PDSP 2025, Lecture 05, 21 August 2025

Conditional statement

if allows conditional execution

if condition:
statement 1

statement k
else:
statement 1'

statement k'

e If condition evaluatesto True, the first block is executed, otherwise the
second block.

e The else: blockis optional.If thereisno else: block and the condition
evaluates to False , execution skips over to the next statement after the if

e Example: Compute the absolute value of a number

def myabs(x): # myabs to avoid any confusion with built-in abs()
if x < 0:
return(-x)
else:
return(x)

myabs (-9), myabs(7)

(9, 7)

Multiway branching --- elif

r<0 = -1,
Suppose we want to compute sign(z) =< =0 = 0,
x>0 =1

In Python, we would have to nest if statements like this:

if x < 0:
return(-1)
else:
if x ==
return(0):
else:
return(l)



e As we see, the indentation of the nested if pushes the code to the right
¢ With more cases, this would become worse
e Python provides elif to avoid this cascaded nesting

if x < 0:
return(-1)

elif x ==
return(0):

else:
return(1)

e Can have as many elif blocks as you need
e else isstill optional

def sign(x):
if x < 0:
return(-1)
elif x ==
return(0)
else:
return(1)

sign(-7)

-1

sign(8)

sign(0)

Lists

e Sequences of values, indexed by position
e Foralist with n values, valid positionsare 0 to n-1
= len(l) givesthe length of alist
e Accessing a position beyond len(1l)-1 resultsin IndexError

1 = list(range(20,40))

len(l), 1[3], 1[19]

(20, 23, 39)

1[20]



IndexError Traceback (most recent call las
t)

In[9], line 1
----> 1 1[20]

IndexError: list index out of range

e What about indices below 0 ?

e Index -j isinterpretedas len(l)-j
= Useful for accessing values from the end of the list
= Valid indices in reverseare -1, -2,.. -len(l)

[-1], 1[-20]

(39, 20)

Slices

e Recall that nprimes(n) computed the first n primes

def isprime(n):
for j in range(2,n):
if n% j == 0:
return(False)
return(True)

def nprimes(n):
plist = []
j =2
while (len(plist) < n):
if isprime(j):
plist.append(j)
j = j+1
return(plist)

first20primes = nprimes(20)

first20primes

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71]

What are the primes from 11 to 15?

Need a sublist of the original list
1[i:j] isthelist [L[1], l[[i+1], ..., 1[j-11]
Similar to

newl = []
for k in range(i,j):
newl.append (k)

first20primes[11:16]



[37, 41, 43, 47, 53]

e like range() iftheindices don't make sense, you get an empty list
first20primes[11:10]

[]

e Unlike accessing l[1] , can give upper bound beyond the list
e 1[i:len(l)+10] isinterpretedas l[i:len(1)]

first20primes[11:40]

[37, 41, 43, 47, 53, 59, 61, 67, 71]

e Can omit the upper bound, defaultsto len(1)
first20primes[15:]

[53, 59, 61, 67, 71]

e Likewise, omit the lower bound, defaults to 0
first20primes[:10]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

e Omit both lower and upper bound to geta full slice
= Full slice returns a new list that is a copy of the list
= Significance will become clearer later
first20primes|:]
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71]

More about range()

range(i,j) generatesthe sequence i,i+1,...,j-1

range(n) generatesthe sequence 0,1,...,n-1 --implicitly starts with 0

What if we want to skip over some numbers
= All even numbers from 4 to 40

Optional third argument is the step size
= range(i,j,k) is i,i+k,...,i+mk for thelargest m such that i+mk
< j and i+(m+l)k >= j

list(range(4,41,2)) # Even numbers from 4 to 40



[4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 4
0]

list(range(4,40,2)) # Even numbers from 4 to 38

(4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38]

e Can also count down -- give a negative step!

list(range(10,0,-1))

[1Gl 9' 8I 7l 6I 5’ 4' 3' 2l 1]

e range(i,j,k) generate i, i+k, ... sothatthe sequence does not cross
]

¢ Depending on whether it is increasing or decreasing, the last value will be less
than j orgreater than j

Stepped slices

e Can similarly give a third argument in a slice

first20primes[2:20:3]
[5, 13, 23, 37, 47, 61]

first20primes[19:0:-1]

[71, 67, 61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13, 11, 7, 5,
3]

e Explain the following output. (Hint, whatis 1[-1] ?)

first20primes[19:-1:-1]
[]
e Can omit upper and lower bounds but give a step

e 1[::-1] istheentirelistin reverse
= Note that the default lower and upper bound are determined by the step

first20primes|[::-1]

[71, 67, 61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13, 11, 7, 5,
3, 2]

Assigning slices

e Can assign alist to a slice



1 = list(range(20,30))
1[3:6] = [53,54,55]

1

[20, 21, 22, 53, 54, 55, 26, 27, 28, 29]

e Can contract or expand the slice when reassigning
¢ Indices of values to the right will change

1 = list(range(20,30))
1[3:5] = [53,54,55,63,64,65]

1

[20, 21, 22, 53, 54, 55, 63, 64, 65, 25, 26, 27, 28, 29]

1 = list(range(20,30))
1[3:5] = []

1

[20, 21, 22, 25, 26, 27, 28, 29]

Operations on lists

e Recall that + concatenates two lists
e Returns a new list
e Original lists are unchanged

11 = [1,2,3]
12 = [4,5,6]
13 =11 + 12
13, 11, 12

([1I 2' 3’ 4' 5I 6]' [1l 2' 3]' [4l 5I 6])

e A useful invariant about slices
e Foranylist 1,andanyinteger j, 1 == 1[:j] + 1[j:]

13[:-1]1+13[-1:]
[1, 2, 3, 4, 5, 6]

13[:2]+13[2:]

[1, 2, 3, 4, 5, 6]

13[:9]1+13[9:1



[1, 2, 3, 4, 5, 6]

Applying functions to lists

e Ll.append(v) isthesameas 1 = 1+[v]

Ask the list 1 to append v toitself
Ll.append(v) updates 1 in place

1 = l+[v] creates anew list and reassigns the list pointed to by 1
= Again, we will see the significance of this later

13.append(7)

13

[1I 2’ 3' 4’ 5' 6I 7]

e Itis a mistake to reassign a list after an append()

13 = 13.append(8)

13

e Assignment v = e storesreturnvalueof e in v
e Returnvalue of l.append() isempty

Other functions

e 1l.insert(pos,val) inserts val atposition p
= Similarto 1 = 1[:pos] + [val] + l[pos:]
e Ll.extend(newl) extends 1 with alist of values newl
= Similarto 1 = 1 + newl
e Like l.append(v) , these update the list in place, do not reassign return value

13 =11,2,3,4,5,6,7]
13.insert(0,0)

13

[OI 1' 2! 3’ 4' 5! 6’ 7]
13.extend([8,9,10])

13

[OI 1’ 2' 3’ 4' 5I 6’ 7l 8' 9’ 10]

Sorting



e 1l.sort() sortsalistin place
= Python allows lists of mixed types

= To sort a list, the values must be of a uniform comparable type
1=11,15,3,7,9,2]
l.sort()
1
[1, 2, 3, 7, 9, 15]
badl = [1, 'CSK',True,7.5]

badl.sort()

TypeError Traceback (most recent call las
t)

In[52], line 1
----> 1 badl.sort()

TypeError: '<' not supported between instances of 'str' and 'int'

blist = [True,Falsel]
blist.sort()

blist

[False, True]

o If you want a sorted copy of 1 without disturbing 1, use sorted(1l)

1 = [15, 1600, 9, 7, 3, 2, 1]
1

[15, 1000, 9, 7, 3, 2, 1]
sorted (1)

[1, 2, 3, 7, 9, 15, 1000]

1

[15, 1le00, 9, 7, 3, 2, 1]

e Can store a copy of the sorted list in another list

newl = sorted(1l)



newl, 1

(r1, 2, 3, 7, 9, 15, 1000], [15, 1000, 9, 7, 3, 2, 1])

e Can we, instead, first copy L and sort the copy in place using sort() ?

newl = 1
newl.sort()

newl

(1, 2, 3, 7, 9, 15, 1000]

1

[1, 2, 3, 7, 9, 15, 1000]

e Sorting newl alsosorts 1
e This does not happen with types like int
e We will investigate this later

y =17
X =Yy
X,y
(7, 7)
x = 17
X,y
(17, 7)

e Many other built-in functions on lists
m l.reverse() reverses alist
e Look up Python documentation



