Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 16, 11 Oct 2022

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 2/9

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 2/9

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 2/9

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

m Storage is limited by available memory

m Easier to configure, augment

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 2/9

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

m Storage is limited by available memory

m Easier to configure, augment

m Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 2/9

Input size

m Running time depends on input size

m Larger arrays will take longer to sort

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

Input size

m Running time depends on input size
m Larger arrays will take longer to sort
m Measure time efficiency as function of
input size
m Input size n

m Running time t(n)

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

m Running time depends on input size
m Larger arrays will take longer to sort
m Measure time efficiency as function of
input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

= Running time depends on input size Example 1 SIM cards vs Aadhaar cards

. ~ 109 —
m Larger arrays will take longer to sort m n=10 number of cards

m Measure time efficiency as function of
input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

m Running time depends on input size Example 1 SIM cards vs Aadhaar cards
~ 9
m Larger arrays will take longer to sort = 1~ 10" — number of cards

. . . ; I ~ 2
m Measure time efficiency as function of = Naive algorithm: t(n) ~ n

input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

= Running time depends on input size Example 1 SIM cards vs Aadhaar cards

. ~ 109 —
m Larger arrays will take longer to sort m n=10 number of cards

. . . ; I ~ 2
m Measure time efficiency as function of = Naive algorithm: t(n) ~ n

Input size m Clever algorithm: t(n) ~ nlog, n

w Input size n m log, n — number of times you need

m Running time t(n) to divide n by 2 to reach 1

— __ ok
m Different inputs of size n may take m logy(n) = k = n=2

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 3/9

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 4/9

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 4/9

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

m Asymptotic complexity

m What happens in the limit, as n becomes large

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 4/9

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

m Asymptotic complexity

m What happens in the limit, as n becomes large

m Typical growth functions
m Is t(n) proportional to logn, ..., n?, n3, ..., 2"?
m Note: log n means log, n by default

m Logarithmic, polynomial, exponential, ...

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 4/9

Input size Values of t(n)
log n n nlogn n? n3 2" n!

10 33 10 33 100 1000 1000 10°
100 6.6 100 66 104 106 1030 10157
1000 10 1000 10* 10® 10°

10% 13 10% 105 108 10%?

10° 17 10° 106 1010

106 20 10° 107 10%2

107 23 107 108

108 27 108 10°

10° 30 10° 1010

1010 33 101 10t

Madhavan Mukund

Analysis of algorithms

PDSP Lecture 16 5/

Orders of magnitude

9

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 6/9

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

m Typical basic operations
m Compare two values

m Assign a value to a variable

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 6/9

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

m Typical basic operations
m Compare two values

m Assign a value to a variable

m Exchange a pair of values?

(x,y) = (y,x) t =x
X=y
y =1t

m If we ignore constants, focus on orders of magnitude, both are within a factor of 3

m Need not be very precise about defining basic operations

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 6/9

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 7/9

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 7/9

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?

m Magnitude of n is not the correct measure

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 7/9

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?
m Magnitude of n is not the correct measure
m Arithmetic operations are performed digit by digit

m Addition with carry, subtraction with borrow, multiplication, long division ...

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 7/9

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?
m Magnitude of n is not the correct measure
m Arithmetic operations are performed digit by digit
m Addition with carry, subtraction with borrow, multiplication, long division ...
m Number of digits is a natural measure of input size

m Same as log, n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 7/9

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 8/9

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 8/9

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 8/9

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements

m Pessimistic — worst case may be rare

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 8/9

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements
m Pessimistic — worst case may be rare
m Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 8/9

Summary

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 9/9

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 9/9

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large

m From running time, we can estimate feasible input sizes

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 9/9

Summary

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large
m From running time, we can estimate feasible input sizes

m We focus on worst case inputs
m Pessimistic, but easier to calculate than average case

m Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSP Lecture 16 9/9

Searching in a list

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 16, 11 Oct 2022

Search problem

m Is value v present in list 17

Madhavan Mukund Searching in a list PDSP Lecture 16 2/6

Search problem

TN
m Is value v present in list 17 def naivesearch(v,1):

m Naive solution scans the list for x in 1:
if v == x:
return(True)
return(False)

Madhavan Mukund Searching in a list PDSP Lecture 16 2/6

Search problem

TN
m Is value v present in list 17 def naivesearch(v,1):

m Naive solution scans the list for x in 1:
.) if v == x:
m Input size n, the length of the list return(True)

return(False)

Madhavan Mukund Searching in a list PDSP Lecture 16 2/6

Search problem

TN
m Is value v present in list 17 def naivesearch(v,1):

m Naive solution scans the list for x in 1:
if v == x:

m Input size n, the length of the list return(True)

m Worst case is when v is not present in 1 return(False)

Madhavan Mukund Searching in a list PDSP Lecture 16 2/6

Search problem

TN
m Is value v present in list 17 def naivesearch(v,1):

m Naive solution scans the list for x in 1:
.) if v == x:

m Input size n, the length of the list return(True)

m Worst case is when v is not present in 1 return(False)

m Worst case complexity is O(n)

Madhavan Mukund Searching in a list PDSP Lecture 16 2/6

Searching a sorted list

m What if 1 is sorted in ascending order?

Madhavan Mukund Searching in a list PDSP Lecture 16 3/6

Searching a sorted list

m What if 1 is sorted in ascending order?

m Compare v with the midpoint of 1

Madhavan Mukund Searching in a list PDSP Lecture 16 3/6

Searching a sorted list

o . . 5
m What if 1 is sorted in ascending order? def binarysearch(v,1):

m Compare v with the midpoint of 1 if 1 == []:
m If midpoint is v, the value is found return(False)
] If v less than midpoint, search the m = len(l
first half
m If v greater than midpoint, search the if v == 1[m]:
second half
return(True)

m Stop when the interval to search
becomes empty if v < 1[m]:
return(binarysearch(v,1[:m]))
else:
return(binarysearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 3/6

Searching a sorted list

m What if 1 is sorted in ascending order?

m Compare v with the midpoint of 1

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

m Binary search

Madhavan Mukund

def binarysearch(v,1):
if 1 == []:
return(False)

m = len(1)//2

if v == 1[m]:
return(True)

if v < 1[m]:
return(binarysearch(v,1[:m]))

else:
return(binarysearch(v,1[m+1:]))

Searching in a list PDSP Lecture 16 3/6

i ?
m How long does this take? def binarysearch(v,1):

if 1 == []:
return(False)

m = len(1)//2

if v == 1[m]:
return(True)

if v < 1[m]:
return(binarysearch(v,1[:m]))

else:
return(binarysearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 4/6

i ?
m How long does this take? def binarysearch(v,1):

m Each call halves the interval to search if 1 == []:

m Stop when the interval become empty return(False)

m log n — number of times to divide n by m = len(1)//2

2 to reach 1
m 1//2=0, so next call reaches empty if v == 1[m]:
interval return(True)
if v < 1[m]:
return(binarysearch(v,1[:m]))
else:

return(binarysearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 4/6

i ?
m How long does this take? def binarysearch(v,1):

m Each call halves the interval to search if 1 == []:

m Stop when the interval become empty return(False)

m log n — number of times to divide n by m = len(1)//2

2 to reach 1
m 1//2=0, so next call reaches empty if v == 1[m]:
interval return(True)
m O(log n) steps
if v < 1[m]:
return(binarysearch(v,1[:m]))
else:

return(binarysearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 4/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
return(False)

m = len(1)//2

if v == 1[m]:
return(True)

if v < 1[m]:
return(bsearch(v,1[:m]))

else:
return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n//2)+1 if 1 == []:

m Recurrence for T(n) return(False)
m7(0)=1

m = len(1)//2

mT(n)=T(n//2)+1,n>0

if v == 1[m]:
return(True)

if v < 1[m]:
return(bsearch(v,1[:m]))

else:
return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
m Recurrence for T(n) return(False)
m T(0)=1 m = len(l)//2
mT(n)=T(n//2)+1,n>0
m Solve by “unwinding” if v == 1[m]:
return(True)
if v < 1[m]:
return(bsearch(v,1[:m]))
else:

return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
return(False)

m Recurrence for T(n)

= 7(0)=1 m = len(l)//2
mT(n)=T(n//2)+1,n>0
m Solve by "unwinding” if v == 1[m]:
return(True)
mT(n) =T(n//2)+1
if v < 1[m]:
return(bsearch(v,1[:m]))
else:

return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
milfn>0 T(n)=T(n//2)+1 if 1 == []:

m Recurrence for T(n) return(False)
= 7(0)=1 m = len(1)//2
mT(n)=T(n//2)+1,n>0

m Solve by “unwinding” if v == 1[m]:

return(True)
mT(n) =T(n/2)+1
=(T(n//4)+1)+1 £ v < 1[n]:
return(bsearch(v,1[:m]))
else:

return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
milfn>0 T(n)=T(n//2)+1 if 1 == []:

m Recurrence for T(n) return(False)
= 7(0)=1 m = len(1)//2
mT(n)=T(n//2)+1,n>0

m Solve by “unwinding” if v == 1[m]:

return(True)
mT(n) =T(n/2)+1
_ _ 2
=(T(n//8)+1)+1=T(n//2*)+1+1 if v < 1[m]:
2
return(bsearch(v,1[:m]))
else:

return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
return(False)

m Recurrence for T(n)
] T() =

T(n) = (//2)+1, n>0TQ]//%+"
m Solve by unW|nd|ri/i_("{7,) '_‘_3‘ e ret;;nt"ﬁii;)

len(1)//2

T(n) =
) = 4)+1)+1:T(n//22)+L4;1
=... 2
= T(n//2)+ 14 +1

if v < 1[m]:
return(bsearch(v,1[:m]))

else:
return(bsearch(v,1[m+1:]))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
m Recurrence for T(n) return(False)
= 7(0) =1 m = len(1)//2
mT(n)=T(n//2)+1,n>0
m Solve by “unwinding” if v == 1[m]:
. T(n) = T(n//2)+1 return(True)
=(T(n//4)+1)+1=T(n//2®)+1+1
~ (Tl 9+ 0 +1 =T/)+ 12 D
;.T'tn//zk)+1+...+1 return(bsearch(v,1[:m]))
T else:
= T(1) + k, for k = log n return(bsearch(v,1[m+1:]1))

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Alternative calculation

m 7 (n) : the time to search a list of length n

mIf n=0, weexit,so T(n) =1 def bsearch(v,l):
mifn>0 T(n)=T(n/2)+1 if 1 == []:
m Recurrence for T(n) return(False)
— n
n T(0)=1 M2 @ Ll |
mT(n)=T(n//2)+1,n>0 st
m Solve by “unwinding” if v == 1[m]:

return(True)
mT7(n) =T(n//2)+1
=(T(n//H+1)+1=T(n//2)+1+1 if v < 1[m]:
- .. 2

T2 F 1441 return(bsearch(v,1[:m]))
—_——

else:

k
= T(1) + k, for k =logn return(bsearch(v,1[m+1:]))
=(T(0)+1)+logn=2+logn

Madhavan Mukund Searching in a list PDSP Lecture 16 5/6

Summary

m Search in an unsorted list takes time O(n)
m Need to scan the entire list

m Worst case is when the value is not present in the list

Madhavan Mukund Searching in a list PDSP Lecture 16 6/6

m Search in an unsorted list takes time O(n)
m Need to scan the entire list

m Worst case is when the value is not present in the list

m For a sorted list, binary search takes time O(log n)

m Halve the interval to search each time

Madhavan Mukund Searching in a list PDSP Lecture 16 6/6

m Search in an unsorted list takes time O(n)
m Need to scan the entire list

m Worst case is when the value is not present in the list

m For a sorted list, binary search takes time O(log n)

m Halve the interval to search each time

m In a sorted list, we can determine that v is absent by examining just log n values!

Madhavan Mukund Searching in a list PDSP Lecture 16 6/6

Naive Sorting Algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python
Lecture 16, 11 Oct 2022

Sorting a list

m Sorting a list makes many other
computations easier

m Binary search
m Finding the median

m Checking for duplicates

Building a frequency table of values

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other
computations easier

m Binary search
m Finding the median
m Checking for duplicates

m Building a frequency table of values

m How do we sort a list?

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other
computations easier

m Binary search
m Finding the median
m Checking for duplicates

m Building a frequency table of values
m How do we sort a list?

m You are the TA for a course

m Instructor has a pile of evaluated
exam papers

m Papers in random order of marks

m Your task is to arrange the papers in
descending order of marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other Strategy 1

computations easier m Scan the entire pile and find the paper

m Binary search with minimum marks

m Finding the median
m Checking for duplicates

m Building a frequency table of values
m How do we sort a list?

m You are the TA for a course

m Instructor has a pile of evaluated
exam papers

m Papers in random order of marks

m Your task is to arrange the papers in
descending order of marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other Strategy 1

computations easier m Scan the entire pile and find the paper

m Binary search with minimum marks

m Finding the median . .
m Move this paper to a new pile
m Checking for duplicates

m Building a frequency table of values
m How do we sort a list?

m You are the TA for a course

m Instructor has a pile of evaluated
exam papers

m Papers in random order of marks

m Your task is to arrange the papers in
descending order of marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other Strategy 1

computations easier m Scan the entire pile and find the paper

m Binary search with minimum marks

m Finding the median . .
m Move this paper to a new pile
m Checking for duplicates

m Building a frequency table of values ® Repeat with the remaining papers

m Add the paper with next minimum

m How do we sort a list? marks to the second pile each time

m You are the TA for a course

m Instructor has a pile of evaluated
exam papers

m Papers in random order of marks

m Your task is to arrange the papers in
descending order of marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

Sorting a list

m Sorting a list makes many other Strategy 1

computations easier m Scan the entire pile and find the paper
m Binary search with minimum marks
m Finding the median

m Move this paper to a new pile
m Checking for duplicates

m Building a frequency table of values = Repeat with the remaining papers

m Add the paper with next minimum

m How do we sort a list? marks to the second pile each time

m You are the TA for a course m Eventually, the new pile is sorted in

m Instructor has a pile of evaluated descending order
exam papers

m Papers in random order of marks

m Your task is to arrange the papers in
descending order of marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 2/11

T"P — Botiyn,

74 32 89 55 @ 64

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

74 32 89 55 2% 64

21

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

74 32 89 55 21 64

21 32

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

74 32 89 55 21 64

21 32 55

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

74 32 89 55 21 64

21 32 55 64

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

21 32 55 64 74

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Sorting a list

21 32 55 64 74 89

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 3/11

Selection sort

m Select the next element in sorted
order

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 4/11

Selection sort

m Select the next element in sorted
order

m Append it to the final sorted list

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 4/11

Selection sort

m Select the next element in sorted
order

m Append it to the final sorted list

m Avoid using a second list

m Swap the minimum element into

the first position

H
2

m Swap the second minimum element

into the second position

Madhavan Mukund

Naive Sorting Algorithms

3) ¢4 (Y) €S 64

32|

H

N

>

PDSP Lecture 16 4/11

Selection sort

m Select the next element in sorted
order

m Append it to the final sorted list

m Avoid using a second list

m Swap the minimum element into
the first position

m Swap the second minimum element
into the second position

m Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 4/11

Selection sort

m Select the next element in sorted def SelectionSort(L):
order n = len(L) % =

. . . if n < 1:
m Append it to the final sorted list

Gy -
. . . in range(n):

:)

Avoid using a second list iHhssume L[:1] is sorted

m Swap the minimum element into mpos = i
the first position # mpos: position of minimum in L[i:]
m Swap the second minimum element for j in range(iti,n);
into the second position if L[j] < Llmpos]:
mpos = j
" ...

L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[i],L[mpos]) = (L[mpos],L[i])
Now L[:i+1] is sorted

return(L)

m Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 4/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

n = len(L)
if n < 1:
return(L)

for i in range(n):
Assume L[:i] is sorted
mpos = i
mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

.. =1 L
m Efficiency Iilf . ini,)
return(L)

for i in range(n):
Assume L[:i] is sorted
mpos = i
mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

o n = len(L)
m Efficiency if n < 1:
m Outer loop iterates n times return (L)

for i in range(n):
Assume L[:i] is sorted
mpos = i
mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

. n = len(L)
m Efficiency P
m Outer loop iterates n times return(L)
m Inner loop: n — i steps to find for i in range(n):
minimum in L[i:] # Assume L[:i] is sorted
mpos = i

mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

. n = len(L)
m Efficiency P
m Outer loop iterates n times return(L)
m Inner loop: n — i steps to find for i in range(n):
minimum in L[i:] # Assume L[:i] is sorted
mpos = i

m T(n)=n+(n=1)+-+1 # mpos: position of minimum in L[i:]

for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

. n = len(L)
m Efficiency P
m Outer loop iterates n times return(L)
m Inner loop: n — i steps to find for i in range(n):
minimum in L[i:] # Assume L[:i] is sorted
mT(n)=n+(n-1)+---+1 mpos = 1

mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

m T(n)=n(n+1)/2

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 5/11

Analysis of selection sort

m Correctness follows from the invariant jof SclectionSort (L) :

m Efficiency
m Outer loop iterates n times

m Inner loop: n — i steps to find

minimum in L[1i:]
mT(n)=n+(n-1)+---+1
m T(n)=n(n+1)/2

m 7(n)is O(n?)

n = len(L)
if n < 1:
return(L)

for i in range(n):
Assume L[:i] is sorted
mpos = i
mpos: position of minimum in L[i:]
for j in range(i+l,n):
if L[j] < L[mpos]:
mpos = j
L[mpos] : smallest value in L[i:]
Exchange L[mpos] and L[i]
(L[il,L[mpos]) = (L[mpos],L[il)
Now L[:i+1] is sorted
return(L)

Madhavan Mukund

Naive Sorting Algorithms PDSP Lecture 16 5/11

Sorting a list

m You are the TA for a course

m Instructor has a pile of
evaluated exam papers

m Papers in random order of
marks

m Your task is to arrange the
papers in descending order of
marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

m You are the TA for a course Strategy 2

m Instructor has a pile of
evaluated exam papers

m Papers in random order of
marks

m Your task is to arrange the
papers in descending order of
marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

m You are the TA for a course Strategy 2

m Instructor has a pile of

m Move the first paper to a new pile
evaluated exam papers

m Papers in random order of
marks

m Your task is to arrange the
papers in descending order of
marks

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

m You are the TA for a course Strategy 2

m Instructor has a pile of m Move the first paper to a new pile
evaluated exam papers

S d
m Papers in random order of W >econd paper

m Lower marks than first paper? Place below
marks

first paper in new pile
m Your task is to arrange the

papers in descending order of
marks

m Higher marks than first paper? Place above
first paper in new pile

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

m You are the TA for a course Strategy 2

m Instructor has a pile of m Move the first paper to a new pile
evaluated exam papers

S d
m Papers in random order of W >econd paper

m Lower marks than first paper? Place below
marks

first paper in new pile
m Your task is to arrange the

papers in descending order of
marks

m Higher marks than first paper? Place above
first paper in new pile
m Third paper

m Insert into correct position with respect to
first two

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

m You are the TA for a course Strategy 2

m Instructor has a pile of m Move the first paper to a new pile
evaluated exam papers

S d
m Papers in random order of W >econd paper

m Lower marks than first paper? Place below
marks

first paper in new pile
m Your task is to arrange the

papers in descending order of
marks

m Higher marks than first paper? Place above
first paper in new pile

m Third paper
m Insert into correct position with respect to
first two

m Do this for the remaining papers

m Insert each one into correct position in the
second pile

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 6/11

Sorting a list

74 32 89 55 21 64

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

74

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

32 74

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

32 74 89

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

32 55 74 89

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

21 32 55 74 89

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Sorting a list

21 32 55 64 74 89

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 7/11

Insertion sort

m Start building a new sorted list

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 8/11

Insertion sort

m Start building a new sorted list

m Pick next element and insert it into the
sorted list

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 8/11

Insertion sort

m Start building a new sorted list

m Pick next element and insert it into the
sorted list

m An iterative formulation
m Assume L[:i] is sorted

m Insert L[i] in L[:1i]

Madhavan Mukund Naive Sorting Algorithms PDSP Lecture 16 8/11

Insertion sort

m Start building a new sorted list def InsertionSort(L):
. . i n = len(L)
m Pick next element and insert it into the .]
. if n < 1:
sorted list return (L)
. . . for i in range(n):
[
An iterative formulation # Assume L[:i] is sorted
m Assume L[:i] is sorted # Move L[i] to correct position in L

j=1
while(j > 0 and L[j] < L[j-11):
(LLj1,L0j-11) = (L[j-11,L05D)
i=31
Now L[:i+1] is sorted
return(L)

m Insert L[i] in L[:1]

PDSP Lecture 16 8/11

Madhavan Mukund Naive Sorting Algorithms

