Files, formatied oukp assing payemedorx

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 25, 17 Nov 2022

Dealing with files

* Standard input and output is not convenient for
large volumes of data

* Instead, read and write files on the disk

* Disk read/write is much slower than memory

Disk buffers

* Disk data is read/written in large blocks

* “Buffer” is a temporary parking place for disk

data

Memory

Disk

Reading/writing disk data

* Open a file — create file handle to file on disk
* Like setting up a buffer for the file
* Read and write operations are to file handle
* Close a file
* Write out buffer to disk (flush)

* Disconnect file handle

Opening a file

fh = opent gcd.ipy , 'F)

* First argument to open is file name

* Can give a full path

* Second argument is mode for opening file
* Read, "r": opens a file for reading only
* Write, "w": creates an empty file to write to

* Append, "a": append to an existing file

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

contents = fh.readline()
* Reads one line into name—1lines end with "\n'

* String includes the '\n"', unlike input()

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

contents = fh.readline()
* Reads one line into name—1lines end with "\n'

* String includes the '\n"', unlike input()

contents = fh.readlines()
* Reads entire file as list of strings
* Each string is one line, ending with'\n'

Reading files

File]

open()

* Reading is a sequential operation

* When file is opened, point to position 0, the start

Reading files

File]

* Reading is a sequential operation
* When file is opened, point to position 0, the start

* Each successive readline() moves forward

Reading files

File]

readline() ! readline()

open()

* Reading is a sequential operation
* When file is opened, point to position 0, the start

* Each successive readline() moves forward

Reading files

File]

readline() ! readline()

open()

* Reading is a sequential operation
* When file is opened, point to position 0, the start
* Each successive readline() moves forward

* fth.seek(n) — moves pointer to position n

Reading files

File]

readline() ! readline()

open()

* Reading is a sequential operation
* When file is opened, point to position 0, the start
* Each successive readline() moves forward

* fth.seek(n) — moves pointer to position n

* block = fh.read(12) — read a fixed number of
characters

End of file

* When reading incrementally, important to know
when file has ended

* The following both signal end of file

* fh.read() returns empty string

* fth.readline() returns empty string

Writing to a file

fh.write(s)
* Write string s to file
* Returns number of characters written

* Include "\n' explicitly to go to a new line

Writing to a file
fh.write(s) ‘F)\' L |;‘ FWI.

* Write string s to file FZ‘ wnle ('L)

* Returns number of characters written fl— W ﬂ‘dl
* Include "\n' explicitly to go to a new line C1-
fh.writelines(l)

* Write a list of lines 1 to file

* Must includes '\n' explicitly for each string

ws() -

(L VAN L))

Closing a file

fh.close()
* Flushes output buffer and decouples file handle

* All pending writes copied to disk

Closing a file

fh.close()

* Flushes output buffer and decouples file handle
* All pending writes copied to disk
fh.flush()

* Manually forces write to disk

Processing file line by line

contents = fh.readlines()
for 1 in contents:

* Even better

for 1 in fh.readlines():

Copying a file

infile

open("input.txt",
outfile

open("output.txt",

outfile.write(line)
infile.close()

outfile.close()

w")
for line in infile.readlines():

)

Copying a file

intile = openC input.txt r")
outfile = open("output.txt", "w")
contents = infile.readlines()
outfile.writelines(contents)
infile.close()

outfile.close()

Strip whitespace

* s.rstrip() removes trailing whitespace

for line in contents:
s = line rstript)

* s.lstrip() removes leading whitespace

* s.strip() removes leading and trailing
whitespace

Splitting a string
* Export spreadsheet as “comma separated value” text
file
* Want to extract columns from a line of text
* Split the line into chunks between commas
columns — s splitC? =
* Can split using any separator string

* Split into at most n chunks

columns = s.splitC : °, n)

Joining strings

* Recombine a list of strings using a separator

columns = s.split(’,

joinstring =
csvline = joinstring.join(columns)

date - 16"
month = '@8:
year = "2016"

today = .join([date,month,year])

Formatted printing

* Recall that we have limited control over how
print() displays output

* Optional argument end=".." changes default
new line at the end of print

* Optional argument sep=".." changes default
separator between items

String format() method

* By example

>>> "First: {0}, second: {1}".format(47,11)
"First: 47, second: 11’

>>x “"Second: {1}, first: {0t .tormat(4s 11)
‘Second; 11, first: 47’

* Replace arguments by position in message string

format() method ...

* Can also replace arguments by name

>>> 'One: 1fF, two: {s}’ format(f=47,s=-11)
'One: 47, two: 11'

>>> "One: {f}, two: {s}'.format(s=11,f=47)
f0ne: 4¢, two; 11

Now, real formatting

>>> "Value: {0:3d}".format(4)
* 3d describes how to display the value 4

* d is a code specifies that 4 should be treated as
an integer value

* 3 is the width of the area to show 4

'Value: 4'

Now, real formatting

>>> "Value: {0:6.2f}".format(47.523)

*

*

6.2f describes how to display the value 47.523

f is a code specifies that 47.523 should be treated

as a floating point value

*

6 — width of the area to show 47.523

* 2 — number of digits to show after decimal point

"Value:

47.52"

Real formatting

* Codes for other types of values

* String, octal number, hexadecimal ...
* Other positioning information

* Left justify

* Add leading zeroes

* Derived from printf() of C, see Python
documentation for details

Passing values to functions

a-2
m Argument value is substituted for name) :d‘./lu
def power(x,n): power (3,5)
ans = 1
for i in range (O,n): +
ans = ans*x _
x =3
return(ans) n=5
m Like an implicit assignment statement ans = 1

for i in range

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 2/7

Passing arguments by name

def power(x,n):
ans = 1
for i in range (0,n):
ans = ans*x
return(ans)

m Call power (n=5,x=4)

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 3/7

Default arguments

m Recall int(s) converts string to integer
m int("76") is 76
m int("A5") generates an error
m Actually int(s,b) takes two
arguments, string s and base b
® b has default value 10
m int("A5",16) is 165 (10 x 16 + 5)

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 4/7

Default arguments

(¢

m Recall int(s) converts string to integer def int(,b=10):
m int("76") is 76

m int("A5") generates an error
m Default value is provided in function
m Actually int (s,b) takes two definition

arguments, string s and base b
m If parameter is omitted, default value is

m b has default value 10
used

m int("A5",16) is 165 (10 x 16 + 5)
m Default value must be available at

definition time
m def Quicksort(A,1=0,r=len(A):
does not work

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 4/7

Default arguments

def f(a,b,c=14,d=22):

m £(13,12) is interpreted as
£(13,12,14,22)

m £(13,12,16) is interpreted as
£(13,12,16,22)

m Default values are identified by position,
must come at the end

m Order is important

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 5/7

Function definitions

m def associates a function body with a
name

m Flexible, like other value assignments to
name

m Definition can be conditional

if condition:
def f(a,b,c):

else:
def f(a,b,c):

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 6/7

Function definitions

m def associates a function body with a m Can assign a function to a new name
name def f(a,b,c):
m Flexible, like other value assignments to
name
g =1
m Definition can be conditional

. . m Now g is another name for £
if condition:

def f(a,b,c):

else:
def f(a,b,c):

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 6/7

Passing functions as parameters

m Apply £ to x n times

def apply : 14
res = X (}7 _{2 (}7tz>
for i in Jrange(n):
res = Mres)

return(res) % _ -ce (@)

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 /7

Passing functions as parameters

m Apply £ to x n times

def apply(f,x,n):
res = x
for i in range(n):
res = f(res)
return(res)

def square(x):
return (x*x)

apply(square,5,2)
square (square(5))

625

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 /7

Passing functions as parameters

m Apply £ to x n times m Useful for customizing functions such as
def apply(f,x,n): sort
res = X

m Define cmp (x,y) that returns -1 if x <

for i in range(n): v, 0ifx == yand 1ifx > y

res = f(res) : o
m cnp("aab","ab") is -1 in dictionary

return(res)
order
def square(x): m cop("aab","ab") is 1 if we compare
return (x*x) by length
apply (square,5,2) m def mysort(l,cmp=defaultcmp):

square (square(5))

625

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 /7

Passing functions as parameters

m Apply £ to x n times m Useful for customizing functions such as
def apply(f,x,n): sort
res = X

m Define cmp (x,y) that returns -1 if x <

for i in range(n): v, 0ifx == yand 1ifx > y

res = f(res) : o
m cnp("aab","ab") is -1 in dictionary

return(res)
order
def square(x): m cop("aab","ab") is 1 if we compare
return (x*x) by length
apply (square,5,2) m def mysort(l,cmp=defaultcmp):

square (square(5))

625

Madhavan Mukund Programming and Data Structures with Python PDSP Lecture 25 /7

