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Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if uli] == v[j]:

ed[i,j] = ed[i+1,j+1]
else:
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Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Mi:rnxc, ..., Mp_1: rh—1 X Ch-1
m AB[i,j] = ZA[i’ k]Blk,J] m Dimensions match: r; =¢_1, 0 </ <n
o m Product My - My --- M,_1 can be

m Dimensions must be compatible
computed

mA:mxn B:nxp

m AB:mxp

Computing each entry in AB is O(n)

m Overall, computing AB is O(mnp)

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!
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Multiplying matrices

m Multiply matrices A, B m Given n matrices My : rg X ¢,
n—1 Mi:rnxc, ..., Mp_1: rh—1 X Ch-1
m AB[i,j] = ZA[i’ k]Blk,J] m Dimensions match: r; =¢_1, 0 </ <n
o m Product My - My --- M,_1 can be

m Dimensions must be compatible
computed

mA:mxn B:nxp
m Find an optimal order to compute the

AB :
. mep product

Computing each entry in AB is O(n) m Multiply two matrices at a time

m Overall, computing AB is O(mnp) m Bracket the expression optimally

m Matrix multiplication is associative
m ABC = (AB)C = A(BC)
m Bracketing does not change answer

m ...but can affect the complexity!
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Inductive structure

m Final step combines two subproducts
(Mo - My -+ Mi_1) - (My - Miyq - Mp_1)
for some 0 < k < n
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m Final step combines two subproducts m Which k should we choose?

(Mo - My -+ My—1) - (M- Myy1 -+ Mp_1) m Try all and choose the minimum!
for some 0 < k < n
m Subproblems?

m First factor is rp X c,_1, second is
0 k=1 m My My--- My_1 would decompose

_ h = Ck—
Mk X Cp—1, Where r = Cx—1 as (Mo -+ M;_1)- (M- M)
m Let C(0,n—1) denote the overall cost m Generic subproblem is
M; - Mgy - My

m Final multiplication is O(ryric,—1)
. C(j,K) =

m Inductively, costs of factors are C(0, k—1) i (C.0—1)+ C(6, k) + rirvc]
j <0<k b= ; e Ck

and C(k,n—1)
m Base case: C(j,j)=0for0<j<n

C(0,n—1) =
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Subproblem dependency

m Compute C(i,/), 0<i,j<n O |~ | i |-]-]j |- |n=1
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Implementation

def C(dim):
# dim: dimension matrix,
# entries are pairs (r_i,c_i)
import numpy as np
dim. shape [0]
C = np.zeros((n,n))
for i in range(n):
c[i,i] =0
for diff in range(l,n):
for i in range(0,n-diff):
j o= i+ diff
cli,jl = cl[i,i] +
C[i+1,3] +
dim[i] [0]*dim[i+1] [01*dim[j] [1]
for k in range(i+1,j+1):
Cl[i,j] = min(C[i,j],
Cli,k-11 + Clk,j] +
dim[i] [0]*dim[k] [0]*dim[j][1])

n

return(C[0,n-1])
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