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Memoizing recursive implementations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)
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Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call
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Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)
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Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

In general m+n segments from (0, 0)
to (m, n)

Out of 15, exactly 5 are right moves, 10
are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

✓
15

5

◆
=

15!

10! · 5! = 3003

Same as

✓
15

10

◆
— fix the 10 up moves

(0, 0)

(5, 10)
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Holes

What if an intersection is blocked?

For instance, (2, 4)

Need to discard paths passing through
(2, 4)

Two of our earlier examples are invalid
paths

(0, 0)

(5, 10)
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Combinatorial solution for holes

Discard paths passing through (2, 4)

Every path via (2, 4) combines a path
from (0, 0) to (2, 4) with a path from
(2, 4) to (5, 10)

Count these separately
✓
2 + 4

2

◆
= 15 paths (0, 0) to (2, 4)

✓
3 + 6

3

◆
= 84 paths (2, 4) to (5, 10)

15⇥ 84 = 1260 paths via (2, 4)

3003� 1260 = 1743 valid paths
avoiding (2, 4)

(0, 0)

(5, 10)
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More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)
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Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)
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Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1
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Dynamic programming
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Dynamic programming
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Dynamic programming
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Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)
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Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword
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Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)
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Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0  i  m

In general, LCW (m, j) = 0 for all 0  j  n
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Subproblem dependency

Subproblems are LCW (i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally
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Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute
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Each table entry takes
constant time to compute
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Longest common subsequence

Subsequence — can drop some letters in
between

Given two strings, find the (length of the)
longest common subsequence

"secret", "secretary" —
"secret", length 6

"bisect", "trisect" —
"isect", length 5

"bisect", "secret" —
"sect", length 4

"director", "secretary" —
"ectr", "retr", length 4

LCS is the longest path connecting
non-zero LCW entries, moving right/down
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Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has
long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence
of lines

Each line of text is a “character”
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Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

E/X



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25



Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0  i  m

LCS(m, j) = 0 for all 0  j  n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

ics (ij)
↓ act by

=max(<2S(His
Les(vii)



Subproblem dependency

Subproblems are LCS(i , j), for
0  i  m, 0  j  n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS
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Subproblem dependency

Subproblems are LCS(i , j), for
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Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute
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for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute
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