PDSP 2025, Lecture 07, 28 August 2025

Dictionaries

o Alistis a collection indexed by position
Alist can be thought of as a function f : {0,1,...,n — 1} — {vo,v1,...,vn_1}

= A list maps positions to values
 Generalize this to a function f : {ko, k1,...,kn—1} — {v0,v1,...,Un_1}
= Instead of positions, index by an abstract key
» dictionary: maps keys, rather than positions, to values
e Notation:
= d = {kl:vl, k2:v2} , enumerate adictionary explicitly
= d[k1l] ,valueindictionary d1 correspondingtokey k1
= {} , emptydictionary([] forlists, () fortuples)

d={'a":1,'b":17,'c"':0}
d['b']
17

d['d'] # Invalid key

KeyError Traceback (most recent call las
t)

In[3], line 1
----> 1 (Gl] # Invalid key

KeyError: 'd'
d['d'] = 17
d['d']

17

e Anassignment d[k] = v servestwo purposes
= Ifthereisnokey k ,createthe key and assign it the value v
= Ifthereisalready a key Kk, replaceits current value by v
* Inalist, we cannot create a value at a new position through an assignment
= If Lis [0,1,2,3], L[4] = 4 generate IndexError
w Ifd={'a':1,'b':17,'c':0}, d['d'] = 19 extends d withanew

key-value pair
Iteration

e d.keys() generatesasequenceofall keysin d

= [terate over keysusing for k in d.keys():

= for k in d: alsoworks--- d isimplicitly intepreted as d.keys()

= Though the keys do not form a sequence, Python will generate them in the
order in which they were created

o Similarly, d.values() isthe sequence of values present
d={'a":1,'b"':17,'c':0}
list(d.keys()), list(d.values())
(f'a', 'b*, 'c'l, [1, 17, 0O])
d={'b':17,'c':0,'a':1}
list(d.keys()), list(d.values())
(['b*, 'c', 'a'l, [17, 0O, 1])
Example

o Count frequency of numbersin a list
» Maintain a counter for each value that appears in the list
» Dictionary freqd where each keyisanumber v and freqd[v] isa positive
integer
= The first time we see a number, need to create a key and assign it the value 1
= If thereis already a key for the current number, increment its count

= Testifakey K ispresentusing k in d.keys() (or,shorter, k in d)

def frequency(l):
freqd = {}
for v in 1:
if v in freqd: # Check if v is already a key
freqd[v] = freqd[v] + 1
else: # Create a new key with count 1
freqd[v] =1
return(freqd)

d = frequency([1,2,1,3,1,4,2,3,1,5,6,2,7])

d

{1: 4, 2: 3, 3: 2, 4: 1, 5: 1, 6: 1, 7: 1}

o Keys are listed in the order they are inserted
o This is guaranteed by current versions of Python, need not hold for dictionaries in

general
d2 = frequency(I[1,2,1,3,1,4,2,3,1,5,7,2,6])

d2

{1: 4, 2: 3, 3: 2, 4: 1, 5:1, 7: 1, 6: 1}

List membership

e Vv in 1 returns True iffvalue v isin 1

o Implicit iteration, same as

def element(l,v):
for x in 1:
if x == v:
return(True)
return(False)

e Linear scan of the list, examine all elements (worst case) if v isnotin 1

Extract unique elements from a list

» Standard loop builds a new list of unique elements

e Check if each element in the original list is already in the new list before adding

def uniq(l):
uniqlist = []
for x in 1:
if not (x in uniqlist): # Implicit nested loop
uniglist.append(x)
return(uniqlist)

Complexity

» Worst case is when original list has no duplicates
e L[k] willbe comparedto k elementsin newl before beingaddedto newl
n(n —1)

o Takes1+ 2+ ---n — 1steps, whichis 5

= Proportional to n?

Using a dictionary

o Cannot have duplicate keys in a dictionary
» Create a dictionary whose keys are values in the original list
= Value associated with key is not important
= If we see the same value twice, the key will be updated, not duplicated

e Inthe end, return the list of keys

def uniqd(l):
unigdict = {}
for x in 1:
unigdict[x] =1
return(list(uniqgdict))

Complexity

» Creating/updating a key in a dictionary takes a fixed amount of time, independent of
the size of the dictionary
= Assuming the hash function works well and there are no (or very few) collisions

 This works effectively in time proportional to n, the length of the list

» We can experimentally verify this by applying both functions to a large list without
duplicates
= Inthe examples below, we have asked for the length of the list rather than the

list itself to avoid large outputs cluttering the page

len(uniqg(list(range(50000)))) # Takes a long time

50000

len(uniqd(list(range(100000)))) # Almost instantaneous

100000

len(uniqd(list(range(10000000)))) # Python can do about 10~7 ops/sec

10000000

e "Classical" solution is to sort the list

e Inthe sorted list, duplicates are bunched together

e Scan the sorted list and retain an element if it is different from the previous one
» Sorting takes time n log n -- we will see this later

e Scanning for duplicates takes time n

e Overallnlogn

def unigs(1):
if 1 == []:
return([])
lsorted = sorted(1)
uniqlist,previous = [1[0]],1[0]
for x in lsorted[1:]:
if x != previous:
uniglist.append(x)
previous = X
return(uniqlist)

len(unigs(list(range(50000))))

50000

len(unigs(list(range(10000000))))

10000000

e Only marginally slower than uniqd

Intersection of two lists

e Foreachelement v of 11 checkif v occursin 12

» Nested loop

def intersect(11,12):
commonlist = []
for x in 11:
for y in 12:
if x == y:
if not(x in commonlist):
commonlist.append(x)
return(commonlist)

len(intersect(list(range(0,100)),list(range(50,150))))

50

len(intersect(list(range(0,30000)),list(range(15000,45000))))

15000

e Whilewe scan 11 we can check if the elementisin 12
e x 1in 12 isanimplicit nested iteration

o Performance is same as the explicit nested loop above

def intersect2(11,12):
commonlist = []
for x in 11:
if x in 12: # Hidden nested loop
if not(x in commonlist):
commonlist.append(x)
return(commonlist)

len(intersect2(list(range(0,100)),list(range(50,150))))

50

len(intersect2(list(range(0,30000)),list(range(15000,45000))))

15000

» Using dictionaries
» Create a dictionary whose keys are the elementsin 11

= Check each elementin 12 against the keys of this dictionary

Checking x in 1 takestime proportionalto len(1)

Checking y in d.keys() takes constanttime

Overall time is proportionalto len(l1l) + len(12)

def intersectd(11,12):
commondict = {}
lldict = {}
for x in 11:
lldict[x] =1
for y in 12:
if y in lldict:
commondict[y] =1
return(list(commondict.keys()))

len(intersectd(list(range(0,300000)),list(range(150000,450000))))

150000

o "Classical" solution is to sort and merge
= Sort both lists

= Scan the two sorted lists in a single pass and identify common elements

Sorting takes time nlogn

Merging takes time n

Overallnlogn

def intersectm(11,12):
l1lsort = sorted(11)
12sort = sorted(12)
commonlist = []
i,j =0,0
while i < len(llsort) and j < len(12sort):
if l1lsort[i] < 12sort[j]:
i+=1
elif llsort[i] > 12sort[j]:
j +=1
elif llsort[i] == 12sort[j]:
if (not llsort[i] in commonlist):
commonlist.append(llsort[i])
i+=1
j+=1
return(commonlist)

len(intersectm(list(range(0,50000)),list(range(25000,75000))))

25000

len(intersectm(list(range(0,100000)),list(range(50000,150000))))

50000

* Noticeably slower than intersectd

