
Dynamic Programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 22, 03 Nov 2022

Memoizing recursive implementations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 2 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

&

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

C

↓a

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

fbs)
0 1 2 3 4 567 8

0 1 2 3 5 8 132)

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 3 / 25

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

~

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

Ev

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 4 / 25

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

In general m+n segments from (0, 0)
to (m, n)

Out of 15, exactly 5 are right moves, 10
are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

✓
15

5

◆
=

15!

10! · 5! = 3003

Same as

✓
15

10

◆
— fix the 10 up moves

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 25

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

In general m+n segments from (0, 0)
to (m, n)

Out of 15, exactly 5 are right moves, 10
are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

✓
15

5

◆
=

15!

10! · 5! = 3003

Same as

✓
15

10

◆
— fix the 10 up moves

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 25

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

In general m+n segments from (0, 0)
to (m, n)

Out of 15, exactly 5 are right moves, 10
are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

✓
15

5

◆
=

15!

10! · 5! = 3003

Same as

✓
15

10

◆
— fix the 10 up moves

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 5 / 25

Holes

What if an intersection is blocked?

For instance, (2, 4)

Need to discard paths passing through
(2, 4)

Two of our earlier examples are invalid
paths

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 25

Holes

What if an intersection is blocked?

For instance, (2, 4)

Need to discard paths passing through
(2, 4)

Two of our earlier examples are invalid
paths

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 6 / 25

Combinatorial solution for holes

Discard paths passing through (2, 4)

Every path via (2, 4) combines a path
from (0, 0) to (2, 4) with a path from
(2, 4) to (5, 10)

Count these separately
✓
2 + 4

2

◆
= 15 paths (0, 0) to (2, 4)

✓
3 + 6

3

◆
= 84 paths (2, 4) to (5, 10)

15⇥ 84 = 1260 paths via (2, 4)

3003� 1260 = 1743 valid paths
avoiding (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 25

Combinatorial solution for holes

Discard paths passing through (2, 4)

Every path via (2, 4) combines a path
from (0, 0) to (2, 4) with a path from
(2, 4) to (5, 10)

Count these separately
✓
2 + 4

2

◆
= 15 paths (0, 0) to (2, 4)

✓
3 + 6

3

◆
= 84 paths (2, 4) to (5, 10)

15⇥ 84 = 1260 paths via (2, 4)

3003� 1260 = 1743 valid paths
avoiding (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 25

Combinatorial solution for holes

Discard paths passing through (2, 4)

Every path via (2, 4) combines a path
from (0, 0) to (2, 4) with a path from
(2, 4) to (5, 10)

Count these separately
✓
2 + 4

2

◆
= 15 paths (0, 0) to (2, 4)

✓
3 + 6

3

◆
= 84 paths (2, 4) to (5, 10)

15⇥ 84 = 1260 paths via (2, 4)

3003� 1260 = 1743 valid paths
avoiding (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 25

Combinatorial solution for holes

Discard paths passing through (2, 4)

Every path via (2, 4) combines a path
from (0, 0) to (2, 4) with a path from
(2, 4) to (5, 10)

Count these separately
✓
2 + 4

2

◆
= 15 paths (0, 0) to (2, 4)

✓
3 + 6

3

◆
= 84 paths (2, 4) to (5, 10)

15⇥ 84 = 1260 paths via (2, 4)

3003� 1260 = 1743 valid paths
avoiding (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 7 / 25

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 25

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 25

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 25

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 25

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 8 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

Inductive formulation

How can a path reach (i , j)

Move up from (i , j � 1)

Move right from (i � 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i � 1, j) + P(i , j � 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i � 1, 0) — bottom row

P(0, j) = P(0, j � 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i�1, j)

(i , j�1)

(i , j)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 9 / 25

·P

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 25

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 25

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 25

ded

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 25

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 10 / 25

P

O
xPhis

o

X

I8

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 11 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

O
n

O

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

1 6 6 26 26 82

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

1 6 6 26 26 82

1 7 13 39 65 147

1 8 21 60 125 272

1 9 30 90 215 487

1 10 40 130 345 832

1 11 51 181 526 1358

Madhavan Mukund Dynamic Programming PDSP Lecture 22 12 / 25

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 25

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 25

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 25

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

1 1 1 1

3 4 5 6

6 10 15 21

10 20 35 56

0 20 0 56

6 26 26 82

13 39 65 147

21 60 125 272

30 90 215 487

40 130 345 832

51 181 526 1358

Madhavan Mukund Dynamic Programming PDSP Lecture 22 13 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1

1

2

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 25

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1

1

2

1

1

3

3

1
Madhavan Mukund Dynamic Programming PDSP Lecture 22 14 / 25

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 25

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 25

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 25

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 25

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo↵ between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 15 / 25

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 25

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 25

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 25

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Common subword of length k — for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Find the largest such k — length of the longest common subword

Madhavan Mukund Dynamic Programming PDSP Lecture 22 16 / 25

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 25

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 25

Brute force

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Dynamic Programming PDSP Lecture 22 17 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 i m

In general, LCW (m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 i m

In general, LCW (m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 i m

In general, LCW (m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 25

Valid induces are Octm-I

Octa-(

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 i m

In general, LCW (m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

Find the largest k such that for some positions i and j ,
aiai+1ai+k�1 = bjbj+1bj+k�1

LCW (i , j) — length of longest common subword in aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai 6= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 i m

In general, LCW (m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 18 / 25

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

v

1.j ↑

g
Cs,IfI

g

↳

-

~r or v-

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

O

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

D

i
G

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

*

* 9

o-

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

go

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

O

g g

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

9.
0-rs

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

Of
8-

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

v
-

-rQ

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

Subproblem dependency

Subproblems are LCW (i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o↵ the solution

Find entry (i , j) with largest LCW value

Read o↵ the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 19 / 25

p
--

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 20 / 25

I

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 20 / 25

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 20 / 25

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 20 / 25

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 20 / 25

Longest common subsequence

Subsequence — can drop some letters in
between

Given two strings, find the (length of the)
longest common subsequence

"secret", "secretary" —
"secret", length 6

"bisect", "trisect" —
"isect", length 5

"bisect", "secret" —
"sect", length 4

"director", "secretary" —
"ectr", "retr", length 4

LCS is the longest path connecting
non-zero LCW entries, moving right/down

Madhavan Mukund Dynamic Programming PDSP Lecture 22 21 / 25

even such

Longest common subsequence

Subsequence — can drop some letters in
between

Given two strings, find the (length of the)
longest common subsequence

"secret", "secretary" —
"secret", length 6

"bisect", "trisect" —
"isect", length 5

"bisect", "secret" —
"sect", length 4

"director", "secretary" —
"ectr", "retr", length 4

LCS is the longest path connecting
non-zero LCW entries, moving right/down

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 21 / 25

Longest common subsequence

Subsequence — can drop some letters in
between

Given two strings, find the (length of the)
longest common subsequence

"secret", "secretary" —
"secret", length 6

"bisect", "trisect" —
"isect", length 5

"bisect", "secret" —
"sect", length 4

"director", "secretary" —
"ectr", "retr", length 4

LCS is the longest path connecting
non-zero LCW entries, moving right/down

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 21 / 25

Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has
long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence
of lines

Each line of text is a “character”

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 22 / 25

Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has
long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence
of lines

Each line of text is a “character”

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 22 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

E/X

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

Inductive structure

u = a0a1 . . . am�1

v = b0b1 . . . bn�1

LCS(i , j) — length of longest common subsequence in
aiai+1 . . . am�1, bjbj+1 . . . bn�1

If ai = bj , LCS(i , j) = 1 + LCS(i+1, j+1)

Can assume (ai , bj) is part of LCS

If ai 6= bj , ai and bj cannot both be part of the LCS

Which one should we drop?

Solve LCS(i , j+1) and LCS(i+1, j) and take the maximum

Base cases as with LCW

LCS(i , n) = 0 for all 0 i m

LCS(m, j) = 0 for all 0 j n

Madhavan Mukund Dynamic Programming PDSP Lecture 22 23 / 25

ics (ij)
↓ act by

=max(<2S(His
Les(vii)

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

④

AO
O

I

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

O O
2 I

2 I

2 I

-2 I

⑧ YO
↑

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

2 '2

2 I

22

2 2

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

2

2

2

2

2

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

2

2

2

2

I

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

2

2

2

2

2

0

1

2

3

3

3

3

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Oo

I
I

O
S

O
I

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

O

①

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Reading o↵ the solution

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

OO O

O
⑭

g
O M

O A
A

Subproblem dependency

Subproblems are LCS(i , j), for
0 i m, 0 j n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),
LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start
at bottom right and fill by row, column
or diagonal

Reading o↵ the solution

Trace back the path by which each
entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Dynamic Programming PDSP Lecture 22 24 / 25

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 25 / 25

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 25 / 25

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 25 / 25

Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Complexity

Again O(mn), using dynamic
programming or memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Dynamic Programming PDSP Lecture 22 25 / 25

