Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 19, 25 Oct 2022

m Stack is a last-in, first-out sequence I:
m push(s,x) — add x to stack s

m pop(s) — return most recently added
element

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 2/23

m Stack is a last-in, first-out sequence
m push(s,x) — add x to stack s

m pop(s) — return most recently added
element

m Maintain stack as list, push and pop
from the right

m push(s,x) is s.append(x)

m s.pop() — Python built-in, returns
last element

thede w)ﬁ st

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Stack is a last-in, first-out sequence
m push(s,x) — add x to stack s

m pop(s) — return most recently added
element

m Maintain stack as list, push and pop
from the right
m push(s,x) is s.append(x)

m s.pop() — Python built-in, returns
last element

m Stack defined using classes:
s.push(x), s.pop(

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 2/23

m Stack is a last-in, first-out sequence m Stacks are natural to keep track of local

variables through function calls
m push(s,x) — add x to stack s

m Each function call pushes current

m pop(s) — return most recently added frame onto a stack
element m When function exits, pop its frame off
the stack

m Maintain stack as list, push and pop
from the right

m push(s,x) is s.append(x) .F ﬂ
m s.pop() — Python built-in, returns
last element 5(’)
m Stack defined using classes: t’ /9 W\
s.push(x), s.pop(t\/l'

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 2/23

m First-in, first-out sequence

m addq(q,x) — adds x to rear of queue g

m removeq(q) — removes element at head of g

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 3/23

First-in, first-out sequence

addq(qg,x) — adds x to rear of queue g

removeq(q) — removes element at head of g

Using Python lists, left is rear, right is front

m addq(q,x) is q.insert(0,x)
m insert(j,x), insert x before position j

m removeq(q) is q.pop()

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 3/23

Systematic exploration

m Rectangular m x n grid
m Chess knight starts at (sx,sy) @
m Usual knight moves

m Can it reach a target square (tx, ty)? 4

@

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 4/23

Systematic exploration

m Rectangular m x n grid
m Chess knight starts at (sx,sy) @
m Usual knight moves

m Can it reach a target square (tx, ty)? 4

@

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 4/23

Systematic exploration

m Rectangular m x n grid
m Chess knight starts at (sx,sy) @
m Usual knight moves

m Can it reach a target square (tx, ty)? 4

@

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 4/23

Systematic exploration

m Rectangular m x n grid
m Chess knight starts at (sx,sy) @
m Usual knight moves

m Can it reach a target square (tx, ty)? 4

¢

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 4/23

Systematic exploration

m X1 — all squares reachable in one
move from (sx, sy)

m X2 —- all squares reachable from X1 in

one move

m Don't explore an already marked square

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 5/23

Systematic exploration

m X1 — all squares reachable in one
move from (sx, sy)

m X2 —- all squares reachable from X1 in
one move

m Don't explore an already marked square

® When do we stop?
m If we reach target square

m What if target is not reachable?

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 5/23

Systematic exploration

m X1 — all squares reachable in one m Maintain a queue @ of cells to be
move from (sx, sy) explored

m X2 —- all squares reachable from X1 in m Initially @ contains only start node
one move (sx, sy)

m Don't explore an already marked square

® When do we stop?
m If we reach target square

m What if target is not reachable?

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 5/23

Systematic exploration

m X1 — all squares reachable in one m Maintain a queue @ of cells to be
move from (sx, sy) explored

m X2 —- all squares reachable from X1 in m Initially @ contains only start node
one move (sx, sy)

m Remove (ax, ay) from head of queue

m Don't explore an already marked square m Mark all squares reachable in one step
from (ax, ay)

?
m When do we stop m Add all newly marked squares to the

m If we reach target square queue

m What if target is not reachable? €3¢ € 0 3 K K
%w -uYy - .

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 5/23

Systematic exploration

m X1 — all squares reachable in one m Maintain a queue @ of cells to be
move from (sx, sy) explored

m X2 —- all squares reachable from X1 in m Initially @ contains only start node
one move (sx, sy)

m Remove (ax, ay) from head of queue

m Don't explore an already marked square m Mark all squares reachable in one step
from (ax, ay)

?
m When do we stop m Add all newly marked squares to the

m If we reach target square queue

. . 5 _
m What if target is not reachable? = When the queue is empty, we have

finished

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 5/23

oW

®
%) |4
@

I

50060 00 00 B9 0t

Dealing with priorities

Job scheduler

m A job scheduler maintains a list of
pending jobs with their priorities

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 6/23

Dealing with priorities

Job scheduler

m A job scheduler maintains a list of
pending jobs with their priorities

m When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 6/23

Dealing with priorities

Job scheduler
m A job scheduler maintains a list of
pending jobs with their priorities

m When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

m New jobs may join the list at any time

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 6/23

Dealing with priorities

Job scheduler
m A job scheduler maintains a list of
pending jobs with their priorities

m When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

m New jobs may join the list at any time

m How should the scheduler maintain the
list of pending jobs and their priorities?

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 6/23

Dealing with priorities

Job scheduler Priority queue
= A j°l’_ sd.meduler. maint.ains.a _“_St of m Need to maintain a collection of items
pending jobs with their priorities with priorities to optimise the following
m When the processor is free, the operations
scheduler picks out the job with m delete max()
maximum priority in the list an . . I
aximu 'p fority in the list and m Identify and remove item with highest
schedules it o
priority
m New jobs may join the list at any time m Need not be unique
m How should the scheduler maintain the m insert()

list of pending jobs and their priorities? = Add a new item to the collection

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 6/23

Implementing priority queues with one dimensional structures

m delete_max()

m |dentify and remove item with highest
priority

m Need not be unique

m insert()

m Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Implementing priority queues with one dimensional structures

m Unsorted list m delete_max()
m insert() is O(1) m |dentify and remove item with highest
priority

m delete max() is O(n)
m Need not be unique

m insert()

m Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Implementing priority queues with one dimensional structures

m Unsorted list m delete_max()
m insert() is O(1) m |dentify and remove item with highest
priority

m delete max() is O(n)

) m Need not be unique
m Sorted list

m delete max() is O(1) m insert()

m insert() is O(n) m Add a new item to the list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Implementing priority queues with one dimensional structures

m Unsorted list m delete_max()
m insert() is O(1) m |dentify and remove item with highest
priority

m delete max() is O(n)

) m Need not be unique
m Sorted list

m delete max() is O(1) m insert()

m insert() is O(n) m Add a new item to the list

m Processing n items requires O(n?)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Moving to two dimensions

First attempt

m Assume N processes enter/leave the N=25
queue 3 119(23|35 |58
12 |17 | 25 | 43 | 67
10 (13|20
11 (16 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Moving to two dimensions

First attempt

m Assume N processes enter/leave the N=25
queue 3 119(23|35 |58
12 |17 | 25 | 43 | 67
m Maintain a v/N x /N array 10 | 13 [20
11 (16 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Moving to two dimensions

First attempt

m Assume N processes enter/leave the N=25
queue 3 119(23|35 |58
12 |17 | 25 | 43 | 67
= Maintain a /N x /N array 10 | 13 [20
m Each row is in sorted order 161 12 28 | 49

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row
N =25

12|17 | 25 | 43 | 67

10 13|20
11|16 | 28| 49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 | 25 | 43 | 67

10 13|20
11|16 | 28| 49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 | 25 | 43 | 67

m Insert 15 —| 10 (13|20
11116 |28 |49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

15| 3 19|23 |35 |58
12|17 | 25 | 43 | 67

m Use size of row to determine

m Insert 15 10| 13| 20
11116 |28 |49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

15|12 |17 | 25 | 43 | 67

m Insert 15 10| 13| 20
11116 |28 |49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 | 25 | 43 | 67

m Insert 15 15110 | 13| 20
11116 |28 |49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 | 25 | 43 | 67

m Insert 15 1013|1520
11116 |28 |49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 | 25 | 43 | 67

m Insert 15 1013|1520
11116 |28 |49
6 | 14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Keep track of the size of each row

. . N =25
m Insert into the first row that has space

m Use size of row to determine

12|17 |25 | 43 | 67
m Insert 15 1013|1520

11116 | 28|49
m Takes time O(v/N) 6 12
m Scan size column to locate row to insert,
O(\m)
m Insert into the first row with free space,
O(m)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

delete_max ()

m Maximum in each row is the last element
N =25

12 |17 | 25 | 43 | 67

1013|1520
11116 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

delete_max ()

m Maximum in each row is the last element
N =25
m Position is available through size column

12 |17 | 25 | 43 | 67

1013|1520
11116 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

delete_max ()

m Maximum in each row is the last element
N =25
m Position is available through size column

3 119|23|35]58
m Identify the maximum amongst these 12171254367

1013|1520

11|16 | 28| 49

6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

delete_max ()

m Maximum in each row is the last element
N =25
m Position is available through size column

3 119|23|35]58
m Identify the maximum amongst these 12 (17 | 25 | 43
m Delete it 1013|1520
11|16 | 28| 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

delete_max ()

m Maximum in each row is the last element
N =25
m Position is available through size column

3119]23|35|58

m Identify the maximum amongst these 121712543

. 1013 |15|20

Delete it
" e 11|16 | 28 | 49
m Again O(V/N) 6 | 14
m Find the maximum among last entries,
O(V'N)

m Delete it, O(1)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 10/23

m 2D VN x /N array with sorted rows

m insert() is O(VN) N =25
m delete max() is O(V'N) 311912313558
m Processing N items is O(N+/N) 121712514367
10113] 20
11|16 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m 2D VN x /N array with sorted rows

m insert() is O(VN) N =25
m delete max() is O(V'N) 311912313558
m Processing N items is O(N+/N) 121712514367
m Can we do better? 10 13 |20
11|16 | 28 | 49
6 |14

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m 2D VN x /N array with sorted rows

m insert() is O(VN) N =25
m delete max() is O(V'N) 371912313558
m Processing N items is O(N+/N) 121712514367
m Can we do better? 1011320
11|16 | 28 | 49
m Maintain a special binary tree — heap 6 | 14

m Height O(log V)

m insert() is O(log N)

m delete max() is O(log N)

m Processing N items is O(N log N)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m 2D VN x /N array with sorted rows

m insert() is O(VN) N =25
m delete max() is O(V'N) 371912313558
m Processing N items is O(N+/N) 121712514367
m Can we do better? 10]13 20
11|16 | 28 | 49
m Maintain a special binary tree — heap 6 | 14

m Height O(log V)

m insert() is O(log N)

m delete max() is O(log N)

m Processing N items is O(N log N)

m Flexible — need not fix NV in advance

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Values are stored as nodes in a
rooted tree

m Each node has up to two
children

m Left child and right child

m Order is important

m Other than the root, each node
has a unique parent

m Leaf node — no children

m Size — number of nodes

m Height — number of levels

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 12/23

m Binary tree filled level by level,
left to right

m The value at each node is at
least as big the values of its
children

m max-heap

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 13 /23

m Binary tree filled level by level,
left to right

m The value at each node is at
least as big the values of its
children

m max-heap

m Binary tree on the right is an
example of a heap

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 13 /23

m Binary tree filled level by level,
left to right

m The value at each node is at
least as big the values of its
children

m max-heap

m Binary tree on the right is an
example of a heap

m Root always has the largest
value

m By induction, because of the
max-heap property

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 13 /23

Non-examples

No “holes” allowed

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 14 /23

Non-examples

No “holes” allowed Cannot leave a level incomplete

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 14 /23

Non-examples

Heap property is violated

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 15/23

insert ()

m insert(77)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

m Restore the heap property along
path to the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

m Restore the heap property along
path to the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

m Restore the heap property along
path to the root

m insert(44)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

m Restore the heap property along
path to the root

m insert(44)

m insert(57)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 16 /23

m insert(77)

m Add a new node at dictated by
heap structure

m Restore the heap property along
path to the root

m insert(44)

m insert(57)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

m Number of nodes at level 0 is
20=1

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

m Number of nodes at level 0 is
20=1

m Number of nodes at level j is 2/

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

m Number of nodes at level 0 is
20=1

m Number of nodes at level j is 2/

m If we fill k levels,
20_'_21_'_“._|_2k71:2k_1
nodes

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

m Number of nodes at level 0 is
20=1

m Number of nodes at level j is 2/

m If we fill k levels,
20_'_21_'_“._|_2k71:2k_1
nodes

m |f we have N nodes, at most
1+ log N levels

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

Complexity of insert ()

m Need to walk up from the leaf to
the root

m Height of the tree

m Number of nodes at level 0 is
20=1

m Number of nodes at level j is 2/

m If we fill k levels,
20_'_21_'_“._|_2k71:2k_1
nodes

m |f we have N nodes, at most
1+ log N levels

m insert() is O(log N)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 17 /23

delete_max ()

m Maximum value is always at the
root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

m Maximum value is always at the
root

m After we delete one value, tree
shrinks

m Node to delete is rightmost at
lowest level

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

m Maximum value is always at the
root

m After we delete one value, tree
shrinks

m Node to delete is rightmost at
lowest level

m Move “homeless” value to the
root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

m Maximum value is always at the
root

m After we delete one value, tree
shrinks
m Node to delete is rightmost at

lowest level

m Move “homeless” value to the
root

m Restore the heap property
downwards

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

delete max()

m Maximum value is always at the
root

m After we delete one value, tree
shrinks
m Node to delete is rightmost at

lowest level

m Move “homeless” value to the
root

m Restore the heap property
downwards

m Only need to follow a single path
down

m Again O(log)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

delete max()

m Maximum value is always at the
root

m After we delete one value, tree
shrinks
m Node to delete is rightmost at

lowest level

m Move “homeless” value to the
root

m Restore the heap property
downwards

m Only need to follow a single path
down

m Again O(log)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

delete max()

m Maximum value is always at the
root

m After we delete one value, tree
shrinks
m Node to delete is rightmost at

lowest level

m Move “homeless” value to the
root

m Restore the heap property
downwards

m Only need to follow a single path
down

m Again O(log)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 18 /23

Implementation

m Number the nodes top to
bottom left right

m Store as a list
H = [hO,h1,h2,...,h9]

m Children of H[i] are at
H[2xi+1], H[2*1i+2]

m Parent of H[i] is at
H[(i-1)//2],

for 1> 0 OO,

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 19 /23

Building a heap — heapify()

m Convert a list [vO,v1,...,vN] @
into a heap

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 20/23

Building a heap — heapify()

m Convert a list [vO,v1,...,vN] @
into a heap
m Simple strategy
m Start with an empty heap @ @

m Repeatedly apply insert(vj)

m Total time is O(N log) @ @ @ @

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

etter heapify

mListL = [vO,v1,...,vN]

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

mListL = [vO,v1,...,vN]

m mid = len(L)//2,
Slice L[mid:] has only leaf nodes

m Already satisfy heap condition

9.

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Better heapify ()

mListL = [vO,v1,...,vN]

m mid = len(L)//2,
Slice L[mid:] has only leaf nodes
m Already satisfy heap condition

m Fix heap property downwards for second
last level

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Better heapify ()

mListL = [vO,v1,...,vN]

m mid = len(L)//2,
Slice L[mid:] has only leaf nodes
m Already satisfy heap condition

m Fix heap property downwards for second
last level

m Fix heap property downwards for third
last level

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

mListL = [vO,v1,...,vN]

m mid = len(L)//2,
Slice L[mid:] has only leaf nodes

m Already satisfy heap condition

m Fix heap property downwards for second
last level

m Fix heap property downwards for third
last level

m Fix heap property at level 1

m Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

mlListL = [vO,vl,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
m mid = len(L)//2, P P property

Slice L[mid:] has only leaf nodes

m Already satisfy heap condition

m Fix heap property downwards for second
last level

m Fix heap property downwards for third
last level

m Fix heap property at level 1

m Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

List L = [vO,v1l,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
mid = len(L)//2, P X heap property

Slice L[mid:] has only leaf nodes m However, number of nodes to fix halves

m Already satisfy heap condition

Fix heap property downwards for second
last level

Fix heap property downwards for third
last level

Fix heap property at level 1

Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

List L = [vO,v1l,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
mid = len(L)//2, P X heap property

Slice L[mid:] has only leaf nodes m However, number of nodes to fix halves

m Already satisfy heap condition
Y yheap m Second last level, n/4 x 1 steps

Fix heap property downwards for second
last level

Fix heap property downwards for third
last level

Fix heap property at level 1

Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 21/23

Better heapify ()

mlListL = [vO,vl,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
m mid = len(L)//2, P P property

Slice L[mid:] has only leaf nodes m However, number of nodes to fix halves

m Already satisfy heap condition
Y yheap m Second last level, n/4 x 1 steps

m Fix heap property downwards for second

last level m Third last level, n/8 x 2 steps

m Fix heap property downwards for third

last level

m Fix heap property at level 1

m Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Better heapify ()

mlListL = [vO,vl,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
m mid = len(L)//2, P P property

Slice L[mid:] has only leaf nodes m However, number of nodes to fix halves

m Already satisfy heap condition
Y yheap m Second last level, n/4 x 1 steps

Fix h ty d ds f d
. Ial:t I:EI property downwards for secon m Third last level, n/8 x 2 steps
m Fix heap property downwards for third m Fourth last level, n/16 x 3 steps

last level

m Fix heap property at level 1

m Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Better heapify ()

mlListL = [vO,vl,...,vN] m Each time we go up one level, one extra step

er node to fix heap propert
m mid = len(L)//2, P P property

Slice L[mid:] has only leaf nodes m However, number of nodes to fix halves

m Already satisfy heap condition
Y yheap m Second last level, n/4 x 1 steps

m Fix heap property downwards for second

last level m Third last level, n/8 x 2 steps

m Fix heap property downwards for third m Fourth last level, n/16 x 3 steps

last level
m Cost turns out to be O(n)
m Fix heap property at level 1

m Fix heap property at the root

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

Heap sort

m Start with an unordered list

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 22/23

Heap sort

m Start with an unordered list

m Build a heap — O(n)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 22/23

m Start with an unordered list
m Build a heap — O(n)

m Call delete max () n times to extract elements in descending order — O(nlog n)

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 22/23

m Start with an unordered list
m Build a heap — O(n)
m Call delete max () n times to extract elements in descending order — O(nlog n)

m After each delete max(), heap shrinks by 1

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Start with an unordered list

m Build a heap — O(n)

m Call delete max () n times to extract elements in descending order — O(nlog n)
m After each delete max (), heap shrinks by 1

m Store maximum value at the end of current heap

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19 22/23

m Start with an unordered list
m Build a heap — O(n)

m Call delete max () n times to extract elements in descending order — O(nlog n)

After each delete max (), heap shrinks by 1

Store maximum value at the end of current heap

In place O(nlog n) sort

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

m Heaps are a tree implementation
of priority queues
m insert() is O(log)
m delete max() is O(log N)

m heapify() builds a heap in
O(N)

PDSP Lecture 19

Stacks, Queues, Priority Queues, Heaps

Madhavan Mukund

m Heaps are a tree implementation
of priority queues

m insert() is O(log)

m delete max() is O(log N)

m heapify() builds a heap in
O(N)

m Can invert the heap condition

m Each node is smaller than its
children

m min-heap

m delete_min() rather than
deletemax()

Madhavan Mukund Stacks, Queues, Priority Queues, Heaps PDSP Lecture 19

