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Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space
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Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time e�ciency as function of

input size

Input size n

Running time t(n)

Di↵erent inputs of size n may take

di↵erent amounts of time

We will return to this point later

n ⇡ 10
9
— number of cards

Naive algorithm: t(n) ⇡ n2

Clever algorithm: t(n) ⇡ n log2 n

log2 n — number of times you need

to divide n by 2 to reach 1

log2(n) = k ) n = 2
k
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Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

For small values of n, f (n) < g(n)

After n = 5000, f (n) overtakes g(n)

Asymptotic complexity

What happens in the limit, as n becomes large

Typical growth functions

Is t(n) proportional to log n, . . . , n2, n3, . . . , 2n?

Note: log n means log2 n by default

Logarithmic, polynomial, exponential, . . .
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Orders of magnitude

Input size Values of t(n)
log n n n log n n2 n3 2

n n!

10 3.3 10 33 100 1000 1000 10
6

100 6.6 100 66 10
4

10
6

10
30

10
157

1000 10 1000 10
4

10
6

10
9

10
4

13 10
4

10
5

10
8

10
12

10
5

17 10
5

10
6

10
10

10
6

20 10
6

10
7

10
12

10
7

23 10
7

10
8

10
8

27 10
8

10
9

10
9

30 10
9

10
10

10
10

33 10
10

10
11
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Measuring running time

Analysis should be independent of the underlying hardware

Don’t use actual time

Measure in terms of basic operations

Typical basic operations

Compare two values

Assign a value to a variable

Exchange a pair of values?

If we ignore constants, focus on orders of magnitude, both are within a factor of 3

Need not be very precise about defining basic operations
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Compare two values

Assign a value to a variable

Exchange a pair of values?

(x,y) = (y,x) t = x

x = y

y = t

If we ignore constants, focus on orders of magnitude, both are within a factor of 3
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What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b
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Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Di�cult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance
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Summary

Two important parameters when measuring algorithm performance

Running time, memory requirement (space)

We mainly focus on time

Running time t(n) is a function of input size n

Interested in orders of magnitude

Asymptotic complexity, as n becomes large

From running time, we can estimate feasible input sizes

We focus on worst case inputs

Pessimistic, but easier to calculate than average case

Upper bound on worst case gives us an overall guarantee on performance
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Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

Madhavan Mukund Searching in a list PDSP Lecture 16 2 / 6



Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

def naivesearch(v,l):

for x in l:

if v == x:
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return(False)
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Searching a sorted list

What if l is sorted in ascending order?

Compare v with the midpoint of l

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

Binary search
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Binary search

How long does this take?

Each call halves the interval to search

Stop when the interval become empty

log n — number of times to divide n by
2 to reach 1

1 // 2 = 0, so next call reaches empty
interval

O(log n) steps

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))
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Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))
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Summary

Search in an unsorted list takes time O(n)

Need to scan the entire list

Worst case is when the value is not present in the list

For a sorted list, binary search takes time O(log n)

Halve the interval to search each time

In a sorted list, we can determine that v is absent by examining just log n values!
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Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order
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Madhavan Mukund Näıve Sorting Algorithms PDSP Lecture 16 2 / 11



Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Strategy 1

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order
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Sorting a list

74 32 89 55 21 64
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Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Näıve Sorting Algorithms PDSP Lecture 16 4 / 11



Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order
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Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

def SelectionSort(L):
n = len(L)
if n < 1:

return(L)
for i in range(n):

# Assume L[:i] is sorted
mpos = i
# mpos: position of minimum in L[i:]
for j in range(i+1,n):
if L[j] < L[mpos]:

mpos = j
# L[mpos] : smallest value in L[i:]
# Exchange L[mpos] and L[i]
(L[i],L[mpos]) = (L[mpos],L[i])
# Now L[:i+1] is sorted

return(L)
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Analysis of selection sort

Correctness follows from the invariant

E�ciency

Outer loop iterates n times

Inner loop: n � i steps to find
minimum in L[i:]

T (n) = n + (n � 1) + · · ·+ 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):
n = len(L)
if n < 1:

return(L)
for i in range(n):

# Assume L[:i] is sorted
mpos = i
# mpos: position of minimum in L[i:]
for j in range(i+1,n):
if L[j] < L[mpos]:

mpos = j
# L[mpos] : smallest value in L[i:]
# Exchange L[mpos] and L[i]
(L[i],L[mpos]) = (L[mpos],L[i])
# Now L[:i+1] is sorted

return(L)
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Madhavan Mukund Näıve Sorting Algorithms PDSP Lecture 16 5 / 11



Analysis of selection sort

Correctness follows from the invariant

E�ciency
Outer loop iterates n times

Inner loop: n � i steps to find
minimum in L[i:]

T (n) = n + (n � 1) + · · ·+ 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):
n = len(L)
if n < 1:

return(L)
for i in range(n):

# Assume L[:i] is sorted
mpos = i
# mpos: position of minimum in L[i:]
for j in range(i+1,n):
if L[j] < L[mpos]:

mpos = j
# L[mpos] : smallest value in L[i:]
# Exchange L[mpos] and L[i]
(L[i],L[mpos]) = (L[mpos],L[i])
# Now L[:i+1] is sorted

return(L)
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Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Move the first paper to a new pile

Second paper
Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper
Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile
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Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]
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Madhavan Mukund Näıve Sorting Algorithms PDSP Lecture 16 8 / 11



Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]
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Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation
Inductively sort L[:i]

Insert L[i] in L[:i]

def InsertionSort(L):
n = len(L)
if n < 1:

return(L)
for i in range(n):

# Assume L[:i] is sorted
# Move L[i] to correct position in L[:i]
j = i
while(j > 0 and L[j] < L[j-1]):
(L[j],L[j-1]) = (L[j-1],L[j])
j = j-1

# Now L[:i+1] is sorted
return(L)
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