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Memoizing recursive implementations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)
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Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)
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Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44
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Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14

⑧ O



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Edit distance and LCS

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution

Madhavan Mukund Dynamic Programming PDSP Lecture 23 5 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14

g.a
O



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14

↓
delete a

-

serbsa
an

e



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Recall LCS

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai 6= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

Madhavan Mukund Dynamic Programming PDSP Lecture 23 6 / 14

<



Inductive structure for edit distance

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Edit distance — transform u to v

If ai = bj , nothing to be done

If ai 6= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

ED(i , j) — edit distance for

aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai 6= bj ,

ED(i , j) = 1 + min[ ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1) ]

Base cases

ED(m, n) = 0

ED(i , n) = m � i for all 0  i  m

Delete aiai+1 . . . am�1 from u

ED(m, j) = n � j for all 0  j  n
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Subproblem dependency

Subproblems are ED(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret
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Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute
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Multiplying matrices

Multiply matrices A, B

AB[i , j ] =
n�1X

k=0

A[i , k]B[k , j ]

Dimensions must be compatible

A : m ⇥ n, B : n ⇥ p

AB : m ⇥ p

Computing each entry in AB is O(n)

Overall, computing AB is O(mnp)

Matrix multiplication is associative

ABC = (AB)C = A(BC )

Bracketing does not change answer

. . . but can a↵ect the complexity!

Let A : 1⇥ 100, B : 100⇥ 1, C : 1⇥ 100

Computing A(BC )

BC : 100⇥ 100, takes

100 · 1 · 100 = 10000 steps to compute

A(BC ) : 1⇥ 100, takes

1 · 100 · 100 = 10000 steps to compute

Computing (AB)C

AB : 1⇥ 1, takes

1 · 100 · 1 = 100 steps to compute

(AB)C ) : 1⇥ 100, takes

1 · 1 · 100 = 100 steps to compute

20000 steps vs 200 steps!
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Given n matrices M0 : r0 ⇥ c0,

M1 : r1 ⇥ c1, . . . , Mn�1 : rn�1 ⇥ cn�1

Dimensions match: rj = cj�1, 0 < j < n

Product M0 ·M1 · · ·Mn�1 can be

computed

Find an optimal order to compute the

product

Multiply two matrices at a time

Bracket the expression optimally
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Inductive structure

Final step combines two subproducts

(M0 ·M1 · · ·Mk�1) · (Mk ·Mk+1 · · ·Mn�1)

for some 0 < k < n

First factor is r0 ⇥ ck�1, second is

rk ⇥ cn�1, where rk = ck�1

Let C (0, n�1) denote the overall cost

Final multiplication is O(r0rkcn�1)

Inductively, costs of factors are C (0, k�1)

and C (k , n�1)

C (0, n�1) =

C (0, k�1) + C (k , n�1) + r0rkcn�1

Which k should we choose?

Try all and choose the minimum!

Subproblems?

M0 ·M1 · · ·Mk�1 would decompose

as (M0 · · ·Mj�1) · (Mj · · ·Mk�1)

Generic subproblem is

Mj ·Mj+1 · · ·Mk

C (j , k) =

minj<`k [C (j , `�1) + C (`, k) + rj r`ck ]

Base case: C (j , j) = 0 for 0  j < n
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Inductively, costs of factors are C (0, k�1)
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Subproblem dependency

Compute C (i , j), 0  i , j < n

Only for i  j

Entries above main diagonal

C (i , j) depends on C (i , k�1), C (k , j)
for every i < k  j

O(n) dependencies per entry, unlike

LCW, LCS and ED

Diagonal entries are base case

Fill matrix by diagonal, from main

diagonal

0 · · · i · · · · · · j · · · n�1

0

· · ·

i

· · ·

· · ·

j

· · ·

n�1
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Implementation

def C(dim):
# dim: dimension matrix,
# entries are pairs (r_i,c_i)
import numpy as np
n = dim.shape[0]
C = np.zeros((n,n))
for i in range(n):

C[i,i] = 0
for diff in range(1,n):

for i in range(0,n-diff):
j = i + diff
C[i,j] = C[i,i] +

C[i+1,j] +
dim[i][0]*dim[i+1][0]*dim[j][1]

for k in range(i+1,j+1):
C[i,j] = min(C[i,j],

C[i,k-1] + C[k,j] +
dim[i][0]*dim[k][0]*dim[j][1])

return(C[0,n-1])

We have to fill a table of size

O(n
2
)

Filling each entry takes O(n)

Overall, O(n
3
)
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