Programming and Data Structures with Python 2025

Assignment 5

12 Nov 2025, due 20 Nov 2025

Setting

Our goal is to build a (not necessarily balanced) binary search tree for a collection of integers in which all the
values in the collection are actually stored at the leaves. As usual, we assume there is at most one copy of any
value stored as a leaf in the tree. Values may repeat as search keys in internal nodes.

The intermediate nodes help us navigate to the leaf where a value is stored (or should be stored, in case it does
not exist in the tree). Since values are at the leaves, the interpretation of an intermediate node with a value v is

as follows:

o All values strictly less than v (i.e., < v) are in the left subtree

o All values greater than or equal to v (i.e., > v) are in the right subtree

An example is given on the next page.

Task

1. Define a class Node with a modifed structure, as follows:

Each node has four fields: tag, value, left, right

tag is a string with value "I" (i.e., "Internal") for non-leaf nodes and "L" (i.e., "Leaf") for leaf
nodes.

value is an integer in the collection. For internal nodes, this is used to navigate left or right, as
described above. For leaf nodes, this represents the actual integer in the collection.

As usual, left and right point to the roots of the left and right subtrees of a node. If there is no
subtree, use the value None. A leaf will therefore have both left and right set to None.

The empty tree is denoted by a single leaf node with value None. In a non-empty tree, no node should
have value None. A collection containing a single value v is represented by a single leaf node with
value set to v.

2. Like the binary search trees discussed in class, the constructor __init__ should allow creation of an empty
tree or a leaf containing a single value.

3. The data structure should support the usual functions find(v), insert(v) and delete(v).

4. The function __str__ should generate a string that lists all the nodes in the tree using inorder traversal
(recursively list the left subtree, then the root, then the right subtree). Each node should be represented in
the list as a pair (tag,value).

5. Submit a Python file with a definition for the class Node that implements the functions above. You may
use auxiliary functions as needed. You may also add extra fields within a node.

Implementation notes

e Any internal node should have two children.

— If it has only one child which is a leaf, copy that value to the current node and convert it into a leaf

node.

— If it has only one child that is an internal node, promote that child to replace the current node.

e The values stored in intermediate nodes should be values present in the collection. You can verify that the
value at any intermediate node should be the minimum value in the right subtree of the node.



o All deletions happen at the leaves. This may require promoting a node on the other branch and adjusting
values at higher levels to restore the previous two invariants.

Example

Here is one possible search tree on the values {1,2,3,4,5}. Inside each node, we have shown the fields in the
order (tag,left,value,right), so that value comes between left and right, for better visualization.

== =2l [ef=fs[=) Lrfefs]e]

The __str__ function would display this tree as [("L",1), ('I",2), ('L",2), ("I",3), ("L",3),
(llIll,4), (IILII’4)’ (IIIII,S), (IlLll’5)].

Instructions
e Submit your solution through Moodle as a single Python notebook

¢ Add documentation to explain at a high level what your code is doing




	Programming and Data Structures with Python 2025
	Assignment 5
	12 Nov 2025, due 20 Nov 2025
	Setting
	Task
	Implementation notes
	Example



