Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 19, 25 Oct 2022

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element

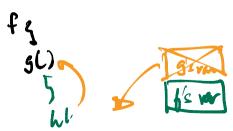
check empty stack

- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element
- Stack defined using classes:

```
s.push(x), s.pop()
```


- Stack is a last-in, first-out sequence
- push(s,x) add x to stack s
- pop(s) return most recently added element
- Maintain stack as list, push and pop from the right
 - push(s,x) is s.append(x)
 - s.pop() Python built-in, returns last element
- Stack defined using classes:
 - s.push(x), s.pop()

- Stacks are natural to keep track of local variables through function calls
 - Each function call pushes current frame onto a stack
 - When function exits, pop its frame off the stack



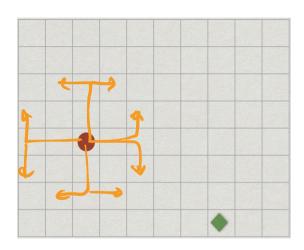
Queue

- First-in, first-out sequence
- \blacksquare addq(q,x) adds x to rear of queue q
- removeq(q) removes element at head of q

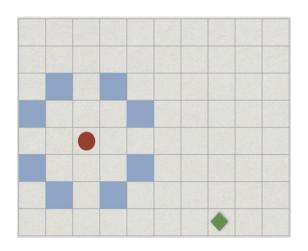
Queue

- First-in, first-out sequence
- \blacksquare addq(q,x) adds x to rear of queue q
- removeq(q) removes element at head of q
- Using Python lists, left is rear, right is front
 - addq(q,x) is q.insert(0,x)
 - insert(j,x), insert x before position j
 - removeq(q) is q.pop()

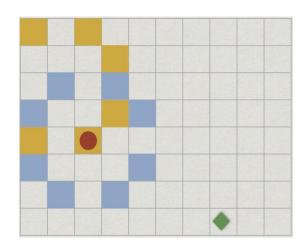
- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (tx, ty)? ♦



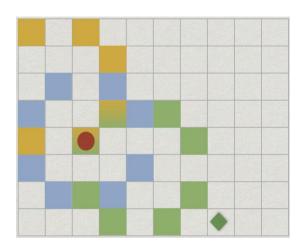
- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (tx, ty)? ♦



- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy) ●
- Usual knight moves
- Can it reach a target square (tx, ty)? ◆



- Rectangular $m \times n$ grid
- Chess knight starts at (sx, sy)
- Usual knight moves
- Can it reach a target square (tx, ty)? ◆



- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

- If we reach target square
- What if target is not reachable?

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move
- Don't explore an already marked square
- When do we stop?

- If we reach target square
- What if target is not reachable?

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move

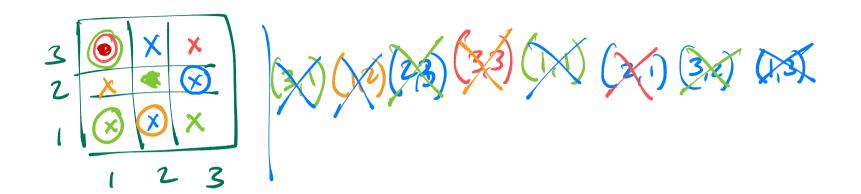
- Don't explore an already marked square
- When do we stop?
 - If we reach target square
 - What if target is not reachable?
- rget is not reachable? 12 11 8 7 6 5 4 3 XX

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
 - \blacksquare Remove (ax, ay) from head of queue
 - Mark all squares reachable in one step from (ax, ay)
 - Add all newly marked squares to the queue

- X1 all squares reachable in one move from (sx, sy)
- X2 all squares reachable from X1 in one move

- Don't explore an already marked square
- When do we stop?
 - If we reach target square
 - What if target is not reachable?

- Maintain a queue Q of cells to be explored
- Initially Q contains only start node (sx, sy)
 - \blacksquare Remove (ax, ay) from head of queue
 - Mark all squares reachable in one step from (ax, ay)
 - Add all newly marked squares to the queue
- When the queue is empty, we have finished



Job scheduler

 A job scheduler maintains a list of pending jobs with their priorities

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Job scheduler

- A job scheduler maintains a list of pending jobs with their priorities
- When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it
- New jobs may join the list at any time
- How should the scheduler maintain the list of pending jobs and their priorities?

Priority queue

- Need to maintain a collection of items with priorities to optimise the following operations
- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the collection

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - delete_max() is O(n)

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - \blacksquare delete_max() is O(n)
- Sorted list
 - \blacksquare delete_max() is O(1)
 - insert() is O(n)

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

- Unsorted list
 - insert() is O(1)
 - \blacksquare delete_max() is O(n)
- Sorted list
 - \blacksquare delete_max() is O(1)
 - insert() is O(n)
- Processing *n* items requires $O(n^2)$

- delete_max()
 - Identify and remove item with highest priority
 - Need not be unique
- insert()
 - Add a new item to the list

Moving to two dimensions

First attempt

Assume N processes enter/leave the queue

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

Moving to two dimensions

First attempt

- Assume N processes enter/leave the queue
- Maintain a $\sqrt{N} \times \sqrt{N}$ array
- Each row is in sorted order

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

■ Keep track of the size of each row

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

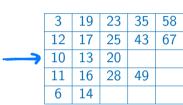
- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine

N — 23

	3	19	23	35	58
	12	17	25	43	67
ľ	10	13	20		
ľ	11	16	28	49	
	6	14			

5	
5	
3	
4	
2	

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15



		70 —	25		
3	19	23	35	58	5
L2	17	25	43	67	5
LO	13	20			3
1	16	28	49		4
6	1/1				2

M - 25

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

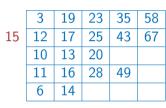
$$N = 25$$

15	3	19	23	35	58
	12	17	25	43	67
	10	13	20		
	11	16	28	49	
	6	14			

5
5
3
4
2

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

$$N = 25$$



5
5
3
4
_

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

N =	25
-----	----

15	3	19	23	35	58
	12	17	25	43	67
	10	13	20		
	11	16	28	49	
	6	14			

5
5
3
4
_

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5	
5	
3	
4	

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15

Ν	=	25

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

- Keep track of the size of each row
- Insert into the first row that has space
 - Use size of row to determine
- Insert 15
- Takes time $O(\sqrt{N})$
 - Scan size column to locate row to insert, $O(\sqrt{N})$
 - Insert into the first row with free space, $O(\sqrt{N})$

70 — 20

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5
5
4
4

Maximum in each row is the last element

19	23	35	58
17	25	43	67
13	15	20	
16	28	49	
14			
	17 13 16	17 25 13 15 16 28	17 25 43 13 15 20 16 28 49

5 4 4

- Maximum in each row is the last element
- Position is available through size column

Λ	' =	25
		_

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5	
5	
4	
4	
2	

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these

Ν	=	25
		_

3	19	23	35	58
12	17	25	43	67
10	13	15	20	
11	16	28	49	
6	14			

5	
5	
4	
4	
2	

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it

Ν	=	25
/ V		

	3	19	23	35	58
	12	17	25	43	
	10	13	15	20	
ľ	11	16	28	49	
	6	14			

5	
4	
4	
4	
_	

- Maximum in each row is the last element
- Position is available through size column
- Identify the maximum amongst these
- Delete it
- Again $O(\sqrt{N})$
 - Find the maximum among last entries, $O(\sqrt{N})$
 - Delete it, O(1)

N =	25
-----	----

	3	19	23	35	58
ľ	12	17	25	43	
ľ	10	13	15	20	
ľ	11	16	28	49	
	6	14			

5	
4	
4	
4	

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing N items is $O(N\sqrt{N})$

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height $O(\log N)$
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - Processing *N* items is $O(N \log N)$

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

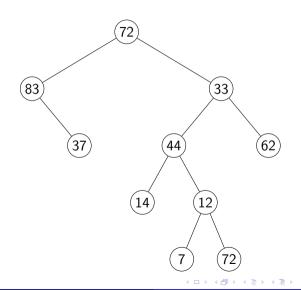
- 2D $\sqrt{N} \times \sqrt{N}$ array with sorted rows
 - insert() is $O(\sqrt{N})$
 - delete_max() is $O(\sqrt{N})$
 - Processing *N* items is $O(N\sqrt{N})$
- Can we do better?
- Maintain a special binary tree heap
 - Height $O(\log N)$
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - Processing *N* items is $O(N \log N)$
- Flexible need not fix N in advance

$$N = 25$$

3	19	23	35	58
12	17	25	43	67
10	13	20		
11	16	28	49	
6	14			

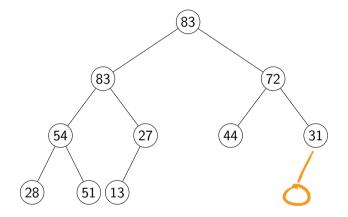
Binary trees

- Values are stored as nodes in a rooted tree
- Each node has up to two children
 - Left child and right child
 - Order is important
- Other than the root, each node has a unique parent
- Leaf node no children
- Size number of nodes
- Height number of levels



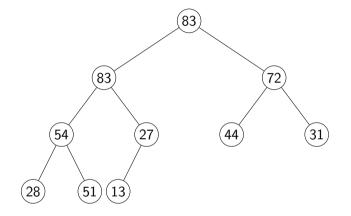
Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap



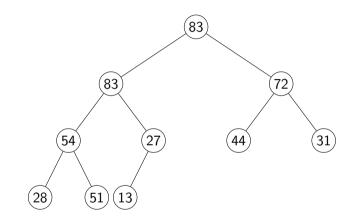
Heap

- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap



Heap

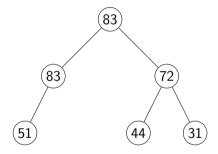
- Binary tree filled level by level, left to right
- The value at each node is at least as big the values of its children
 - max-heap
- Binary tree on the right is an example of a heap
- Root always has the largest value
 - By induction, because of the max-heap property



13 / 23

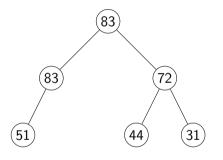
Non-examples

No "holes" allowed

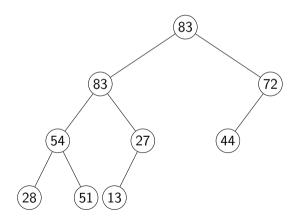


Non-examples

No "holes" allowed

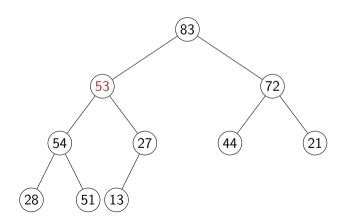


Cannot leave a level incomplete

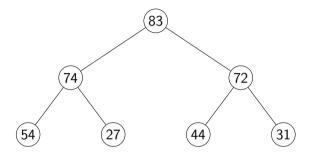


Non-examples

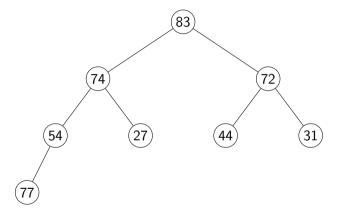
Heap property is violated



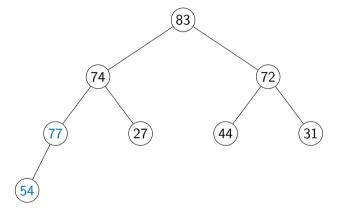
■ insert(77)



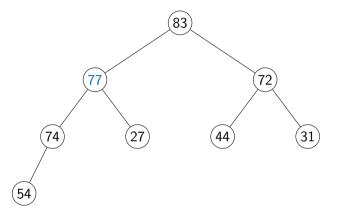
- insert(77)
- Add a new node at dictated by heap structure



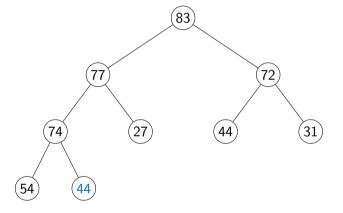
- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root



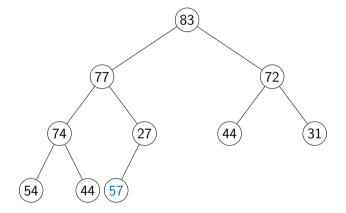
- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root



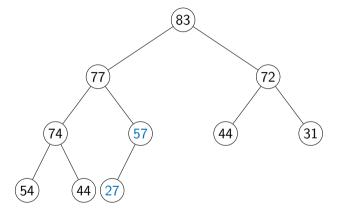
- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)



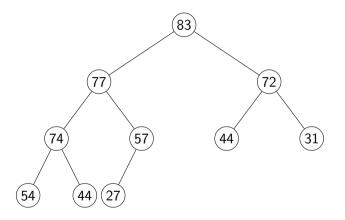
- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)



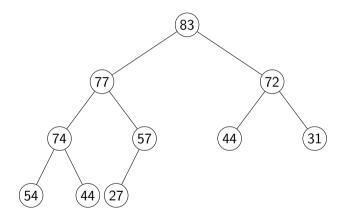
- insert(77)
- Add a new node at dictated by heap structure
- Restore the heap property along path to the root
- insert(44)
- insert(57)



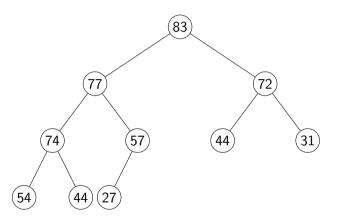
- Need to walk up from the leaf to the root
 - Height of the tree



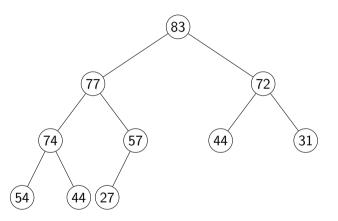
- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$



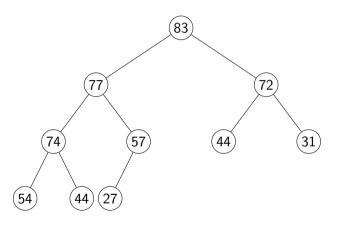
- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}



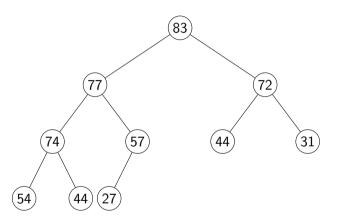
- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^{0} + 2^{1} + \dots + 2^{k-1} = 2^{k} - 1$ nodes



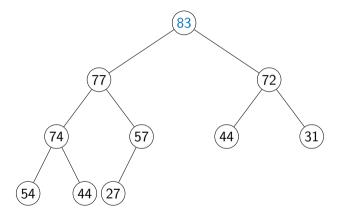
- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have N nodes, at most $1 + \log N$ levels



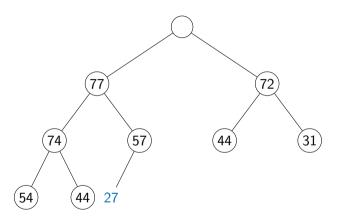
- Need to walk up from the leaf to the root
 - Height of the tree
- Number of nodes at level 0 is $2^0 = 1$
- Number of nodes at level j is 2^{j}
- If we fill k levels, $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$ nodes
- If we have *N* nodes, at most 1 + log *N* levels
- insert() is $O(\log N)$



Maximum value is always at the root

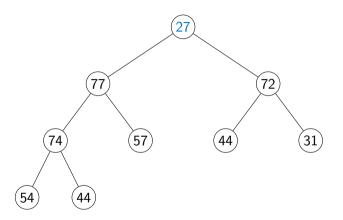


- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level

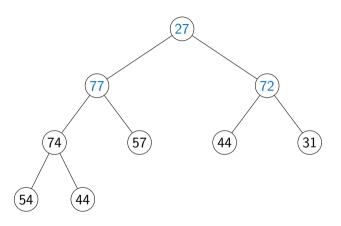


18 / 23

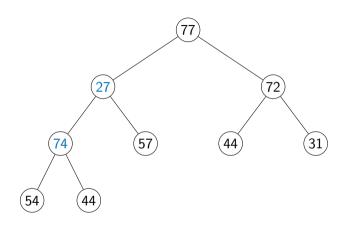
- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root



- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards

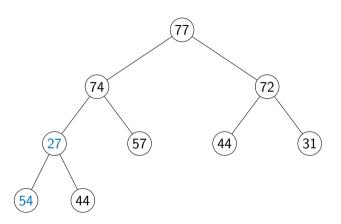


- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$



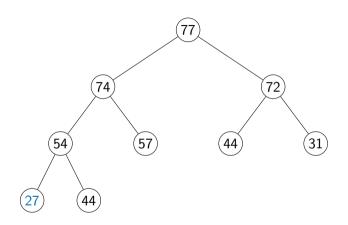
delete_max()

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$



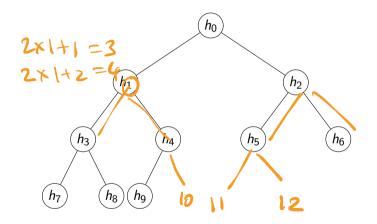
delete_max()

- Maximum value is always at the root
- After we delete one value, tree shrinks
 - Node to delete is rightmost at lowest level
- Move "homeless" value to the root
- Restore the heap property downwards
- Only need to follow a single path down
 - Again $O(\log N)$



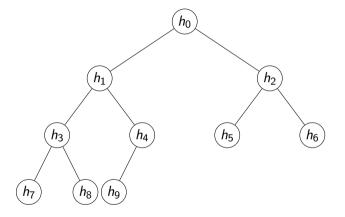
Implementation

- Number the nodes top to bottom left right
- Store as a list
 H = [h0,h1,h2,...,h9]
- Children of H[i] are at H[2*i+1]. H[2*i+2]
- Parent of H[i] is at H[(i-1)//2], for i > 0



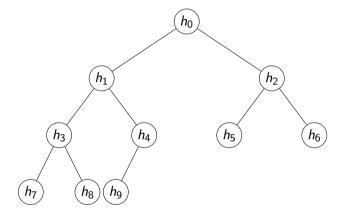
Building a heap — heapify()

■ Convert a list [v0,v1,...,vN] into a heap



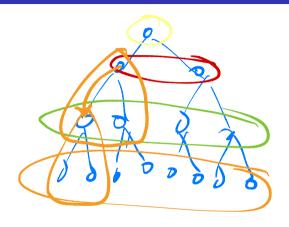
Building a heap — heapify()

- Convert a list [v0,v1,...,vN] into a heap
- Simple strategy
 - Start with an empty heap
 - Repeatedly apply insert(vj)
 - Total time is $O(N \log N)$



■ List L = [v0, v1, ..., vN]

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition



- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

. . .

- Fix heap property at level 1
- Fix heap property at the root

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level

. . .

- Fix heap property at level 1
- Fix heap property at the root

 Each time we go up one level, one extra step per node to fix heap property

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps

- List L = [v0, v1, ..., vN]
- mid = len(L)//2, Slice L[mid:] has only leaf nodes
 - Already satisfy heap condition
- Fix heap property downwards for second last level
- Fix heap property downwards for third last level
 - . . .
- Fix heap property at level 1
- Fix heap property at the root

- Each time we go up one level, one extra step per node to fix heap property
- However, number of nodes to fix halves
- Second last level, $n/4 \times 1$ steps
- Third last level, $n/8 \times 2$ steps
- Fourth last level, $n/16 \times 3$ steps
 - . . .
- Cost turns out to be O(n)

■ Start with an unordered list

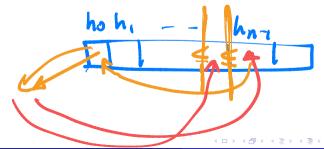
- Start with an unordered list
- Build a heap O(n)

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1

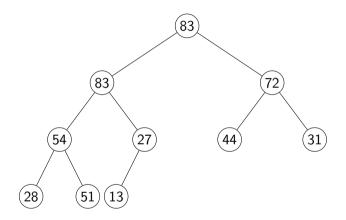
- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap
- In place $O(n \log n)$ sort



Summary

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)



Summary

- Heaps are a tree implementation of priority queues
 - insert() is $O(\log N)$
 - delete_max() is $O(\log N)$
 - heapify() builds a heap in O(N)
- Can invert the heap condition
 - Each node is smaller than its children
 - min-heap
 - delete_min() rather than
 delete_max()

