
PDSP 2025, Lecture 04, 19 August 2025

Checking if a number is prime
Checking if n is a prime: assume it is, and flag that is not if we find a factor
between 2 and sqrt(n)

import math

n = 25

isprime = True

for i in range(2,int(math.sqrt(n))+1): # int(...) truncates a float to a

 if n % i == 0:

 isprime = False

isprime

False

Computing primes upto n

Instead of checking if n is a prime, find all primes upto (and including) n
Generate the sequence 2,3,...,n
For each element in this sequence, check if it is a prime
Accumulate all primes found in a list

Recall that l1 + l2 concatenates two lists into a single list
Two nested loops, use different variables j and i to iterate

n = 100

primelist = []

for j in range(2,n+1):

 isprime = True

 for i in range(2,j):

 if j % i == 0:

 isprime = False

 if isprime:

 primelist = primelist + [j]

primelist

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

[2,

3,

5,

7,

11,

13,

17,

19,

23,

29,

31,

37,

41,

43,

47,

53,

59,

61,

67,

71,

73,

79,

83,

89,

97]

Appending a value to a list
Can also use l.append(v) to add an element v to a list
Note the distinction between l + [v] and l.append(v)

In the first case, we have to make v into a singleton list [v] to use the
operator +

n = 100

primelist = []

for j in range(2,n+1):

 isprime = True

 for i in range(2,j):

 if j % i == 0:

 isprime = False

 if isprime:

 primelist.append(j)

primelist

Out[5]:

In [6]:

In [7]:

[2,

3,

5,

7,

11,

13,

17,

19,

23,

29,

31,

37,

41,

43,

47,

53,

59,

61,

67,

71,

73,

79,

83,

89,

97]

Functions
Modularise code into functional units
Instead of embedding code to check if j is a prime, call a function that returns
True if j is a prime and False otherwise

Function definition starts with def function_name (argument1,
argument2, ...):

When the function completes, it should report an answer -- return a value
through return(v)

def isprime(n):

 status = True

 for i in range(2,n):

 if n % i == 0:

 status = False

 return(status)

isprime(17), isprime(25)

(True, False)

Exiting a function in between
If we find a factor, we can declare the number to not be a prime without testing
more factors
In the original implementation, we needed to exit the loop
return() automatically exits, so we can use this optimisation in the function

Out[7]:

In [8]:

In [9]:

Out[9]:

def isprime2(n): # An equivalent defn, terminates with False at first fac

 status = True

 for i in range(2,n):

 if n % i == 0:

 status = False

 return(status)

 return(status)

isprime2(47), isprime2(44)

(True, False)

In fact, we don't even need the variable status
If we find a factor, return(False)
If the search for a factor ends without finding one, return(True)

def isprime3(n): # An equivalent defn, without a separate status varia

 for i in range(2,n):

 if n % i == 0:

 return(False)

 return(True)

isprime3(571), isprime3(573)

(True, False)

Using functions
We can rewrite our code to search for primes upto n to call the function
isprime for each candidate

Recall that in our earlier, explicit, code, we had to rename the outer loop
variable as j to avoid a clash with the loop through potential factors
If we use a function, the i inside the function is different from the i
outside the function

n = 100

primelist = []

for i in range(2,n+1):

 if isprime(i):

 primelist.append(i)

primelist

In [10]:

In [11]:

Out[11]:

In [12]:

In [13]:

Out[13]:

In [14]:

In [15]:

[2,

3,

5,

7,

11,

13,

17,

19,

23,

29,

31,

37,

41,

43,

47,

53,

59,

61,

67,

71,

73,

79,

83,

89,

97]

We can convert this search for primes upto n into another function

def primesupto(n):

 primelist = []

 for i in range(2,n+1):

 if isprime(i):

 primelist.append(i)

 return(primelist)

primesupto(30)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

primesupto(70)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

primesupto(1000)

Out[15]:

In [16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

[2,

3,

5,

7,

11,

13,

17,

19,

23,

29,

31,

37,

41,

43,

47,

53,

59,

61,

67,

71,

73,

79,

83,

89,

97,

101,

103,

107,

109,

113,

127,

131,

137,

139,

149,

151,

157,

163,

167,

173,

179,

181,

191,

193,

197,

199,

211,

223,

227,

229,

233,

239,

241,

251,

257,

263,

269,

271,

277,

281,

Out[19]:

283,

293,

307,

311,

313,

317,

331,

337,

347,

349,

353,

359,

367,

373,

379,

383,

389,

397,

401,

409,

419,

421,

431,

433,

439,

443,

449,

457,

461,

463,

467,

479,

487,

491,

499,

503,

509,

521,

523,

541,

547,

557,

563,

569,

571,

577,

587,

593,

599,

601,

607,

613,

617,

619,

631,

641,

643,

647,

653,

659,

661,

673,

677,

683,

691,

701,

709,

719,

727,

733,

739,

743,

751,

757,

761,

769,

773,

787,

797,

809,

811,

821,

823,

827,

829,

839,

853,

857,

859,

863,

877,

881,

883,

887,

907,

911,

919,

929,

937,

941,

947,

953,

967,

971,

977,

983,

991,

997]

Functions and modularity
Functions modularise code
Each function has an interface contract -- if the input is valid, the output is

Can change the implementation of the function so long as the interface
contract is upheld

Any one of our three implmentations of isprime can be used

x

f(x)

For instance, can use a naive implementation as a prototype and later
replace by a more refined, optimised implementation

First primes
What if we want a list of the first primes?

Generate numbers 2,3,... and check if each one is a prime
Stop when we have generated primes

We don't know the upper bound of the list 2,3,...

Can't use range()

Instead, a new kind of loop

"Manually" generate the sequence
Stop when we reach the terminating condition

while (condition):

 statement 1

 ...

 statement k

If condition evaluates to True the block of k statements is executed
After this, the condition is checked again and the same process is repeated
Compare to if where the condition is evaluated once

if (condition):

 statement 1

 ...

 statement k

def nprimes(n):

 primelist = []

 i = 2

 while (len(primelist) < n):

 if (isprime(i)):

 primelist.append(i)

 i = i+1

 return(primelist)

nprimes(20)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71]

Infinite loops
Need to ensure that the statements make progress towards falsifying the
condition
If the condition remains True forever, the loop never terminates

n

n

n

In [20]:

In [21]:

Out[21]:

For instance, suppose there were only finitely many primes, say . For any
, the length of primelist would saturate at so the condition

len(primelist) < n would never become False

Looping --- for and while

while is more general than for

Can implement

for x in l:

 ...

using while by explicitly going through l from first to last position

pos = 0

while (pos < len(l)):

 ...

 pos = pos + 1

Note that we have to move the position "manually" to ensure that we make
progress towards termination
However, using for is preferred if it is clearly an iteration over a fixed
sequence

The intent is capture much more clearly
In the while form it is slightly obfuscated

Boolean datatypes
Usually an outcome of comparisons: == , != , < , <= , > , >=
Useful shortcut

Any "empty" value is interpreted as False
So 0 , [] , "" (empty string) are all False
Any other value is interpreted as True

Avoid comparisons such as if x == 0 or if l != []
Write if not(x) , if l instead

l = [1,2,3]

if l:

 x = True

else:

 x = False

x

True

M

n > M M

In [22]:

In [23]:

Out[23]:

m = 0

if not(m):

 y = True

else:

 y = False

y

True

Note that Python does not insist on brackets around the condition in if and
while

Can write if (cond): or if cond: , while (cond): or while
cond:

Variables, values and types
Variables (names) have no intrinsic types
Values have types

A variable inherits the type of the value it currently holds
The type of value a variable holds can vary over time

But not a good idea to use the same name for different types of values in
the same piece of code
Reduces readability, maintainability

The type() function returns the type of a variable that is currently assigned a
value

x = True

type(x)

bool

x = 5

type(x)

int

The function del() unassigns a value from a name

del(x)

type(x)

In [24]:

In [25]:

Out[25]:

In [26]:

In [27]:

Out[27]:

In [28]:

In [29]:

Out[29]:

In [30]:

In [31]:

--

-

NameError Traceback (most recent call las

t)

Cell In[31], line 1

----> 1 type(x)

NameError: name 'x' is not defined

