PDSP 2025, Lecture 04, 19 August 2025

Checking if a number is prime

e Checkingif n isa prime: assume itis, and flag that is not if we find a factor
between 2 and sqrt(n)

import math

n =25
isprime = True
for i in range(2,int(math.sqrt(n))+1): # int(...) truncates a float to a
if n % i == 0:
isprime = False

isprime

False

Computing primes upto n

e Instead of checking if n is a prime, find all primes upto (and including) n
e Generate the sequence 2,3,...,n
e For each element in this sequence, check if it is a prime
e Accumulate all primes found in a list
= Recallthat 11 + 12 concatenates two lists into a single list
e Two nested loops, use different variables j and i to iterate

n = 100
primelist = []
for j in range(2,n+1l):
isprime = True
for i in range(2,j):
if j % 1 == 0:
isprime = False
if isprime:
primelist = primelist + [j]

primelist



7,

11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
971

Appending a value to a list

e Canalsouse l.append(v) toaddanelement v to alist
¢ Note the distinction between 1 + [v] and 1l.append(v)
= In the first case, we have to make v into asingletonlist [v] to usethe
operator +

n = 100
primelist = []
for j in range(2,n+l):
isprime = True
for i in range(2,j):
if j % 1 == 0:
isprime = False
if isprime:
primelist.append(j)

primelist



7,

11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
971

Functions

e Modularise code into functional units

¢ Instead of embedding code to check if j is a prime, call a function that returns
True if j isaprimeand False otherwise

¢ Function definition starts with def function name (argumentl,
argument2, ...):

e When the function completes, it should report an answer -- return a value
through return(v)

def isprime(n):
status = True
for i in range(2,n):
if n % i == 0:
status = False
return(status)

isprime(17), isprime(25)

(True, False)

Exiting a function in between

o If we find a factor, we can declare the number to not be a prime without testing
more factors

e In the original implementation, we needed to exit the loop

e return() automatically exits, so we can use this optimisation in the function



def isprime2(n): # An equivalent defn, terminates with False at first fac
status = True
for i in range(2,n):
if n % i ==
status = False
return(status)
return(status)

isprime2(47), isprime2(44)
(True, False)
e In fact, we don't even need the variable status

e If we find a factor, return(False)
o If the search for a factor ends without finding one, return(True)

def isprime3(n): # An equivalent defn, without a separate status varia
for i in range(2,n):
if n% i==0:

return(False)
return(True)

isprime3(571), isprime3(573)

(True, False)

Using functions

e We can rewrite our code to search for primes upto n to call the function
isprime for each candidate
= Recall that in our earlier, explicit, code, we had to rename the outer loop
variable as j to avoid a clash with the loop through potential factors
= If we use a function, the 1 inside the function is different from the i
outside the function

n = 100
primelist = []
for i in range(2,n+1):
if isprime(i):
primelist.append(1i)

primelist



7,

11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
971

e We can convert this search for primes upto n into another function

def primesupto(n):
primelist = []
for i in range(2,n+1):
if isprime(i):
primelist.append (i)
return(primelist)

primesupto(30)

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

primesupto(70)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

primesupto(1000)



101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,



283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,



661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997]

Functions and modularity

e Functions modularise code
e Each function has an interface contract -- if the input z is valid, the output is
f(=)
e Can change the implementation of the function so long as the interface
contract is upheld
= Any one of our three implmentations of isprime can be used



= Forinstance, can use a naive implementation as a prototype and later
replace by a more refined, optimised implementation

First n primes

What if we want a list of the first n primes?

e Generate numbers 2,3,... and check if each one is a prime
e Stop when we have generated n primes

We don't know the upper bound of the list 2,3,...
e Can'tuse range()
Instead, a new kind of loop

e "Manually" generate the sequence
e Stop when we reach the terminating condition

while (condition):
statement 1

statement k

e If condition evaluatesto True the block of k statements is executed
e After this, the condition is checked again and the same process is repeated
e Compareto if where the condition is evaluated once

if (condition):
statement 1

statement k

def nprimes(n):
primelist = []
i=2
while (len(primelist) < n):
if (isprime(i)):
primelist.append (i)
i=i+1
return(primelist)

nprimes(20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71]

Infinite loops

¢ Need to ensure that the statements make progress towards falsifying the

condition
¢ If the condition remains True forever, the loop never terminates



¢ Forinstance, suppose there were only finitely many primes, say M. For any
n > M, the length of primelist would saturate at M so the condition
len(primelist) < n would never become False

Looping --- for and while
e while is more general than for

e Canimplement

for x in 1:

using while by explicitly going through 1 from first to last position

pos = 0
while (

pos < len(l)):
pos = pos + 1

e Note that we have to move the position "manually” to ensure that we make
progress towards termination
e However, using for is preferred if it is clearly an iteration over a fixed
sequence
= The intent is capture much more clearly
= Inthe while formitis slightly obfuscated

Boolean datatypes

e Usually an outcome of comparisons: ==, =, <, <=, >, >=
o Useful shortcut

= Any "empty" value is interpreted as False

= So 0, [], "" (emptystring) are all False

= Any other value is interpreted as True
e Avoid comparisonssuchas if x == 0 or if 1 != []

= Write if not(x), if 1 instead

1=1[1,2,3]
if 1:

X = True
else:

x = False
X

True



m=0

if not(m):

y = True
else:

y = False
y
True

¢ Note that Python does not insist on brackets around the conditionin if and
while
= Canwrite if (cond): or if cond:, while (cond): or while
cond:

Variables, values and types

e Variables (names) have no intrinsic types
e Values have types
= Avariable inherits the type of the value it currently holds
e The type of value a variable holds can vary over time
= But not a good idea to use the same name for different types of values in
the same piece of code
= Reduces readability, maintainability
e The type() function returns the type of a variable that is currently assigned a
value

X = True

type(x)

bool

type(x)
int

e The function del() unassigns a value from a name
del(x)

type(x)






