Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 18, 20 Oct 2022

Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive

m Recursive calls and returns are expensive

Madhavan Mukund Quicksort PDSP Lecture 18 2/17

Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive

m Recursive calls and returns are expensive

m Merging happens because elements in the left half need to move to the right half
and vice versa

m Consider an input of the form [0,2,4,6)1,3,5,9]

Madhavan Mukund Quicksort PDSP Lecture 18 2/17

Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive
m Recursive calls and returns are expensive
m Merging happens because elements in the left half need to move to the right half
and vice versa
m Consider an input of the form [0,2,4,6,1,3,5,9]
m Can we divide the list so that everything on the left is smaller than everything on
the right?

m No need to merge!

Madhavan Mukund Quicksort PDSP Lecture 18 2/17

Divide and conquer without merging

m Suppose the median of L. is m

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

m Recurslvely sort left and right halves

m L is now sorted, no merge!

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

m Recurslvely sort left and right halves

m L is now sorted, no merge!

m Recurrence: T(n) =2T(n/2)+n

m Rearrange in a single pass, time O(n)

Madhavan Mukund Quicksort

PDSP Lecture 18

3/17

Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

Suppose the median of L is m m How do we find the median?

m Move all values < m to left half of L

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

. 1 i ist!
u Right half has values > m m But our aim is to sort the list!

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

. 1 i ist!
u Right half has values > m m But our aim is to sort the list!

m Instead pick some value in . — pivot

Recurslvely sort left and right halves
m Split L with respect to the pivot

m L is now sorted, no merge!
element

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 18 3/17

Quicksort [C.A.R. Hoare] a, 4627
Anthony = Twﬂ

m Choose a pivot element

m Typically the first element in
the array

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element

m Typically the first element in
the array

m Partition L into lower and upper
parts with respect to the pivot

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element

m Typically the first element in

the array @
m Partition L into lower and upper
parts with respect to the pivot
4

m Move the pivot between the -? ‘Pl 7P

lower and upper partition —_—

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element

m Typically the first element in
the array

m Partition L into lower and upper
parts with respect to the pivot

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

@\32\22\78\63\57\91\13\

m Partition L into lower and upper
parts with respect to the pivot

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

143]32]22[78|63|57[91]13]

m Partition L into lower and upper

.) m ldentify pivot
parts with respect to the pivot yp

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

.) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

.) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the .
lower and upper partition m Rearrange the elements as lower—pivot—upper

[32]22]13[43]78]63][57]091]

m Recursively sort the two
partitions

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

.) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the .
lower and upper partition m Rearrange the elements as lower—pivot—upper

132\ 2213]43[78]63]57]91]

m Recursively sort the two

. 1L
partitions] Recurswely sort tﬁ? IowerSz?n'd su%pe?&pargt‘lons

r\ace,

Madhavan Mukund Quicksort PDSP Lecture 18 4/17

Partitioning

m Scan the list from left to right

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right x_ * *

m Four segments: Pivot, Lower, ‘l-—"l © i‘ Unienvoww

Upper, Unclassified * 4

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower, &
Upper, Unclassified t

m Examine the first unclassified
element ‘

m If it is larger than the pivot,
extend Upper to include this
element

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this

element
m If it is less than or equal to the ¢
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

[43]32[22[78[63[57 91 [13]

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

)]43\32\22\78\63\57\91\13\
m Four segments: Pivot, Lower, 77
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ 143[32]22|78]63]57[91]13]
m Four segments: Pivot, Lower, 77
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ 143]32]22] 78 [63|57 |91 13]
m Four segments: Pivot, Lower, 77
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ |43[32[22]78[63]57]91]13]
m Four segments: Pivot, Lower, T 7
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ |43]32]22] 78 [63]57]91]13]
m Four segments: Pivot, Lower, 7 7
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ [43]32]22] 78 [63]57]91]13]
m Four segments: Pivot, Lower, 7 7
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

A
13132 22(78)63 57191 13}
m Four segments: Pivot, Lower, ---‘!‘---'!
Upper, Unclassified \a

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right 6% ¥ 9« I8
43[32]22]13]78]63]57]091]

m Four segments: Pivot, Lower,

")
Upper, Unclassified
m Examine the first unclassified m Pivotis always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Partitioning

m Scan the list from left to right

_ [13]32]22[43[78]63][57]91]
m Four segments: Pivot, Lower, 7 4
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this m After partitioning, exchange the pivot with the
element last element of the Lower segment

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund Quicksort PDSP Lecture 18 5/17

Quicksort code

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Classify the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)/ u-W 5'“"
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 6/17

g desente (L }{f
{ (L== 2\ rehon ((3)

P\vok = L[ﬂ]
lower = [| fr = L[ﬂzlééﬂ p X<:P|wt:)
Upperr E;c\ . - - \F n >pwv(t:)

Yekom (j/mxckﬁwlf[(mmb t Y/PMSQ‘\' ‘lmd(_cd\— (Mff;)\/

Summary

m Quicksort uses divide and conquer, like merge sort

Madhavan Mukund Quicksort PDSP Lecture 18 7/17

m Quicksort uses divide and conquer, like merge sort

m By partitioning the list carefully, we avoid a merge step
m This allows an in place sort

Madhavan Mukund Quicksort PDSP Lecture 18 7/17

m Quicksort uses divide and conquer, like merge sort

m By partitioning the list carefully, we avoid a merge step
m This allows an in place sort

m We can also provide an iterative implementation to avoid the cost of recursive calls

Madhavan Mukund Quicksort PDSP Lecture 18 7/17

m Quicksort uses divide and conquer, like merge sort -

m By partitioning the list carefully, we avoid a merge step
m This allows an in place sort

m We can also provide an iterative implementation to avoid the cost of recursive calls

m The partitioning strategy we described is not the only one used in the literature

m Can build the lower and upper segments from opposite ends and meet in the middle

|

) —

Madhavan Mukund Quicksort PDSP Lecture 18 7/17

m Quicksort uses divide and conquer, like merge sort

m By partitioning the list carefully, we avoid a merge step
m This allows an in place sort

m We can also provide an iterative implementation to avoid the cost of recursive calls

m The partitioning strategy we described is not the only one used in the literature

m Can build the lower and upper segments from opposite ends and meet in the middle

m Need to analyse the complexity of quick sort

Madhavan Mukund Quicksort PDSP Lecture 18 7/17

m Partitioning with respect to the
pivot takes time O(n)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 8/17

m Partitioning with respect to the

pivot takes time O(n)

m If the pivot is the median
m 7(n)=2T(n/2)+n
m T7(n)is O(nlogn)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 8/17

m Partitioning with respect to the
pivot takes time O(n)
m If the pivot is the median
m 7(n)=2T(n/2)+n
m T7(n)is O(nlogn)
m Worst case? Pivot is maximum
or minimum

m Partitions are of size 0, n — 1

mT(n)=T(n—1)+n
mT(n)=n+(n—-1)+---+1
m T(n)is O(n?)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 8/17

m Partitioning with respect to the
pivot takes time O(n)
m If the pivot is the median
m 7(n)=2T(n/2)+n
m T7(n)is O(nlogn)
m Worst case? Pivot is maximum
or minimum

m Partitions are of size 0, n — 1

mT(n)=T(n—1)+n
mT(n)=n+(n—-1)+---+1
m T(n)is O(n?)

m Already sorted array: worst case!

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 8/17

m However, average case is

O(nlog n)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 9/17

m However, average case is
O(nlog n)

m Sorting is a rare situation where
we can compute this

m Values don't matter, only
relative order is important

m Analyze behaviour over
permutations of {1,2,...,n}

m Each input permutation
equally likely

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 9/17

m However, average case is
O(nlog n)

m Sorting is a rare situation where
we can compute this

m Values don't matter, only
relative order is important

m Analyze behaviour over
permutations of {1,2,...,n}

m Each input permutation
equally likely

m Expected running time is
O(nlog n)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 9/17

m Any fixed choice of pivot allows
us to construct worst case input

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 10 /17

m Any fixed choice of pivot allows
us to construct worst case input

m Instead, choose pivot position
randomly at each step

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 10 /17

m Any fixed choice of pivot allows
us to construct worst case input

m Instead, choose pivot position
randomly at each step

m Expected running time is again
O(nlog n)

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 10 /17

lterative quicksort

m Recursive calls work on disjoint
segments

m No recombination of results is
required

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 11/17

lterative quicksort

m Recursive calls work on disjoint
segments

m No recombination of results is
required

m Can explicitly keep track of left
and right endpoints of each
segment to be sorted

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 11/17

Quicksort in practice

m In practice, quicksort is very fast

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 12 /17

Quicksort in practice

m In practice, quicksort is very fast

m Very often the default algorithm
used for in-built sort functions

m Sorting a column in a
spreadsheet

m Library sort function in a
programming language

Madhavan Mukund

def quicksort(L,l,r): # Sort L[l:r]

if (r - 1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
Shift both segments
(lower,upper) = (lower+l,upper+1)
Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
Recursive calls
quicksort(L,1,lower)
quicksort(L,lower+1,upper)
return(L)

Quicksort PDSP Lecture 18 12 /17

Summary

m The worst case complexity of quicksort is O(n?)

Madhavan Mukund Quicksort PDSP Lecture 18 13 /17

m The worst case complexity of quicksort is O(n?)

m However, the average case is O(nlog n)

Madhavan Mukund Quicksort PDSP Lecture 18 13 /17

m The worst case complexity of quicksort is O(n?)
m However, the average case is O(nlog n)

m Randomly choosing the pivot is a good strategy to beat worst case inputs

Madhavan Mukund Quicksort PDSP Lecture 18 13 /17

m The worst case complexity of quicksort is O(n?)
m However, the average case is O(nlog n)
m Randomly choosing the pivot is a good strategy to beat worst case inputs

m Quicksort works in-place and can be implemented iteratively

Madhavan Mukund Quicksort PDSP Lecture 18 13 /17

m The worst case complexity of quicksort is O(n?)

m However, the average case is O(nlog n)

m Randomly choosing the pivot is a good strategy to beat worst case inputs
m Quicksort works in-place and can be implemented iteratively

m Very fast in practice, and often used for built-in sorting functions

m Good example of a situation when the worst case upper bound is pessimistic

Madhavan Mukund Quicksort PDSP Lecture 18 13 /17

Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...

Madhavan Mukund Quicksort PDSP Lecture 18 14 /17

Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...

m Suppose students have already been sorted by roll number

Madhavan Mukund Quicksort PDSP Lecture 18 14 /17

Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...
m Suppose students have already been sorted by roll number

m If we now sort by name, will all students with the same name remain in sorted order
with respect to roll number?

Madhavan Mukund Quicksort PDSP Lecture 18 14 /17

Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...
m Suppose students have already been sorted by roll number

m If we now sort by name, will all students with the same name remain in sorted order
with respect to roll number?

m Stability of sorting is crucial in many applications

Madhavan Mukund Quicksort PDSP Lecture 18 14 /17

Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...
m Suppose students have already been sorted by roll number

m If we now sort by name, will all students with the same name remain in sorted order
with respect to roll number?

m Stability of sorting is crucial in many applications

m Sorting on column B should not disturb sorting on column A

Madhavan Mukund Quicksort PDSP Lecture 18 14 /17

Stable sorting

m The quicksort implementation we described is not stable

m Swapping values while partitioning can disturb existing sorted order

Madhavan Mukund Quicksort PDSP Lecture 18 15 /17

Stable sorting

m The quicksort implementation we described is not stable

m Swapping values while partitioning can disturb existing sorted order

m Merge sort is stable if we merge carefully
m Do not allow elements from the right to overtake elements on the left

m While merging, prefer the left list while breaking ties

Madhavan Mukund Quicksort PDSP Lecture 18 15 /17

Other criteria

m Minimizing data movement
m Imagine each element is a heavy carton

m Reduce the effort of moving values around

Madhavan Mukund Quicksort PDSP Lecture 18 16 /17

Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case

Madhavan Mukund Quicksort PDSP Lecture 18 17 /17

Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case

m Merge sort is typically used for “external” sorting
m Database tables that are too large to store in memory all at once

m Retrieve in parts from the disk and write back

Madhavan Mukund Quicksort PDSP Lecture 18 17 /17

Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case

m Merge sort is typically used for “external” sorting
m Database tables that are too large to store in memory all at once

m Retrieve in parts from the disk and write back

m Other O(nlog n) algorithms exist — heapsort

Madhavan Mukund Quicksort PDSP Lecture 18 17 /17

Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case

m Merge sort is typically used for “external” sorting
m Database tables that are too large to store in memory all at once

m Retrieve in parts from the disk and write back
m Other O(nlog n) algorithms exist — heapsort

m Sometimes hybrid strategies are used
m Use divide and conquer for large n

m Switch to insertion sort when n becomes small (e.g., n < 16)

Madhavan Mukund Quicksort PDSP Lecture 18 17 /17

