
Backtracking

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 24, 15 Nov 2022

Backtracking

Systematically search for a solution

Build the solution one step at a time

If we hit a dead-end

Undo the last step

Try the next option

Depth first
search of
Solution

afe

Eight queens

Place 8 queens on a chess
board so that none of them
attack each other

In chess, a queen can
move any number of
squares along a row
column or diagonal

Eight queens

Place 8 queens on a chess
board so that none of them
attack each other

In chess, a queen can
move any number of
squares along a row
column or diagonal

Q

Eight queens

Place 8 queens on a chess
board so that none of them
attack each other

In chess, a queen can
move any number of
squares along a row
column or diagonal

Q

Eight queens

Place 8 queens on a chess
board so that none of them
attack each other

In chess, a queen can
move any number of
squares along a row
column or diagonal

Q

N queens

Place N queens on an 
N x N chess board so that
none attack each other

N = 2, 3 impossible

R

N queens

Place N queens on an 
N x N chess board so that
none attack each other

N = 2, 3 impossible

Q
Q
X

N queens

Place N queens on an 
N x N chess board so that
none attack each other

N = 2, 3 impossible

N = 4 is possible

Q
Q

Q
Q

Q
Q

N queens

Place N queens on an 
N x N chess board so that
none attack each other

N = 2, 3 impossible

N = 4 is possible

And all bigger N as well

Q
Q

Q
Q

Q
Q

Q
Q

Q

Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

Q
Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

Q
Q

Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

Q
Q

Q
Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Q
Q

Q
Q

Q
Q

Q

8 queens
Clearly, exactly one queen
in each row, column

Place queens row by row

In each row, place a queen
in the first available column

Can’t place a queen in the
8th row!

Q
Q

Q
Q

Q
Q

Q

8 queens
Can’t place the a queen in
the 8th row! Q

Q
Q

Q
Q

Q
Q

8 queens
Can’t place the a queen in
the 8th row!

Undo 7th queen, no other
choice

Q
Q

Q
Q

Q
Q

8 queens
Can’t place the a queen in
the 8th row!

Undo 7th queen, no other
choice

Undo 6th queen, no other
choice

Q
Q

Q
Q

Q

8 queens
Can’t place the a queen in
the 8th row!

Undo 7th queen, no other
choice

Undo 6th queen, no other
choice

Undo 5th queen, try next

Q
Q

Q
Q

8 queens
Can’t place the a queen in
the 8th row!

Undo 7th queen, no other
choice

Undo 6th queen, no other
choice

Undo 5th queen, try next

Q
Q

Q
Q

Q

Backtracking

Keep trying to extend the next solution

If we cannot, undo previous move and try again

Exhaustively search through all possibilities

… but systematically!

Coding the solution
How do we represent the board?

n x n grid, number rows and columns from 0 to n-1

board[i][j] == 1 indicates queen at (i,j)

board[i][j] == 0 indicates no queen

We know there is only one queen per row

Single list board of length n with entries 0 to n-1

board[i] == j : queen in row i, column j, i.e. (i,j)

Overall structure
def placequeen(i,board): # Trying row i  
 for each c such that (i,c) is available:  
 place queen at (i,c) and update board  
 if i == n-1:  
 return(True) # Last queen has been placed  
 else:  
 extendsoln = placequeen(i+1,board)  
 if extendsoln:  
 return(True) # This solution extends fully  
 else:  
 undo this move and update board  
 else:  
 return(False) # Row i failed

Updating the board
Our 1-D and 2-D representations keep track of the
queens

Need an efficient way to compute which squares are
free to place the next queen

n x n attack grid

attack[i][j] == 1 if (i,j) is attacked by a queen

attack[i][j] == 0 if (i,j) is currently available

How do we undo the effect of placing a queen?

Which attack[i][j] should be reset to 0?

Updating the board
Queens are added row by row

Number the queens 0 to n-1

Record earliest queen that attacks each square

attack[i][j] == k if (i,j) was first attacked by
queen k

attack[i][j] == -1 if (i,j) is free

Remove queen k — reset attack[i][j] == k to -1

All other squares still attacked by earlier queens

Updating the board

attack requires n2 space

Each update only requires O(n) time

Only need to scan row, column, two diagonals

Can we improve our representation to use only
O(n) space?

A better representation

How many queens attack row i?

How many queens attack row j?

An individual square (i,j) is attacked by upto 4
queens

Queen on row i and on column j

One queen on each diagonal through (i,j)

#

Numbering diagonals
Decreasing diagonal:
column - row is invariant 0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

c-r=2

Numbering diagonals
Decreasing diagonal:
column - row is invariant 0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

c-r=-4

Numbering diagonals
Decreasing diagonal:
column - row is invariant

Increasing diagonal: 
column + row is invariant

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

c+r=6

Numbering diagonals
Decreasing diagonal:
column - row is invariant

Increasing diagonal: 
column + row is invariant

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

c+r=12

Numbering diagonals
Decreasing diagonal:
column - row is invariant

Increasing diagonal: 
column + row is invariant

(i,j) is attacked if

row i is attacked

column j is attacked

diagonal j-i is attacked

diagonal j+i is attacked

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

c+r=12I

I

In+)
Int1

O(n) representation

row[i] == 1 if row i is attacked, 0..N-1

col[i] == 1 if column i is attacked, 0..N-1

NWtoSE[i] == 1 if NW to SE diagonal i is 
 attacked, -(N-1) to (N-1)

SWtoNW[i] == 1 if SW to NE diagonal i is 
 attacked, 0 to 2(N-1)

Updating the board
(i,j) is free if
row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0
Add queen at (i,j)
board[i] = j  
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =  
 (1,1,1,1)
Remove queen at (i,j)
board[i] = -1  
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =  
 (0,0,0,0)

Implementation details
Maintain board as nested dictionary

board['queen'][i] = j : Queen located at (i,j)

board['row'][i] = 1 : Row i attacked

board['col'][i] = 1 : Column i attacked

board['nwtose'][i] = 1 : NWtoSW diagonal i
attacked

board['swtone'][i] = 1 : SWtoNE diagonal i
attacked

Overall structure
def placequeen(i,board): # Trying row i  
 for each c such that (i,c) is available:  
 place queen at (i,c) and update board  
 if i == n-1:  
 return(True) # Last queen has been placed  
 else:  
 extendsoln = placequeen(i+1,board)  
 if extendsoln:  
 return(True) # This solution extends fully  
 else:  
 undo this move and update board  
 else:  
 return(False) # Row i failed

All solutions?

def placequeen(i,board): # Try row i  
 for each c such that (i,c) is available:  
 place queen at (i,c) and update board  
 if i == n-1:  
 record solution # Last queen placed  
 else:  
 extendsoln = placequeen(i+1,board)  
 undo this move and update board  

Global variables

Can we avoid passing board explicitly to each
function?

Can we have a single global copy of board that all
functions can update?

Scope of name

Scope of name is the portion of code where it is
available to read and update

By default, in Python, scope is local to functions

But actually, only if we update the name inside
the function

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

Fine!

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

def f():  
 y = x  
 print(y)  
 x = 22

x = 7  
f()Fine! Error!

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

def f():  
 y = x  
 print(y)  
 x = 22

x = 7  
f()

If x is not found in f(), Python looks at enclosing
function for global x

If x is updated in f(), it becomes a local name!

Fine! Error!

Global variables

Actually, this applies
only to immutable
values

Global names that
point to mutable
values can be
updated within a
function

def f():  
 y = x[0]  
 print(y)  
 x[0] = 22

x = [7]  
f()

Fine!

17

↳zz

Global immutable values

What if we want a
global integer

Count the number
of times a function
is called

Declare a name to be
global

def f():  
 global x  
 y = x  
 print(y)  
 x = 22

x = 7  
f()  
print(x)

Global immutable values

What if we want a
global integer

Count the number
of times a function
is called

Declare a name to be
global

def f():  
 global x  
 y = x  
 print(y)  
 x = 22

x = 7  
f()  
print(x) 22

Nest function definitions

Can define local
“helper” functions

g() and h() are only
visible to f()

Cannot be called
directly from outside

def f():  
 def g(a):  
 return(a+1)

 def h(b):  
 return(2*b)

 global x  
 y = g(x) + h(x)  
 print(y)  
 x = 22

x = 7  
f()

Nest function definitions
If we look up x, y inside
g() or h() it will first
look in f(), then outside

Can also declare names
global inside g(), h()

Intermediate scope
declaration: nonlocal

See Python
documentation

def f():  
 def g(a):  
 return(a+1)

 def h(b):  
 return(2*b)

 global x  
 y = g(x) + h(x)  
 print(y)  
 x = 22

x = 7  
f()

