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Backtracking

Systematically search for a solution


Build the solution one step at a time


If we hit a dead-end


Undo the last step


Try the next option

Depth first
search of
Solution

afe



Eight queens

Place 8 queens on a chess 
board so that none of them 
attack each other 

In chess, a queen can 
move any number of 
squares along a row 
column or diagonal
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N queens

Place N queens on an 
N x N chess board so that 
none attack each other 

N = 2, 3 impossible

N = 4 is possible

And all bigger N as well
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8 queens
Clearly, exactly one queen 
in each row, column

Place queens row by row

In each row, place a queen 
in the first available column
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8 queens
Clearly, exactly one queen 
in each row, column

Place queens row by row

In each row, place a queen 
in the first available column

Can’t place a queen in the 
8th row!
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8 queens
Can’t place the a queen in 
the 8th row!

Undo 7th queen, no other 
choice

Undo 6th queen, no other 
choice

Undo 5th queen, try next
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Backtracking

Keep trying to extend the next solution

If we cannot, undo previous move and try again

Exhaustively search through all possibilities

… but systematically!



Coding the solution
How do we represent the board?

n x n grid, number rows and columns from 0 to n-1

board[i][j] == 1 indicates queen at (i,j)

board[i][j] == 0 indicates no queen

We know there is only one queen per row

Single list board of length n with entries 0 to n-1

board[i] == j : queen in row i, column j, i.e. (i,j)



Overall structure
def placequeen(i,board): # Trying row i  
  for each c such that (i,c) is available:  
    place queen at (i,c) and update board  
    if i == n-1:  
      return(True) # Last queen has been placed  
    else:  
      extendsoln = placequeen(i+1,board)  
    if extendsoln:  
      return(True) # This solution extends fully  
    else:  
      undo this move and update board  
  else:  
    return(False) # Row i failed



Updating the board
Our 1-D and 2-D representations keep track of the 
queens

Need an efficient way to compute which squares are 
free to place the next queen

n x n attack grid

attack[i][j] == 1 if (i,j) is attacked by a queen

attack[i][j] == 0 if (i,j) is currently available

How do we undo the effect of placing a queen?  

Which attack[i][j] should be reset to 0?



Updating the board
Queens are added row by row

Number the queens 0 to n-1

Record earliest queen that attacks each square

attack[i][j] == k if (i,j) was first attacked by 
queen k

attack[i][j] == -1 if (i,j) is free

Remove queen k — reset attack[i][j] == k to -1

All other squares still attacked by earlier queens



Updating the board

attack requires n2 space

Each update only requires O(n) time

Only need to scan row, column, two diagonals

Can we improve our representation to use only 
O(n) space?



A better representation

How many queens attack row i?

How many queens attack row j?

An individual square (i,j) is attacked by upto 4 
queens

Queen on row i and on column j

One queen on each diagonal through (i,j)

#



Numbering diagonals
Decreasing diagonal: 
column - row is invariant 0 1 2 3 4 5 6 7
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Numbering diagonals
Decreasing diagonal: 
column - row is invariant

Increasing diagonal: 
column + row is invariant

(i,j) is attacked if 

row i is attacked

column j is attacked

diagonal j-i is attacked

diagonal j+i is attacked

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

c+r=12I

I

In+)
Int1



O(n) representation

row[i] == 1 if row i is attacked, 0..N-1

col[i] == 1 if column i is attacked, 0..N-1

NWtoSE[i] == 1 if NW to SE diagonal i is 
                            attacked, -(N-1) to (N-1)

SWtoNW[i] == 1 if SW to NE diagonal i is 
                            attacked, 0 to 2(N-1)



Updating the board
(i,j) is free if
row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0
Add queen at (i,j)
board[i] = j  
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =  
                                   (1,1,1,1)
Remove queen at (i,j)
board[i] = -1  
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =  
                                   (0,0,0,0)



Implementation details
Maintain board as nested dictionary

board['queen'][i] = j : Queen located at (i,j)

board['row'][i] = 1 : Row i attacked

board['col'][i] = 1 : Column i attacked

board['nwtose'][i] = 1 : NWtoSW diagonal i 
attacked

board['swtone'][i] = 1 : SWtoNE diagonal i 
attacked



Overall structure
def placequeen(i,board): # Trying row i  
  for each c such that (i,c) is available:  
    place queen at (i,c) and update board  
    if i == n-1:  
      return(True) # Last queen has been placed  
    else:  
      extendsoln = placequeen(i+1,board)  
    if extendsoln:  
      return(True) # This solution extends fully  
    else:  
      undo this move and update board  
  else:  
    return(False) # Row i failed



All solutions?

def placequeen(i,board): # Try row i  
  for each c such that (i,c) is available:  
    place queen at (i,c) and update board  
    if i == n-1:  
      record solution # Last queen placed  
    else:  
      extendsoln = placequeen(i+1,board)  
    undo this move and update board  
 



Global variables

Can we avoid passing board explicitly to each 
function?


Can we have a single global copy of board that all 
functions can update?



Scope of name

Scope of name is the portion of code where it is 
available to read and update


By default, in Python, scope is local to functions


But actually, only if we update the name inside 
the function



Two examples
def f():  
  y = x  
  print(y)

x = 7  
f()

Fine!
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Two examples
def f():  
  y = x  
  print(y)

x = 7  
f()

def f():  
  y = x  
  print(y)  
  x = 22

x = 7  
f()

If x is not found in f(), Python looks at enclosing 
function for global x

If x is updated in f(), it becomes a local name!

Fine! Error!



Global variables

Actually, this applies 
only to immutable 
values

Global names that 
point to mutable 
values can be 
updated within a 
function

def f():  
  y = x[0]  
  print(y)  
  x[0] = 22

x = [7]  
f()

Fine!

17

↳zz



Global immutable values

What if we want a 
global integer

Count the number 
of times a function 
is called

Declare a name to be 
global 

def f():  
  global x  
  y = x  
  print(y)  
  x = 22

x = 7  
f()  
print(x)



Global immutable values

What if we want a 
global integer

Count the number 
of times a function 
is called

Declare a name to be 
global 

def f():  
  global x  
  y = x  
  print(y)  
  x = 22

x = 7  
f()  
print(x) 22



Nest function definitions

Can define local 
“helper” functions

g() and h() are only 
visible to f()

Cannot be called 
directly from outside

def f():  
  def g(a):  
    return(a+1)

  def h(b):  
    return(2*b)

  global x  
  y = g(x) + h(x)  
  print(y)  
  x = 22

x = 7  
f()



Nest function definitions
If we look up x, y inside 
g() or h() it will first 
look in f(), then outside

Can also declare names 
global inside g(), h()

Intermediate scope 
declaration: nonlocal

See Python 
documentation

def f():  
  def g(a):  
    return(a+1)

  def h(b):  
    return(2*b)

  global x  
  y = g(x) + h(x)  
  print(y)  
  x = 22

x = 7  
f()


