Quicksort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 18, 20 Oct 2022

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive

Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
 - Consider an input of the form [0,2,4,6,1,3,5,9]

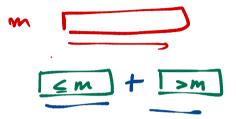
Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
 - Consider an input of the form [0,2,4,6,1,3,5,9]
- Can we divide the list so that everything on the left is smaller than everything on the right?
 - No need to merge!

Suppose the median of L is m

< 一型

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m



- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

How do we find the median?

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

- How do we find the median?
 - Sort and pick up the middle element

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

- How do we find the median?
 - Sort and pick up the middle element
 - But our aim is to sort the list!

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

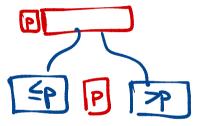
- How do we find the median?
 - Sort and pick up the middle element
 - But our aim is to sort the list!
- Instead pick some value in L pivot
 - Split L with respect to the pivot element

Quicksort [C.A.R. Hoare] 💊 [962?

- Choose a pivot element
 - Typically the first element in the array

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition

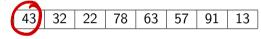


- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list



- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

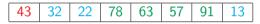
43	32	22	78	63	57	91	13
----	----	----	----	----	----	----	----

Identify pivot

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

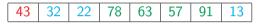


- Identify pivot
- Mark lower elements and upper elements

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list



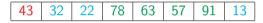
- Identify pivot
- Mark lower elements and upper elements
- Rearrange the elements as lower-pivot-upper

32 22	13	43	78	63	57	91
-------	----	----	----	----	----	----

- Choose a pivot element
 - Typically the first element in the arrav
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition 11
- Recursively sort the two partitions

High level view of quicksort

Input list



- Identify pivot
- Mark lower elements and upper elements

Rearrange the elements as lower-pivot-upper 43

Recursively sort the lower and upper partitions

78

91

57

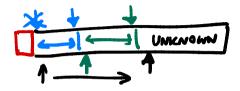
63

Scan the list from left to right

э

< □ > < □ > < □</p>

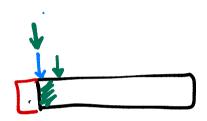
- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified



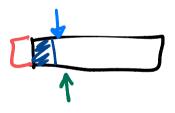
э

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element



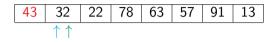
- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

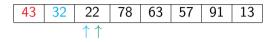
43 32 22	78 63	57	91	13
----------	-------	----	----	----

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



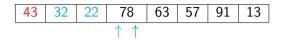
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

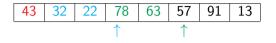


- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

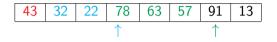
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

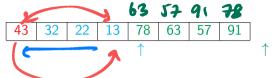


- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

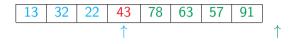
- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

Partitioning

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments
- After partitioning, exchange the pivot with the last element of the Lower segment

Quicksort code

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Classify the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1);
   return(L) _ llw_green
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
  lower = lower-1
  # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト イヨト イヨト

Quicksort uses divide and conquer, like merge sort

э

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort

- 4 西

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort

• We can also provide an iterative implementation to avoid the cost of recursive calls

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort
- We can also provide an iterative implementation to avoid the cost of recursive calls
- The partitioning strategy we described is not the only one used in the literature
 - Can build the lower and upper segments from opposite ends and meet in the middle

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort
- We can also provide an iterative implementation to avoid the cost of recursive calls
- The partitioning strategy we described is not the only one used in the literature
 - Can build the lower and upper segments from opposite ends and meet in the middle
- Need to analyse the complexity of quick sort

Partitioning with respect to the pivot takes time O(n)

```
def guicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median
 - T(n) = 2T(n/2) + n
 - T(n) is $O(n \log n)$

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

人口 医水理 医水黄 医水黄素 计算机

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median
 - T(n) = 2T(n/2) + n
 - T(n) is $O(n \log n)$
- Worst case? Pivot is maximum or minimum
 - Partitions are of size 0, n-1
 - T(n) = T(n-1) + n
 - $T(n) = n + (n-1) + \cdots + 1$

• T(n) is $O(n^2)$

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
 quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

人口 医水理 医水黄 医水黄素 计算机

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median
 - T(n) = 2T(n/2) + n
 - T(n) is $O(n \log n)$
- Worst case? Pivot is maximum or minimum
 - Partitions are of size 0, n-1
 - T(n) = T(n-1) + n
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) is $O(n^2)$
- Already sorted array: worst case!

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

3

Analysis . . .

However, average case is $O(n \log n)$

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

Analysis . . .

- However, average case is
 O(n log n)
- Sorting is a rare situation where we can compute this
 - Values don't matter, only relative order is important
 - Analyze behaviour over permutations of {1, 2, ..., n}
 - Each input permutation equally likely

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
  # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

3

イロト イボト イヨト イヨト

Analysis . . .

- However, average case is
 O(n log n)
- Sorting is a rare situation where we can compute this
 - Values don't matter, only relative order is important
 - Analyze behaviour over permutations of {1, 2, ..., n}
 - Each input permutation equally likely
- Expected running time is O(n log n)

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
  # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

3

イロト 不得下 イヨト イヨト

Randomization

 Any fixed choice of pivot allows us to construct worst case input

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1.r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step
- Expected running time is again
 O(n log n)

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

3

ヘロト ヘヨト ヘヨト ヘヨト

Iterative quicksort

- Recursive calls work on disjoint segments
 - No recombination of results is required

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Iterative quicksort

- Recursive calls work on disjoint segments
 - No recombination of results is required
- Can explicitly keep track of left and right endpoints of each segment to be sorted

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
  # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

Quicksort in practice

In practice, quicksort is very fast

```
def guicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quicksort in practice

In practice, quicksort is very fast

- Very often the default algorithm used for in-built sort functions
 - Sorting a column in a spreadsheet
 - Library sort function in a programming language

```
def quicksort(L,l,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower - 1
 # Recursive calls
  quicksort(L,1,lower)
  quicksort(L,lower+1,upper)
 return(L)
```

イロト 不得 トイヨト イヨト 二日

• The worst case complexity of quicksort is $O(n^2)$

э

→ < ∃→

< □ > < □ > < □ > < Ξ

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$

э

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively
- Very fast in practice, and often used for built-in sorting functions
 - Good example of a situation when the worst case upper bound is pessimistic

Stable sorting

Often list values are tuples

- Rows from a table, with multiple columns / attributes
- A list of students, each student entry has a roll number, name, marks,

- 4 西

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications
- Sorting on column *B* should not disturb sorting on column *A*

- The quicksort implementation we described is not stable
 - Swapping values while partitioning can disturb existing sorted order

Stable sorting

- The quicksort implementation we described is not stable
 - Swapping values while partitioning can disturb existing sorted order
- Merge sort is stable if we merge carefully
 - Do not allow elements from the right to overtake elements on the left
 - While merging, prefer the left list while breaking ties

Other criteria

Minimizing data movement

- Imagine each element is a heavy carton
- Reduce the effort of moving values around

- 4 西

• Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case

э

< 🗇

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back
- Other $O(n \log n)$ algorithms exist heapsort

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back
- Other $O(n \log n)$ algorithms exist heapsort
- Sometimes hybrid strategies are used
 - Use divide and conquer for large n
 - Switch to insertion sort when *n* becomes small (e.g., n < 16)