
Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 6 Oct 2022

A real world problem

Every SIM card needs to be linked to
an Aadhaar card

Validate Aadhaar number for each SIM
card

Simple nested loop

How long will this take?

M SIM cards, N Aadhaar cards

Nested loops iterate M · N times

What are M and N
Almost everyone in India has an
Aadhaar card: N > 109

Number of SIM cards registered is
similar: M > 109

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 2 / 1

A real world problem

Every SIM card needs to be linked to
an Aadhaar card

Validate Aadhaar number for each SIM
card

Simple nested loop

How long will this take?

M SIM cards, N Aadhaar cards

Nested loops iterate M · N times

What are M and N
Almost everyone in India has an
Aadhaar card: N > 109

Number of SIM cards registered is
similar: M > 109

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 2 / 1

A real world problem

Every SIM card needs to be linked to
an Aadhaar card

Validate Aadhaar number for each SIM
card

Simple nested loop

How long will this take?

M SIM cards, N Aadhaar cards

Nested loops iterate M · N times

What are M and N
Almost everyone in India has an
Aadhaar card: N > 109

Number of SIM cards registered is
similar: M > 109

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 2 / 1

M
N

A real world problem

Every SIM card needs to be linked to
an Aadhaar card

Validate Aadhaar number for each SIM
card

Simple nested loop

How long will this take?

M SIM cards, N Aadhaar cards

Nested loops iterate M · N times

What are M and N
Almost everyone in India has an
Aadhaar card: N > 109

Number of SIM cards registered is
similar: M > 109

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 2 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

A real world problem

Assume M = N = 109

Nested loops execute 1018 times

We calculated that Python can perform
107 operations in a second

This will take at least 1011 seconds

1011/60 ⇡ 1.67⇥ 109 minutes

(1.67⇥ 109)/60 ⇡ 2.8⇥ 107 hours

(2.8⇥ 107)/24 ⇡ 1.17⇥ 106 days

(1.17⇥ 106)/365 ⇡ 3200 years!

How can we fix this?

for each SIM card S:

for each Aadhaar number A:

check if Aadhaar number in S

matches A

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 3 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

- my daughter's birthday
DATE + MONTH

INN

] Earliera They ¥tr -

anon\
3 July -

1 Oct] Later

É•ec

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

Guess my birthday

You propose a date

I answer, Yes, Earlier , Later

Suppose my birthday is 12 April

A possible sequence of questions

September 12? Earlier

February 23? Later

July 2? Earlier

. . .

What is the best strategy?

Interval of possibilities

Query midpoint — halves the interval

June 30? Earlier

March 31? Later

May 15? Earlier

April 22? Earlier

April 11? Later

April 16? Earlier

April 13? Earlier

April 12? Yes

Interval shrinks from 365 ! 182 !
91 ! 45 ! 22 ! 11 ! 5 ! 2 ! 1

Under 10 questions

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 4 / 1

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

21° = 103

109--103×103×103
= 2%210×2"

= 230

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

A real world problem

Assume Aadhaar details are sorted by
Aadhaar number

Use the halving strategy to check each
SIM card

Halving 10 times reduces the interval by
a factor of 1000, because 210 = 1024

After 10 queries, interval shrinks to 106

After 20 queries, interval shrinks to 103

After 30 queries, interval shrinks to 1

Total time ⇡ 109 ⇥ 30

for each SIM card S:

probe sorted Aadhaar list to

find a match with S

3000 seconds, or 50 minutes

From 3200 years to 50 minutes!

Of course, to achieve this we have to
first sort the Aadhaar cards

Arranging the data results in a much
more e�cient solution

Both algorithms and data structures
matter

Madhavan Mukund Analysis of algorithms PDSP Lecture 15 5 / 1

Comparing orders of magnitude

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 6 Oct 2022

Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n
3 eventually grows faster than g(n) = 5000n2

How do we compare functions with respect to orders of magnitude?

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 2 / 9

Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n
3 eventually grows faster than g(n) = 5000n2

How do we compare functions with respect to orders of magnitude?

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 2 / 9

Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x)  cg(x) for every x � x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 3 / 9

Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x)  cg(x) for every x � x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 3 / 9

Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x)  cg(x) for every x � x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 3 / 9

Examples

100n + 5 is O(n2)

100n + 5  100n + n = 101n, for n � 5

101n  101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5  100n + 5n = 105n, for n � 1

105n  105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 4 / 9

Examples

100n + 5 is O(n2)

100n + 5  100n + n = 101n, for n � 5

101n  101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5  100n + 5n = 105n, for n � 1

105n  105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 4 / 9

Examples

100n + 5 is O(n2)

100n + 5  100n + n = 101n, for n � 5

101n  101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5  100n + 5n = 105n, for n � 1

105n  105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 4 / 9

Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5  100n2 + 20n2 + 5n2, for
n � 1

100n2 + 20n + 5  125n2, for n � 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n
3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n

3 for n � c

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 5 / 9

Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5  100n2 + 20n2 + 5n2, for
n � 1

100n2 + 20n + 5  125n2, for n � 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n
3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n

3 for n � c

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 5 / 9

Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5  100n2 + 20n2 + 5n2, for
n � 1

100n2 + 20n + 5  125n2, for n � 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n
3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n

3 for n � c

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 5 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

M + n

MI

≤ 2m

n>M

≤ 2n

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

 c3(g1(n) + g2(n))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

 c3(g1(n) + g2(n))

 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

 c3(g1(n) + g2(n))

 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

 c3(g1(n) + g2(n))

 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n)  c1g1(n) for n > n1

f2(n)  c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n � n3, f1(n) + f2(n)

 c1g1(n) + c2g2(n)

 c3(g1(n) + g2(n))

 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least e�cient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 6 / 9

Lower bounds

f (x) is said to be ⌦(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) � cg(x) for every x � x0

n
3 is ⌦(n2)

n
3 > n

2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require ⌦(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 7 / 9

Lower bounds

f (x) is said to be ⌦(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) � cg(x) for every x � x0

n
3 is ⌦(n2)

n
3 > n

2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require ⌦(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 7 / 9

Lower bounds

f (x) is said to be ⌦(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) � cg(x) for every x � x0

n
3 is ⌦(n2)

n
3 > n

2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require ⌦(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 7 / 9

Tight bounds

f (x) is said to be ⇥(g(x)) if it is both O(g(x)) and ⌦(g(x))

Find constants c1, c2, x0 such that c1g(x)  f (x)  c2g(x) for every x � x0

n(n � 1)/2 is ⇥(n2)

Upper bound

n(n � 1)/2 = n2/2� n/2  n2/2 for all n � 0

Lower bound

n(n � 1)/2 = n2/2� n/2 � n2/2� (n/2⇥ n/2) � n2/4 for n � 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 8 / 9

Tight bounds

f (x) is said to be ⇥(g(x)) if it is both O(g(x)) and ⌦(g(x))

Find constants c1, c2, x0 such that c1g(x)  f (x)  c2g(x) for every x � x0

n(n � 1)/2 is ⇥(n2)

Upper bound

n(n � 1)/2 = n2/2� n/2  n2/2 for all n � 0

Lower bound

n(n � 1)/2 = n2/2� n/2 � n2/2� (n/2⇥ n/2) � n2/4 for n � 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 8 / 9

Tight bounds

f (x) is said to be ⇥(g(x)) if it is both O(g(x)) and ⌦(g(x))

Find constants c1, c2, x0 such that c1g(x)  f (x)  c2g(x) for every x � x0

n(n � 1)/2 is ⇥(n2)

Upper bound

n(n � 1)/2 = n2/2� n/2  n2/2 for all n � 0

Lower bound

n(n � 1)/2 = n2/2� n/2 � n2/2� (n/2⇥ n/2) � n2/4 for n � 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 8 / 9

Tight bounds

f (x) is said to be ⇥(g(x)) if it is both O(g(x)) and ⌦(g(x))

Find constants c1, c2, x0 such that c1g(x)  f (x)  c2g(x) for every x � x0

n(n � 1)/2 is ⇥(n2)

Upper bound

n(n � 1)/2 = n2/2� n/2  n2/2 for all n � 0

Lower bound

n(n � 1)/2 = n2/2� n/2 � n2/2� (n/2⇥ n/2) � n2/4 for n � 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 8 / 9

Tight bounds

f (x) is said to be ⇥(g(x)) if it is both O(g(x)) and ⌦(g(x))

Find constants c1, c2, x0 such that c1g(x)  f (x)  c2g(x) for every x � x0

n(n � 1)/2 is ⇥(n2)

Upper bound

n(n � 1)/2 = n2/2� n/2  n2/2 for all n � 0

Lower bound

n(n � 1)/2 = n2/2� n/2 � n2/2� (n/2⇥ n/2) � n2/4 for n � 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 8 / 9

Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is ⌦(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is ⇥(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 9 / 9

I
Which input thus longestas n becomes
time[large

n is input size

Multiply a ✗ b What is input sire ?
Cost grows with rahm if a & b

2×-109
3 5 78 No of digit

1×10%2=9109210
logion" " ↳±* and-÷×**

' (
- ✗

-

= C- logzn

Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is ⌦(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is ⇥(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 9 / 9

Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is ⌦(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is ⇥(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSP Lecture 15 9 / 9

