Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 23, 08 Nov 2022

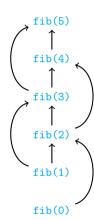
Memoizing recursive implementations

```
def fib(n):
  if n in fibtable.keys():
    return(fibtable[n])
  if n \le 1:
    value = n
  else:
    value = fib(n-1) + fib(n-2)
  fibtable[n] = value
  return(value)
```

In general

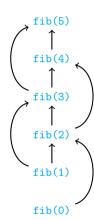
```
def f(x,y,z):
   if (x,y,z) in ftable.keys():
     return(ftable[(x,y,z)])
   recursively compute value
     from subproblems
   ftable[(x,y,z)] = value
   return(value)
```

- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic

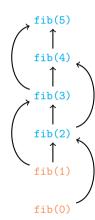


- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call

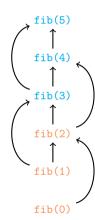
Evaluating fib(5)



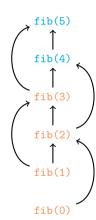
- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call



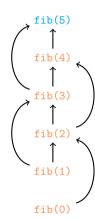
- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call



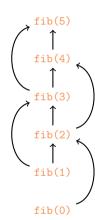
- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call



- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call



- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies are acyclic
- Solve subproblems in appropriate order
 - Start with base cases no dependencies
 - Evaluate a value after all its dependencies are available
 - Fill table iteratively
 - Never need to make a recursive call



- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The lecture taught the students were able to appreciate how the concept of optimal substructures property cand itbse used in designing algorithms"
- insert. delete. substitute

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The lecture taught the students were able to appreciate how the concept of optimal substructures property cand itbse used in designing algorithms"
- insert, delete, substitute

Edit distance

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The lecture taught the students were able to appreciate how the concept of optimal substructures property cand itbse used in designing algorithms"
- insert, delete, substitute

Edit distance

 Minimum number of edit operations needed

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The lecture taught the students were able to appreciate how the concept of optimal substructures property cand itbse used in designing algorithms"
- insert, delete, substitute

Edit distance

- Minimum number of edit operations needed
- In our example, 24 characters inserted, 18 deleted, 2 substituted

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another

- "The lecture taught the students were able to appreciate how the concept of optimal substructures property cand itbse used in designing algorithms"
- insert, delete, substitute

Edit distance

- Minimum number of edit operations needed
- In our example, 24 characters inserted, 18 deleted, 2 substituted
- Edit distance is at most 44

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

Edit distance and LCS

■ Longest common subsequence of u, v

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of u, v
 - Minimum number of deletes needed to make them equal

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of *u*, *v*
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of *u*, *v*
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v
 - blsect, secret LCS is sect

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of *u*, *v*
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v
 - bisect, secret LCS is sect
 - Delete b, i in bisect and r, e in secret

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of *u*, *v*
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v
 - bisect, secret LCS is sect
 - Delete b, i in bisect and r, e in secret
 - Delete b, i and then insert r, e in bisect

- Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - Genetic similarity of species

- Longest common subsequence of u, v
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v
 - bisect, secret LCS is sect
 - Delete b, i in bisect and r, e in secret
 - Delete b, i and then insert r, e in bisect
- From LCS, we can compute edit distance without substitution

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

Recall LCS

$$\blacksquare \ u = a_0 a_1 \dots a_{m-1}$$

$$\mathbf{v} = b_0 b_1 \dots b_{n-1}$$

If
$$a_i = b_j$$
,
 $LCS(i,j) = 1$
 $LCS(i+1,j+1)$

• If
$$a_i \neq b_j$$
,

$$LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$$

$$u = a_0 a_1 \dots a_{m-1}$$

$$\mathbf{v} = b_0 b_1 \dots b_{n-1}$$

Recall LCS

■ Edit distance — aim is to transform u to v

- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
- If $a_i \neq b_j$, $LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Recall LCS
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
- If $a_i \neq b_j$, $LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$

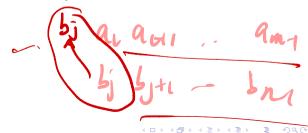
- Edit distance aim is to transform u to v
- If $a_i = b_j$, nothing to be done

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Recall LCS
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
- If $a_i \neq b_j$, $LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$ INSert by

- Edit distance aim is to transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among



$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Recall LCS
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
- If $a_i \neq b_j$, $LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$

- Edit distance aim is to transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Recall LCS
- If $a_i = b_j$, LCS(i,j) = 1 + LCS(i+1,j+1)
- If $a_i \neq b_j$, $LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$

- Edit distance aim is to transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j
 - Delete *ai*

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

• If
$$a_i = b_j$$
,
 $LCS(i,j) = 1 + LCS(i+1,j+1)$

■ If
$$a_i \neq b_i$$
,

$$LCS(i,j) = \max[LCS(i,j+1), LCS(i+1,j)]$$

■ Edit distance — aim is to transform u to v

■ If $a_i = b_j$, nothing to be done

■ If $a_i \neq b_j$, best among

■ Substitute a_i by b_j

■ Delete a;

■ Insert b_j before a_i

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Edit distance transform u to v
- If $a_i = b_i$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j
 - Delete a;
 - Insert b_j before a_i

Madhavan Mukund Dynamic Programming

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Edit distance transform u to v
- If $a_i = b_i$, nothing to be done
- If $a_i \neq b_i$, best among
 - Substitute a_i by b_j
 - Delete a_i
 - Insert b_j before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$

7 / 14

Madhavan Mukund Dynamic Programming PDSP Lecture 23

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Edit distance transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j
 - Delete a;
 - Insert b_j before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$

■ If
$$a_i = b_j$$
,
 $ED(i,j) = ED(i+1,j+1)$

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Edit distance transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j
 - Delete a;
 - Insert *b_i* before *a_i*
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_i b_{i+1} \dots b_{m-1}$

■ If
$$a_i = b_j$$
,
 $ED(i,j) = ED(i+1,j+1)$

If
$$a_i \neq b_j$$
,
$$ED(i,j) = 1 + \min[\begin{array}{c} ED(i+1,j+1), \\ ED(i+1,j), \\ ED(i,j+1) \end{array}]$$

$$u = a_0 a_1 \dots a_{m-1}$$

$$v = b_0 b_1 \dots b_{n-1}$$

- Edit distance transform *u* to *v*
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_j
 - Delete a_i
 - Insert b_j before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$

■ If
$$a_i = b_j$$
,
 $ED(i,j) = ED(i+1,j+1)$

■ If
$$a_i \neq b_j$$
,
 $ED(i,j) = 1 + \min[\begin{array}{c} ED(i+1,j+1), \\ ED(i+1,j), \\ ED(i,j+1) \end{array}]$

- Base cases
 - ED(m, n) = 0

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Edit distance transform u to v
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_i
 - Delete a_i
 - Insert b_j before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$

- If $a_i = b_j$, ED(i,j) = ED(i+1,j+1)
- If $a_i \neq b_j$, $ED(i,j) = 1 + \min[ED(i+1,j+1), ED(i+1,j), ED(i,j+1)]$
- Base cases
 - ED(m, n) = 0
 - ED(i, n) = m i for all $0 \le i \le m$ Delete $a_i a_{i+1} \dots a_{m-1}$ from u

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Edit distance transform *u* to *v*
- If $a_i = b_j$, nothing to be done
- If $a_i \neq b_j$, best among
 - Substitute a_i by b_i
 - Delete a_i
 - Insert b_j before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \dots a_{m-1}, b_j b_{j+1} \dots b_{m-1}$

■ If
$$a_i = b_j$$
,
 $ED(i,j) = ED(i+1,j+1)$

■ If
$$a_i \neq b_j$$
,
 $ED(i,j) = 1 + \min[ED(i+1,j+1), ED(i+1,j), ED(i,j+1)]$

- Base cases
 - ED(m, n) = 0
 - ED(i, n) = m i for all $0 \le i \le m$ Delete $a_i a_{i+1} \dots a_{m-1}$ from u
 - ED(m,j) = n j for all $0 \le j \le n$ Insert $b_j b_{j+1} \dots b_{n-1}$ into u

■ Subproblems are ED(i,j), for 0 < i < m, 0 < j < n

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i							
2	s							
3	е							
4	С							
5	t							
6	•							

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i				核			
2	S							
3	е			槟				
4	С						槟	
5	t							
6	•							
				4 🗆 🕨	4 67 6	1 E b 4	= 5	■ ∽

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							6
1	i							5
2	s							4
3	е							3
4	С							2
5	t							1
6	•							0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b						5	6
1	i						4	5
2	s						3	4
3	е						2	3
4	С						1	2
5	t						0	1
6	•						1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b					4	5	6
1	i					3	4	5
2	S					2	3	4
3	е					1	2	3
4	С					1	1	2
5	t					1	0	1
6	•					2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b				4	4	5	6
1	i				3	3	4	5
2	S				2	2	3	4
3	е				2	1	2	3
4	С				2	1	1	2
5	t				2	1	0	1
6	•				3	2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

			1		1		1	
		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b			4	4	4	5	6
1	i			3	3	3	4	5
2	s			3	2	2	3	4
3	е			3	2	1	2	3
4	С			2	2	1	1	2
5	t			3	2	1	0	1
6	•			4	3	2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b		4	4	4	4	5	6
1	i		4	3	3	3	4	5
2	s		3	3	2	2	3	4
3	е		2	3	2	1	2	3
4	С		3	2	2	1	1	2
5	t		4	3	2	1	0	1
6	•		5	4	3	2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	4	4	4	4	4	5	6
1	i	3	4	3	3	3	4	5
2	S	2	3	3	2	2	3	4
3	е	3	2	3	2	1	2	3
4	С	4	3	2	2	1	1	2
5	t	5	4	3	2	1	0	1
6	•	6	5	4	3	2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

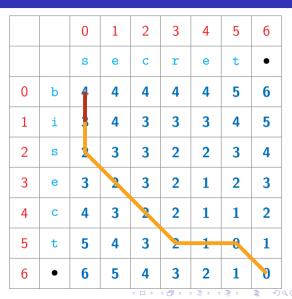
■ Transform bisect to secret

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b	4	4	4	4	4	5	6
1	i	3	4	3	3	3	4	5
2	S	1	3	3	2	2	3	4
3	е	3	2	3	2	1	2	3
4	С	4	3	2	2	1	1	2
5	t	5	4	3	2	1	-0	1
6	•	6	5	4	3	2	1	0

- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

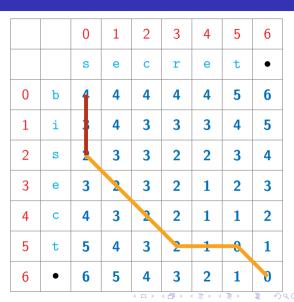
- Transform bisect to secret
- Delete b



- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

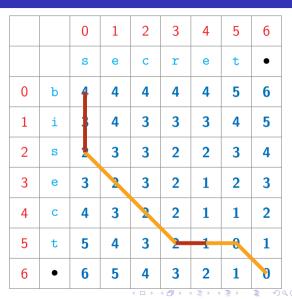
- Transform bisect to secret
- Delete b , Delete i



- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

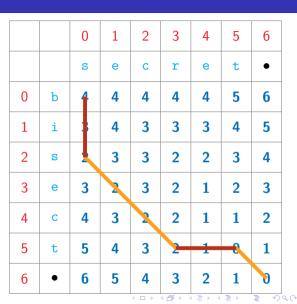
- Transform bisect to secret
- Delete b , Delete i , Insert r



- Subproblems are ED(i,j), for $0 \le i \le m$, $0 \le j \le n$
- Table of $(m+1) \cdot (n+1)$ values
- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)
- No dependency for ED(m, n) start at bottom right and fill by row, column or diagonal

Reading off the solution

- Transform bisect to secret
- Delete b , Delete i , Insert r , Insert e



```
def ED(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  ed = np.zeros((m+1,n+1))
 for i in range(m-1,-1,-1):
    ed[i,n] = m-i
 for j in range(n-1,-1,-1):
    ed[m,i] = n-i
 for j in range(n-1,-1,-1):
    for i in range(m-1,-1,-1):
      if u[i] == v[i]:
        ed[i,j] = ed[i+1,j+1]
      else:
        ed[i,j] = 1 + min(ed[i+1,j+1],
                          ed[i,j+1],
                          ed[i+1, j])
 return(ed[0,0])
```

```
def ED(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  ed = np.zeros((m+1,n+1))
 for i in range(m-1,-1,-1):
    ed[i,n] = m-i
 for j in range(n-1,-1,-1):
    ed[m,i] = n-i
 for j in range(n-1,-1,-1):
    for i in range(m-1,-1,-1):
      if u[i] == v[i]:
        ed[i,j] = ed[i+1,j+1]
      else:
        ed[i,j] = 1 + min(ed[i+1,j+1],
                           ed[i,j+1],
                           ed[i+1, j])
 return(ed[0,0])
```

Complexity

```
def ED(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  ed = np.zeros((m+1,n+1))
 for i in range(m-1,-1,-1):
    ed[i,n] = m-i
 for j in range(n-1,-1,-1):
    ed[m,i] = n-i
 for j in range(n-1,-1,-1):
    for i in range(m-1,-1,-1):
      if u[i] == v[i]:
        ed[i,j] = ed[i+1,j+1]
      else:
        ed[i,j] = 1 + min(ed[i+1,j+1],
                           ed[i,j+1],
                           ed[i+1, j])
 return(ed[0,0])
```

Complexity

Again O(mn), using dynamic programming or memoization

```
def ED(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))
  ed = np.zeros((m+1,n+1))
  for i in range(m-1,-1,-1):
    ed[i,n] = m-i
 for j in range(n-1,-1,-1):
    ed[m,i] = n-i
  for j in range(n-1,-1,-1):
    for i in range(m-1,-1,-1):
      if u[i] == v[i]:
        ed[i,j] = ed[i+1,j+1]
      else:
        ed[i,j] = 1 + min(ed[i+1,j+1],
                           ed[i,j+1],
                           ed[i+1, j])
 return(ed[0,0])
```

Complexity

- Again O(mn), using dynamic programming or memoization
 - Fill a table of size O(mn)
 - Each table entry takes constant time to compute

■ Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

10 / 14

Madhavan Mukund Dynamic Programming PDSP Lecture 23

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)

Madhavan Mukund

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - $\blacksquare ABC = (AB)C = A(BC)$
 - Bracketing does not change answer
 - ... but can affect the complexity!

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

■ Dimensions must be compatible

$$\blacksquare$$
 $A: m \times n, B: n \times p$

$$\blacksquare$$
 $AB: m \times p$

- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative

$$ABC = (AB)C = A(BC)$$

- Bracketing does not change answer
- ...but can affect the complexity!

■ Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- \blacksquare Computing A(BC)

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- \blacksquare Computing A(BC)
 - \blacksquare BC: 100 × 100, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC : 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- \blacksquare Computing (AB)C
 - $AB: 1 \times 1$, takes $1 \cdot 100 \cdot 1 = 100$ steps to compute

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- \blacksquare Computing (AB)C
 - $AB: 1 \times 1$, takes $1 \cdot 100 \cdot 1 = 100$ steps to compute
 - (AB)C): 1 × 100, takes 1 · 1 · 100 = 100 steps to compute

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*
 - \blacksquare $AB: 1 \times 1$, takes
 - $1 \cdot 100 \cdot 1 = 100$ steps to compute
 - (AB)C): 1 × 100, takes 1 · 1 · 100 = 100 steps to compute
- 20000 steps vs 200 steps!

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - $\blacksquare ABC = (AB)C = A(BC)$
 - Bracketing does not change answer
 - ... but can affect the complexity!

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB : m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

• Given *n* matrices $M_0: r_0 \times c_0$, $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Given *n* matrices $M_0 : r_0 \times c_0$, $M_1 : r_1 \times c_1$, ..., $M_{n-1} : r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_j = c_{j-1}$, 0 < j < n

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare A: m × n. B: n × p
 - $\blacksquare AB : m \times p$
- Computing each entry in AB is O(n)
- \blacksquare Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Given *n* matrices $M_0: r_0 \times c_0$. $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_i = c_{i-1}$, 0 < j < n
 - Product $M_0 \cdot M_1 \cdot \cdot \cdot M_{n-1}$ can be computed

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Given *n* matrices $M_0 : r_0 \times c_0$, $M_1 : r_1 \times c_1$, ..., $M_{n-1} : r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_j = c_{j-1}$, 0 < j < n
 - Product $M_0 \cdot M_1 \cdots M_{n-1}$ can be computed
- Find an optimal order to compute the product
 - Multiply two matrices at a time
 - Bracket the expression optimally

■ Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$

12 / 14

■ Final step combines two subproducts

for some
$$0 < k < n$$
 ($M_k \cdot M_{k+1} \cdot \cdot \cdot M_{n-1}$)

- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost

12 / 14

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$

12 / 14

■ Final step combines two subproducts

for some
$$0 < k < n$$

(M_k · M_{k+1} · · · M_{n-1})

(n.

- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is C(r₀r_kc_{n-1})
 Inductively, costs of factors are C(0, k-1)

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

12 / 14

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

■ Which *k* should we choose?

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!

12 / 14

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?

12 / 14

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{j-1}) \cdot (M_j \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{j-1}) \cdot (M_j \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$
- $C(j,k) = \min_{j < \ell \le k} \left[C(j,\ell-1) + C(\ell,k) + r_j r_\ell c_k \right]$

12 / 14

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

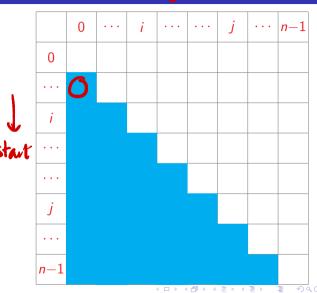
- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{j-1}) \cdot (M_j \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$
- $C(j,k) = \min_{j < \ell \le k} \left[C(j,\ell-1) + C(\ell,k) + r_j r_\ell c_k \right]$
- Base case: C(j,j) = 0 for $0 \le j < n$

12 / 14

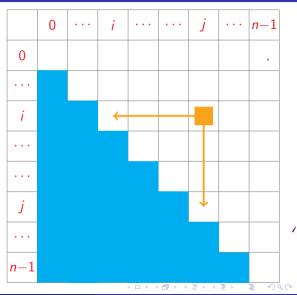
■ Compute C(i,j), $0 \le i,j < n$

	0	 i	 	j	 n-1
0					
i					
j					
n-1					

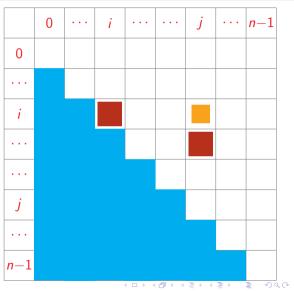
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \leq j$
 - Entries above main diagonal



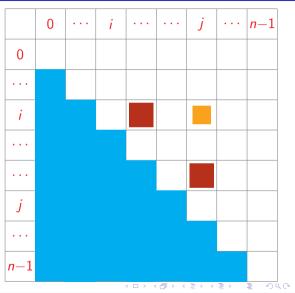
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$



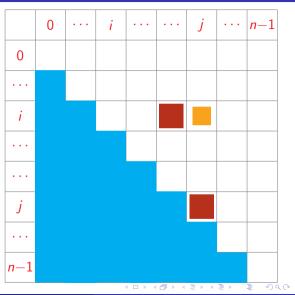
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \leq j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every $i < k \le j$



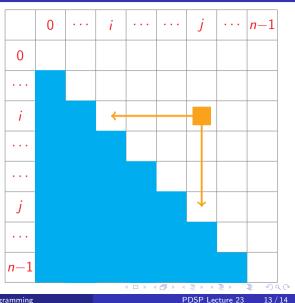
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \leq j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every $i < k \le j$



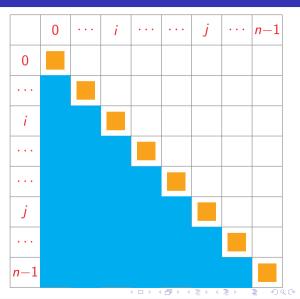
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \leq j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every $i < k \le j$



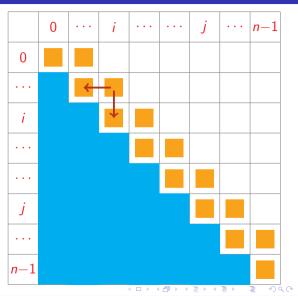
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED



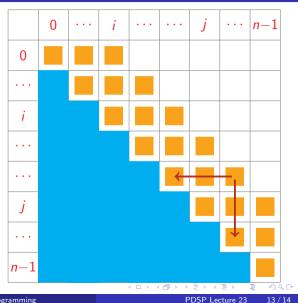
- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case



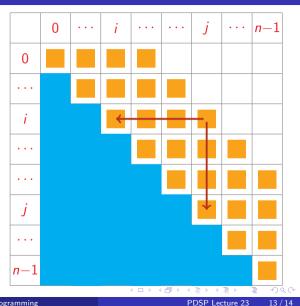
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



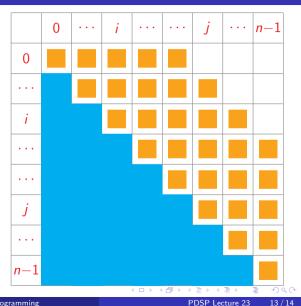
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



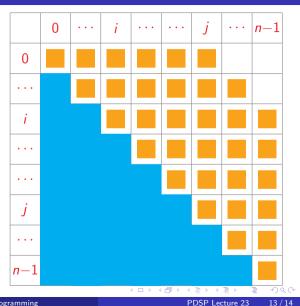
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



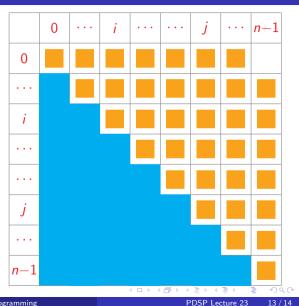
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



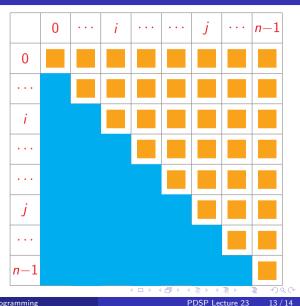
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



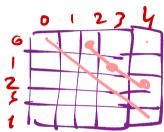
- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



- Compute C(i,j), $0 \le i,j < n$
 - \blacksquare Only for i < j
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j)for every i < k < j
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal



```
def C(dim):
  # dim: dimension matrix,
         entries are pairs (r_i,c_i)
  import numpy as np
 n = \dim.shape[0]
  C = np.zeros((n,n))
 for i in range(n):
    C[i,i] = 0
 for diff in range(1,n):
    for i in range(0,n-diff):
      i = i + diff
      C[i,i] = C[i,i] +
               C[i+1, j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,j+1):
        C[i,j] = min(C[i,j],
                     C[i,k-1] + C[k,j] +
                     dim[i][0]*dim[k][0]*dim[j][1
 return(C[0,n-1])
```



```
def C(dim):
  # dim: dimension matrix,
         entries are pairs (r_i,c_i)
  import numpy as np
  n = dim.shape[0]
  C = np.zeros((n,n))
  for i in range(n):
    C[i,i] = 0
 for diff in range(1,n):
    for i in range(0,n-diff):
      i = i + diff
      C[i,i] = C[i,i] +
               C[i+1, j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,j+1):
        C[i,j] = min(C[i,j],
                     C[i,k-1] + C[k,j] +
                     dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0,n-1])
```

Complexity

```
def C(dim):
  # dim: dimension matrix,
         entries are pairs (r_i,c_i)
  import numpy as np
  n = dim.shape[0]
  C = np.zeros((n,n))
  for i in range(n):
    C[i,i] = 0
 for diff in range(1,n):
    for i in range(0,n-diff):
      i = i + diff
      C[i,i] = C[i,i] +
               C[i+1, j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,j+1):
        C[i,j] = min(C[i,j],
                     C[i,k-1] + C[k,j] +
                     dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0,n-1])
```

Complexity

• We have to fill a table of size $O(n^2)$

```
def C(dim):
  # dim: dimension matrix,
         entries are pairs (r_i,c_i)
  import numpy as np
  n = dim.shape[0]
  C = np.zeros((n,n))
  for i in range(n):
    C[i,i] = 0
  for diff in range(1,n):
    for i in range(0,n-diff):
      i = i + diff
      C[i,i] = C[i,i] +
               C[i+1, j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,i+1):
        C[i,j] = min(C[i,j],
                     C[i,k-1] + C[k,j] +
                     dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0,n-1])
```

Complexity

- We have to fill a table of size $O(n^2)$
- Filling each entry takes O(n)

```
def C(dim):
  # dim: dimension matrix,
         entries are pairs (r_i,c_i)
  import numpy as np
  n = dim.shape[0]
  C = np.zeros((n,n))
  for i in range(n):
    C[i,i] = 0
                              n^{2}(1+-n)
  for diff in range(1,n):
    for i in range(0,n-diff):
     i = i + diff
     C[i,j] = C[i,i] +
              C[i+1, j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,i+1):
        C[i,j] = min(C[i,j],
                     C[i,k-1] + C[k,j] +
                     dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0,n-1])
```

Complexity

- We have to fill a table of size $O(n^2)$
- Filling each entry takes O(n)
- Overall, $O(n^3)$