(range(0,100)),list(range(50,150))))

50

len(intersect(list(range(0,30000)),list(range(15000,45000))))

15000

While we scan l1 we can check if the element is in l2

x in l2 is an implicit nested iteration

Performance is same as the explicit nested loop above

def intersect2(l1,l2):

 commonlist = []

 for x in l1:

 if x in l2: # Hidden nested loop

 if not(x in commonlist):

 commonlist.append(x)

 return(commonlist)

len(intersect2(list(range(0,100)),list(range(50,150))))

50

len(intersect2(list(range(0,30000)),list(range(15000,45000))))

15000

Using dictionaries

Create a dictionary whose keys are the elements in l1

Check each element in l2 against the keys of this dictionary

Checking x in l takes time proportional to len(l)

Checking y in d.keys() takes constant time

Overall time is proportional to len(l1) + len(l2)

In [23]:

In [24]:

Out[24]:

In [25]:

Out[25]:

In [26]:

In [27]:

Out[27]:

In [28]:

Out[28]:

def intersectd(l1,l2):

 commondict = {}

 l1dict = {}

 for x in l1:

 l1dict[x] = 1

 for y in l2:

 if y in l1dict:

 commondict[y] = 1

 return(list(commondict.keys()))

len(intersectd(list(range(0,300000)),list(range(150000,450000))))

150000

"Classical" solution is to sort and merge

Sort both lists

Scan the two sorted lists in a single pass and identify common elements

Sorting takes time

Merging takes time

Overall

def intersectm(l1,l2):

 l1sort = sorted(l1)

 l2sort = sorted(l2)

 commonlist = []

 i,j = 0,0

 while i < len(l1sort) and j < len(l2sort):

 if l1sort[i] < l2sort[j]:

 i += 1

 elif l1sort[i] > l2sort[j]:

 j += 1

 elif l1sort[i] == l2sort[j]:

 if (not l1sort[i] in commonlist):

 commonlist.append(l1sort[i])

 i += 1

 j += 1

 return(commonlist)

len(intersectm(list(range(0,50000)),list(range(25000,75000))))

25000

len(intersectm(list(range(0,100000)),list(range(50000,150000))))

50000

Noticeably slower than intersectd

In [29]:

In [30]:

Out[30]:

n log n

n

n log n

In [31]:

In [32]:

Out[32]:

In [33]:

Out[33]:

