Dynamic Programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

23 December, 2021

https://www.cmi.ac.in/~madhavan

Document similarity

m “The students were able to appreciate the
concept optimal substructure property and
its use in designing algorithms”

m “The lecture taught the students to
appreciate how the concept of optimal
substructures can be used in designing
algorithms”

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 2/12

Document similarity

m “The students were able to appreciate the
concept optimal substructure property and
its use in designing algorithms”

m “The lecture taught the students to
appreciate how the concept of optimal
substructures can be used in designing
algorithms”

m Edit operations to transform documents
m Insert a character

m Delete a character

m Substitute one character by another

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 2/12

Document similarity

m “The students were able to appreciate the m “The lecture taught the students
concept optimal substructure property and were-able to appreciate how the
its use in designing algorithms” concept of optimal substructures
property cand + used in designin
m “The lecture taught the students to T - gning
) . algorithms
appreciate how the concept of optimal
substructures can be used in designing m insert, delete,

algorithms”

m Edit operations to transform documents
m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021

Document similarity

m “The students were able to appreciate the m “The lecture taught the students
concept optimal substructure property and were-able to appreciate how the
its use in designing algorithms” concept of optimal substructures
property cand + used in designin
m “The lecture taught the students to T - gning
) . algorithms
appreciate how the concept of optimal
substructures can be used in designing m insert, delete,

algorithms” o
Edit distance
m Edit operations to transform documents

m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021

m “The students were able to appreciate the
concept optimal substructure property and
its use in designing algorithms”

m “The lecture taught the students to
appreciate how the concept of optimal
substructures can be used in designing
algorithms”

m Edit operations to transform documents

m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund

Dynamic Programming

Document similarity

m “The lecture taught the students
were-able to appreciate how the
concept of optimal substructures

property cand +
algorithms”

used in designing

m insert, delete,
Edit distance

m Minimum number of edit operations
needed

PDSP, 23 Dec 2021

m “The students were able to appreciate the
concept optimal substructure property and
its use in designing algorithms”

m “The lecture taught the students to
appreciate how the concept of optimal
substructures can be used in designing
algorithms”

m Edit operations to transform documents

m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund

Dynamic Programming

Document similarity

m “The lecture taught the students
were-able to appreciate how the
concept of optimal substructures
property cand + used in designing
algorithms”

m insert, delete,
Edit distance

m Minimum number of edit operations
needed

m In our example, 24 characters
inserted, 18 deleted, 2

PDSP, 23 Dec 2021

Document similarity

m “The students were able to appreciate the
concept optimal substructure property and
its use in designing algorithms”

m “The lecture taught the students to
appreciate how the concept of optimal
substructures can be used in designing
algorithms”

m Edit operations to transform documents

m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund

Dynamic Programming

m “The lecture taught the students
were-able to appreciate how the
concept of optimal substructures
property cand + used in designing
algorithms”

m insert, delete,
Edit distance

m Minimum number of edit operations
needed

m In our example, 24 characters
inserted, 18 deleted, 2

m Edit distance is at most 44

PDSP, 23 Dec 2021

m Minimum number of editing operations
needed to transform one document to
the other

m Insert a character
m Delete a character

m Substitute one character by another

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations
needed to transform one document to
the other

m Insert a character
m Delete a character

m Substitute one character by another

m Also called Levenshtein distance
m Vladimir Levenshtein, 1965

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations
needed to transform one document to
the other

m Insert a character
m Delete a character

m Substitute one character by another

m Also called Levenshtein distance

m Vladimir Levenshtein, 1965

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v

m Insert a character
m Delete a character

m Substitute one character by another

m Also called Levenshtein distance

m Vladimir Levenshtein, 1965

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v

m Minimum number of deletes needed to
make them equal

m Insert a character
m Delete a character

m Substitute one character by another

m Also called Levenshtein distance

m Vladimir Levenshtein, 1965

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v

m Minimum number of deletes needed to
make them equal

m Insert a character

m Delete a character
m Deleting a letter from v is equivalent to
inserting it in v

m Substitute one character by another

m Also called Levenshtein distance

m Vladimir Levenshtein, 1965

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v

m Minimum number of deletes needed to
make them equal

m Insert a character
m Delete a character
m Deleting a letter from v is equivalent to
inserting it in v
m Also called Levenshtein distance m bisect, secret — LCS is sect
m Vladimir Levenshtein, 1965

m Substitute one character by another

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v

m Minimum number of deletes needed to
make them equal

m Insert a character

m Delete a character
m Deleting a letter from v is equivalent to
inserting it in v

m Substitute one character by another

m Also called Levenshtein distance m bisect, secret — LCS is sect
m Vladimir Levenshtein, 1965 m Delete b, i in bisect and r, e in
secret

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations Edit distance and LCS
needed to transform one document to
the other m Longest common subsequence of u, v
m Insert a character m Minimum number of deletes needed to

make them equal

m Delete a character

m Substitute one character by another m Deleting a letter from v is equivalent to
inserting it in v

m Also called Levenshtein distance

m bisect, secret — LCS is sect
m Vladimir Levenshtein, 1965 m Delete b, i in bisect and r, e in
secret

= Applications m Delete b, i and then insert r, e in

m Suggestions for spelling correction bisect

m Genetic similarity of species

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 3/12

m Minimum number of editing operations
needed to transform one document to
the other

m Insert a character
m Delete a character

m Substitute one character by another

m Also called Levenshtein distance

m Vladimir Levenshtein, 1965

m Applications
m Suggestions for spelling correction

m Genetic similarity of species

Madhavan Mukund

Edit distance and LCS

m Longest common subsequence of u, v

m Minimum number of deletes needed to
make them equal

m Deleting a letter from v is equivalent to
inserting it in v
m bisect, secret — LCS is sect
m Delete b, i in bisect and r, e in
secret

m Delete b, i and then insert r, e in
bisect

m LCS equivalent to edit distance without
substitution

Dynamic Programming

PDSP, 23 Dec 2021

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS
m If a; = bj,

LCS(i,j) =1+ LCS(i+1,j+1)
m If aj 75 bj,

LCS(i,j) = max[LCS(i,j+1),
LCS(i+1,))]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v
m If a; = bj,

LCS(i,j) =1+ LCS(i+1,j+1)
m If aj 75 bj,

LCS(i,j) = max[LCS(i,j+1),
LCS(i+1,))]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v
m If a; = b, m If 3; = b;, nothing to be done

LCS(i,j) =1+ LCS(i+1,j+1)
m If aj 75 bj,

LCS(i,j) = max[LCS(i,j+1),
LCS(i+1,))]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v
m If a; = b, m If 3; = b;, nothing to be done
LCS(i,j) =1+ LCS(i+1,j+1)

m If a; # bj, best among
m If a; # bj,
LCS(i,j) = max| LCS(i,j+1),
LCS(i+1,)) |

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v

m If a; = b, m If 3; = b;, nothing to be done

LES(ij) = 1+ LES(i+1,j+1) m If a; # bj, best among

m If a; # b, m Substitute a; by b;
LCS(i,j) = max[LCS(i,j+1),
LCS(i+1,))]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1

mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v

m If a; = b, m If 3; = b;, nothing to be done

LES(ij) = 1+ LES(i+1,j+1) m If a; # bj, best among

m If a; # b, m Substitute a; by b;
LCS(i,j) = max[LCS(i,j+1), m Delete a;
LCS(i+1,))]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U=4apd1...dm-1
mv—=—>byby...bp—1

m Recall LCS m Edit distance — aim is to transform v to v

m If a; = b, m If 3; = b;, nothing to be done

LES(ij) = 1+ LES(i+1,j+1) m If a; # bj, best among

m If a; # b, m Substitute a; by b;
LCS(i,j) = max[LCS(i,j+1), m Delete a;
LCS(i+1,))]

m Insert b; before a;

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 4/12

Inductive structure for edit distance

B U= 43pd]...dm-1
v = bobl...bnfl
m Edit distance — transform v to v

m If a; = bj, nothing to be done

If a; # bj, best among
m Substitute a; by b;
m Delete a;

m Insert b; before a;

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U= 43pd]...dm-1
v = bobl...bnfl
m Edit distance — transform v to v

m If a; = bj, nothing to be done

If a; # bj, best among
m Substitute a; by b;
m Delete a;

m Insert b; before a;

ED(i,j) — edit distance for
djdj+1---dm—1, bjbj+1 . b,,,l

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U= 43pd]...dm-1 llfa,':bj,
Vv = bobl...bnfl ED(I/./): ED(I+1J+1)
m Edit distance — transform v to v

m If a; = bj, nothing to be done

If a; # bj, best among
m Substitute a; by b;
m Delete a;

m Insert b; before a;

ED(i,j) — edit distance for
djdj+1---dm—1, bjbj+1 . b,,,l

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U= 43pd]...dm-1 llfa,':bj,
Vv = bobl...bnfl ED(I/./): ED(I+1J+1)
m Edit distance — transform u to v m If a; # b,
B , ED(i,j) = 1+ min[ED(i+1,j+1),

m If a; = bj, nothing to be done ED(i+1,)),
m If a; # b;, best among ED(i,j+1)]

m Substitute a; by b;

m Delete a;

m Insert b; before a;
m ED(/,j) — edit distance for

djdj+1---dm—1, bjbj+1 - b,,,l

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U= 43pd]...dm-1 llfa,':bj,
Vv = bobl...bnfl ED(I/./): ED(I+1J+1)
m Edit distance — transform v to v m If a; # b,
B , ED(i,j) = 1+ min[ED(i+1,j+1),

m If a; = bj, nothing to be done ED(i+1,)),
m If a; # b;, best among ED(i,j+1)]

m Substitute H by b_,] Base cases

m Delete a; m ED(m,n) =0

m Insert b; before a;
m ED(/,j) — edit distance for

djdj+1---dm—1, bjbj+1 - b,,,l

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U= 43pd]...dm-1 llfa,':bj,
Vv = bobl...bnfl ED(I/./): ED(I+1J+1)
m Edit distance — transform u to v m If a; # b,
B , ED(i,j) = 1+ min[ED(i+1,j+1),

m If a; = bj, nothing to be done ED(i+1,)),
m If a; # b;, best among ED(i,j+1)]

m Substitute H by b_,] Base cases

m Delete a; m ED(m,n) =0

m Insert bj before a; u ED(i, n) =m—iforall0<i<m
m ED(/,j) — edit distance for Delete ajaj1 ... am-1 from u

djdj+1---dm—1, bjbj+1 - b,,,l

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Inductive structure for edit distance

B U=230a1...-dm-1 m If a; = b,
mv=>byb...bp1 ED(i,j) = ED(i+1,j+1)
m Edit distance — transform v to v m If a; # bj,
m If a; = b;j, nothing to be done ED(i,j) = 1+ min| ggg:itﬁ_l)
m If a; # b;, best among ED(i,j+1)]

m Substitute a; by b; m Base cases

m Delete a; m ED(m,n) =0

m Insert b; before a; m ED(i,n)=m—iforall0<i<m
m ED(i,j) — edit distance for Delete 2;aj+1 ... am—y from u

3jdit1---am—1, bjbjt1... by_1 m ED(m,j)=n—jforall0<;<n

Insert bjbj1...b,—1 into u

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 5/12

Subproblem dependency

m Subproblems are ED(/,), for
0<i<m0<j<n

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0,12 |3 |4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+1)-(n—+ 1) values
0| b
1 i
2 s
3| e
4 | c
51 ¢t
6 °

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<,;<n
S e C r e t []
m Table of (m+1)-(n—+ 1) values
b
m Like LCS, ED(i,/) depends on 0
ED(i+1,j+1), ED(i,j+1), ED(i+1,}) 1| i
2 s
3 | e
4 | c
51 ¢t
6 °

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+1)-(n+ 1) values
b
m Like LCS, ED(i,/) depends on 0 0
ED(i+1,j+1), ED(i,j+1), ED(i+1,}) 1| i 5
m No dependency for ED(m, n) — start at 2 | s 4
bottom right and fill by row, column or
diagonal 3 | e 3
4 | c 2
5 |t 1
6 | e 0

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<,;<n

S e C r e t []
m Table of (m+1)-(n—+ 1) values

b
m Like LCS, ED(i,/) depends on 0 5|6
ED(i+1,j+1), ED(i,j+1), ED(i+1,}) 1| i 4 | 5
m No dependency for ED(m, n) — start at 2 | s 3| 4
bottom right and fill by row, column or
diagonal 3] e 2 |3
4 | c 1|2
5t 0 1
6 e 10

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<L;j<n

S e C r e t []

m Table of (m+1)-(n—+ 1) values

b
m Like LCS, ED(i,/) depends on 0 115]6
ED(i+1,j+1), ED(i,j+1), ED(i+1,}) 1| i 31415
m No dependency for ED(m, n) — start at 2 | s 213 4
bottom right and fill by row, column or
diagonal 3] e 123
4 | c 1 /1|2
5t 1 0|1
6| o 2,1]0

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+1)-(n—+ 1) values
b
m Like LCS, ED(i,/) depends on 0 A14]5]¢
ED(i+1,j+1), ED(i, j+1), ED(i+1,)) 1 i 3/3|4|5
m No dependency for ED(m, n) — start at 2 | s 212133
bottom right and fill by row, column or
diagonal 3] e 2|12 3
4 | c 21,12
5 | t 21|01
6 | e 32|10

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<,;<n
S e C r e t []
m Table of (m+1)-(n—+ 1) values
b
m Like LCS, ED(i,/) depends on 0 4]4]4]5]¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,}) 1] i 313345
m No dependency for ED(m, n) — start at > | s 31212134
bottom right and fill by row, column or
diagonal 3] e 312|123
4 | c 212 1|12
5|t 3/ 21|01
6 | 4 1 3|2 1|0

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+ 1) (n+ 1) values
b
m Like LCS, ED(i,/) depends on 0 1]4]4/4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1] i 4133 3|45
m No dependency for ED(m, n) — start at 2 | s 3/ 3[21213]/34
bottom right and fill by row, column or
diagonal 3] e 2132|123
4 | c 3 /2|2 |1|1]2
5 |t 4 1 '3|/2 1|01
6 | e 5/ 4|3 2|10

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+1)-(n+ 1) values
b
m Like LCS, ED(i,/) depends on 0 h|4]4]4 /456
ED(i+1,j+1), ED(i, j+1), ED(i+1,) 1/i/3/4/3[3 /3|45
m No dependency for ED(m, n) — start at olsl 2131312121334
bottom right and fill by row, column or
diagonal 3/e|/3/23|2|1|2]|3
4 1 c |43 2]2|1]1]2
5/t |54 /3 2|1|0]|1
6 | 6|54 3 |2|1]0

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+1)-(n+ 1) values
b | 4
m Like LCS, ED(i,/) depends on 0 1]4]4/4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1|i /%4 /33,345
m No dependency for ED(m, n) — start at >l s | 2131312121334
bottom right and fill by row, column or
diagonal 31e |3/ 2/3|2|1|2]|3
Reading off the solution 4 | c |43 |22 1|12
m Transform bisect to secret 51t |5 |4]| 3 | 20 | 1
6 | 6|54 3 |2|1]79

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0O/ 1]2|3|4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+ 1) (n+ 1) values
b
m Like LCS, ED(i,/) depends on 0 1 1]4]4/4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1 i Y43 3[3 a4 s
m No dependency for ED(m, n) — start at 2l s 213/ 3/2/1213 4
bottom right and fill by row, column or
diagonal 31e |3/ 2/3|2|1|2]|3
Reading off the solution 4 | c |43 |22 1|12
m Transform bisect to secret 51t |5 |4]| 3 | 20 | 1
m Delete b 6| | 6|5 |43 2|19

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0,12 |3 |4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+ 1) (n+ 1) values
b 4
m Like LCS, ED(i,/) depends on 0 1144 /4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1] i 4133 3|45
m No dependency for ED(m, n) — start at 2l s | 4213/ 3/2/1213 4
bottom right and fill by row, column or
diagonal 31e |3/ 2/3|2|1|2]|3
Reading off the solution 4 | c |43 |22 1|12
m Transform bisect to secret 51t |5 |4]| 3 | 20 | 1
m Delete b, Delete i 6 o | 6|54 /3|2|11]9

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0,12 |3 |4|5) 6
0<i<m0<j<n
S e C r e t []
m Table of (m+ 1) (n+ 1) values
b 4
m Like LCS, ED(i,/) depends on 0 1144 /4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1] i 4133 3|45
m No dependency for ED(m, n) — start at 2l s | 4213/ 3/2/1213 4
bottom right and fill by row, column or
diagonal 31e |3/ 2/3|2|1|2]|3
Reading off the solution 4 | c |43 |22 1|12
m Transform bisect to secret 51t 5| 4| 3 | Bemmmiee= | 1
m Delete b, Delete i , Insert r 6 o | 6|54 /3|2|11]9

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Subproblem dependency

m Subproblems are ED(/,), for 0,12 |3 |4|5) 6
0<i<m0<,;<n
S e C r e t []
m Table of (m+ 1) (n+ 1) values
b 4
m Like LCS, ED(i,/) depends on 0 1144 /4]5]6¢
ED(i+1,j+1), ED(i,j+1), ED(i+1,)) 1] i 4133 3|45
m No dependency for ED(m, n) — start at 2l s | 4213/ 3/2/1213 4
bottom right and fill by row, column or
diagonal 31e |3/ 2/3|2|1|2]|3
Reading off the solution 4 | c |43 |22 1|12
m Transform bisect to secret 51t 5|4]| 3 | i | 1
m Delete b, Delete i , Insert r , Insert e 6 e | 6|54 /3 /2|19

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 6/12

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if uli] == v[j]:

ed[i,j] = ed[i+1,j+1]
else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,31)
return(ed[0,0])
Madhavan Mukund

PDSP, 23 Dec 2021 7/12

Dynamic Programming

Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

Complexity

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if uli] == v[j]:

ed[i,j] = ed[i+1,j+1]
else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,31)
return(ed[0,0])
Madhavan Mukund

PDSP, 23 Dec 2021 7/12

Dynamic Programming

Implementation

def ED(u,v): '
import numpy as np CompIeX|ty
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

m Again O(mn), using dynamic

for i in range(m-1,-1,-1): programming or memoization

ed[i,n] = m-i
for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if uli] == v[j]:
ed[i,jl = ed[i+1,j+1]
else:
edli,j]

1 + min(ed[i+1,j+1],
ed[i,j+1],
ed[i+1,3])

return(ed[0,0])

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 v

Implementation

def ED(u,v): '
import numpy as np CompIeX|ty
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

m Again O(mn), using dynamic

for i in range(m-1,-1,-1): programming or memoization

edli,n] = m-i m Fill a table of size O(mn)
for j in range(n-1,-1,-1):
edm,j] = n-j m Each table entry takes
constant time to compute
for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if uli] == v[j]:
ed[i,j] = ed[i+1,j+1]
else:
edli,j]

1 + min(ed[i+1,j+1],
ed[i,j+1],
ed[i+1,3])

return(ed[0,0])

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021

Multiplying matrices

m Multiply matrices A, B

m AB[i,j] = iA[i., k]Blk,Jj]

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp
m Computing each entry in AB is O(n)

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp
m AB:mxp
m Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)

m Bracketing does not change answer

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

n—1 .
k=0
m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)
m BC : 100 x 100, takes
m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute

m AB[i,j] = iA[i., k]Blk,Jj]

mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)

n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0 m BC : 100 x 100, takes

m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute
mA:mxn B:nxp m A(BC) : 1 x 100, takes
mAB: mxp 1-100 - 100 = 10000 steps to compute
m Computing each entry in AB is O(n)

m Overall, computing AB is O(mnp)
m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)

n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0 m BC : 100 x 100, takes

m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute
mA:mxn B:nxp m A(BC) : 1 x 100, takes
mAB: mxp 1-100 - 100 = 10000 steps to compute
m Computing each entry in AB is O(n) m Computing (AB)C

m Overall, computing AB is O(mnp)
m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)

n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0 m BC : 100 x 100, takes

m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute
mA:mxn B:nxp m A(BC) : 1 x 100, takes
mAB: mxp 1-100 - 100 = 10000 steps to compute
m Computing each entry in AB is O(n) m Computing (AB)C
m Overall, computing AB is O(mnp) m AB:1x1, takes

m Matrix multiplication is associative 11001 =100 steps to compute

m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)

n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0 m BC : 100 x 100, takes

m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute
mA:mxn B:nxp m A(BC) : 1 x 100, takes
mAB: mxp 1-100 - 100 = 10000 steps to compute
m Computing each entry in AB is O(n) m Computing (AB)C
m Overall, computing AB is O(mnp) m AB:1x1, takes

1-100-1 = 100 steps to compute
m (AB)C) : 1 x 100, takes
1-1-100 = 100 steps to compute

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B mlet A:1x100, B:100x 1, C:1x 100

m Computing A(BC)

n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0 m BC : 100 x 100, takes

m Dimensions must be compatible 100 - 1-100 = 10000 steps to compute
mA:mxn B:nxp m A(BC) : 1 x 100, takes
mAB: mxp 1-100 - 100 = 10000 steps to compute
m Computing each entry in AB is O(n) m Computing (AB)C
m Overall, computing AB is O(mnp) m AB:1x1, takes

1-100-1 = 100 steps to compute
m (AB)C) : 1 x 100, takes
1-1-100 = 100 steps to compute

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer
m ...but can affect the complexity! m 20000 steps vs 200 steps!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 8/12

Multiplying matrices

m Multiply matrices A, B
n—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 9/12

Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Ml i Xa, ..., Mn,1 P rp—1 X Cph—1
m AB[i,jl =) Ali, k]B[k,]]
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 9/12

Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Ml i Xa, ..., Mn,1 P rp—1 X Cph—1
m AB[i,j] = ZA[" k]Blk,J] m Dimensions match: r; =¢_1, 0 </ <n
k=0

m Dimensions must be compatible
mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)
m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 9/12

Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Mi:rnxc, ..., Mp_1: rh—1 X Ch-1
m AB[i,j] = ZA[i’ k]Blk,J] m Dimensions match: r; =¢_1, 0 </ <n
o m Product My - My --- M,_1 can be

m Dimensions must be compatible
computed

mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)

m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!
PDSP, 23 Dec 2021 9/12

Madhavan Mukund Dynamic Programming

Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Mi:rnxc, ..., Mp_1: rh—1 X Ch-1
m AB[i,j] = ZA[i’ k]Blk,J] m Dimensions match: r; =¢_1, 0 </ <n
o m Product My - My --- M,_1 can be

m Dimensions must be compatible
computed

mA:mxn B:nxp
m Find an optimal order to compute the

AB :
. mep product

Computing each entry in AB is O(n) m Multiply two matrices at a time

m Overall, computing AB is O(mnp) m Bracket the expression optimally

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 9/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost

m Final multiplication is O(ryrkcy—1)

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost
m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost
m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?
(Mo - My -+ My_1) - (My - Mgz -+ Mp_1)
for some 0 < k < n

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost
m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?
(Mo - My -+ My_1) - (My - Mgz -+ Mp_1)
for some 0 < k < n

m Try all and choose the minimum!

m First factor is rp x c,_1, second is
re X ch—1, where r, = c_1

m Let C(0,n—1) denote the overall cost
m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?
(Mo - My -+ My_1) - (My - Mgz -+ Mp_1)
for some 0 < k < n

m Try all and choose the minimum!

m Subproblems?
m First factor is rp x c,_1, second is

re X Ch—1, where r, = cj_1
m Let C(0,n—1) denote the overall cost
m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?

(Mo - My -+ My—1) - (M- Myy1 -+ Mp_1) m Try all and choose the minimum!
for some 0 < k < n
m Subproblems?

m First factor is rp X c,_1, second is
0 k=1 m My My--- My_1 would decompose

_ h = Ck—
Mk X Cp—1, Where r = Cx—1 as (Mo -+ M;_1)- (M- M)
m Let C(0,n—1) denote the overall cost m Generic subproblem is
M; - Mgy - My

m Final multiplication is O(ryrkcy—1)

m Inductively, costs of factors are C(0, k—1)
and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?

(Mo - My -+ My—1) - (M- Myy1 -+ Mp_1) m Try all and choose the minimum!
for some 0 < k < n
m Subproblems?

m First factor is rp X c,_1, second is
0 k=1 m My My--- My_1 would decompose

_ h = Ck—
Mk X Cp—1, Where r = Cx—1 as (Mo -+ M;_1)- (M- M)
m Let C(0,n—1) denote the overall cost m Generic subproblem is
M; - Mgy - My

m Final multiplication is O(ryric,—1)
. C(j,K) =

m Inductively, costs of factors are C(0, k—1) i (C.0—1)+ C(6, k) + rirvc]
j <0<k b= ; e Ck

and C(k,n—1)

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Inductive structure

m Final step combines two subproducts m Which k should we choose?

(Mo - My -+ My—1) - (M- Myy1 -+ Mp_1) m Try all and choose the minimum!
for some 0 < k < n
m Subproblems?

m First factor is rp X c,_1, second is
0 k=1 m My My--- My_1 would decompose

_ h = Ck—
Mk X Cp—1, Where r = Cx—1 as (Mo -+ M;_1)- (M- M)
m Let C(0,n—1) denote the overall cost m Generic subproblem is
M; - Mgy - My

m Final multiplication is O(ryric,—1)
. C(j,K) =

m Inductively, costs of factors are C(0, k—1) i (C.0—1)+ C(6, k) + rirvc]
j <0<k b= ; e Ck

and C(k,n—1)
m Base case: C(j,j)=0for0<j<n

C(0,n—1) =
C(O./ /(—1) + C(k, n—l) + rorkCn—1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 10/12

Subproblem dependency

m Compute C(i,/), 0<i,j<n O |~ | i |-]-]j |- |n=1

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal

m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal

m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal

m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal

m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(/,j),0<i,j<n O |-+ | i || j |- |n=1

m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

Jjoleeln—1

m Compute C(i,/), 0<i,j<n 0
m Only for i </

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

Jjoleeln—1

m Compute C(i,/), 0<i,j<n 0
m Only for i </

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 11/12

Subproblem dependency

Jjoleeln—1

m Compute C(/,/),0</,j<n 0
m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

PDSP, 23 Dec 2021 11/12

Subproblem dependency

m Compute C(i,/), 0<i,j<n 0

m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

Subproblem dependency

- n—1

m Compute C(i,/), 0<i,j<n 0

m Only for i <

m Entries above main diagonal
m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

Subproblem dependency

m Compute C(i,/), 0<i,j<n 0

S
|
—_

m Only for i <

m Entries above main diagonal

m C(/,j) depends on C(i, k—1), C(k,}))
forevery i < k <j

m O(n) dependencies per entry, unlike
LCW, LCS and ED

m Diagonal entries are base case

m Fill matrix by diagonal, from main
diagonal

!
£

Implementation

def C(dim):
dim: dimension matrix,
entries are pairs (r_i,c_i)
import numpy as np
dim. shape [0]
C = np.zeros((n,n))
for i in range(n):
c[i,i] =0
for diff in range(l,n):
for i in range(0,n-diff):
j o= i+ diff
cli,jl = cl[i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [01*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],
Cli,k-11 + Clk,j] +
dim[i] [0]*dim[k] [0]*dim[j][1])

n

return(C[0,n-1])

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 12/12

Implementation

def C(dim): '
dim: dimension matrix, Complexity
entries are pairs (r_i,c_i)

import numpy as np
dim. shape [0]
C = np.zeros((n,n))
for i in range(n):
c[i,i] =0
for diff in range(l,n):
for i in range(0,n-diff):
j o= i+ diff
Cli,j] = C[4i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [01*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],
Cli,k-11 + Clk,j] +
dim[i] [0]*dim[k] [0]*dim[j][1])

n

return(C[0,n-1])

Madhavan Mukund Dynamic Programming PDSP, 23 Dec 2021 12/12

Implementation

def C(dim):
dim: dimension matrix,
entries are pairs (r_i,c_i)
import numpy as np

n = dim.shape [0]
C = np.zeros((n,n))
for i in range(n):

cli,i] =0
for diff in range(l,n):
for i in range(0,n-diff):

j o= i+ diff
cli,jl = cl[i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [0]*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],

Cli,k-1] + Cl[k,j] +
dim[i] [0]*dim[k] [0]*dim[j] [1])
return(C[0,n-1])

Madhavan Mukund Dynamic Programming

Complexity

m We have to fill a table of size

o(n?)

PDSP, 23 Dec 2021

12/12

Implementation

def C(dim):
dim: dimension matrix,
entries are pairs (r_i,c_i)
import numpy as np

n = dim.shape [0]
C = np.zeros((n,n))
for i in range(n):

cli,i] =0
for diff in range(l,n):
for i in range(0,n-diff):

j o= i+ diff
cli,jl = cl[i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [0]*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],

Cli,k-1] + Cl[k,j] +
dim[i] [0]*dim[k] [0]*dim[j] [1])
return(C[0,n-1])

Madhavan Mukund Dynamic Programming

Complexity

m We have to fill a table of size

o(n?)

m Filling each entry takes O(n)

PDSP, 23 Dec 2021

12/12

Implementation

def C(dim):
dim: dimension matrix,
entries are pairs (r_i,c_i)
import numpy as np

n = dim.shape [0]
C = np.zeros((n,n))
for i in range(n):

cli,i] =0
for diff in range(l,n):
for i in range(0,n-diff):

j o= i+ diff
cli,jl = cl[i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [0]*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],

Cli,k-1] + Cl[k,j] +
dim[i] [0]*dim[k] [0]*dim[j] [1])
return(C[0,n-1])

Madhavan Mukund Dynamic Programming

Complexity

m We have to fill a table of size
0(n?)

m Filling each entry takes O(n)

m Overall, O(n®)

PDSP, 23 Dec 2021

12/12

