
Programming and Data Structures with Python

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

02 December, 2021

https://www.cmi.ac.in/~madhavan

Dealing with files

Standard input and output is not convenient for
large volumes of data

Instead, read and write files on the disk

Disk read/write is much slower than memory

Disk buffers
Disk data is read/written in large blocks

“Buffer” is a temporary parking place for disk
data

DiskMemory Buffer

Reading/writing disk data
Open a file — create file handle to file on disk

Like setting up a buffer for the file

Read and write operations are to file handle

Close a file

Write out buffer to disk (flush)

Disconnect file handle

Opening a file
fh = open("gcd.py", "r")

First argument to open is file name
Can give a full path

Second argument is mode for opening file
Read, "r": opens a file for reading only
Write, "w": creates an empty file to write to
Append, "a": append to an existing file

Read through file handle
contents = fh.read()
Reads entire file into name as a single string

Read through file handle
contents = fh.read()
Reads entire file into name as a single string

contents = fh.readline()
Reads one line into name—lines end with '\n'

String includes the '\n', unlike input()

Read through file handle
contents = fh.read()
Reads entire file into name as a single string

contents = fh.readline()
Reads one line into name—lines end with '\n'

String includes the '\n', unlike input()

contents = fh.readlines()
Reads entire file as list of strings

Each string is one line, ending with'\n'

Reading files

Reading is a sequential operation

When file is opened, point to position 0, the start

File

open()

Reading files

Reading is a sequential operation

When file is opened, point to position 0, the start

Each successive readline() moves forward

File

open() readline()

Reading files

Reading is a sequential operation

When file is opened, point to position 0, the start

Each successive readline() moves forward

File

open() readline() readline()

Reading files

Reading is a sequential operation

When file is opened, point to position 0, the start

Each successive readline() moves forward

fh.seek(n) — moves pointer to position n

File

open() readline() readline()

Reading files

Reading is a sequential operation

When file is opened, point to position 0, the start

Each successive readline() moves forward

fh.seek(n) — moves pointer to position n

block = fh.read(12) — read a fixed number of
characters

File

open() readline() readline()

End of file

When reading incrementally, important to know
when file has ended

The following both signal end of file

fh.read() returns empty string ""

fh.readline() returns empty string ""

Writing to a file
fh.write(s)

Write string s to file

Returns number of characters written

Include '\n' explicitly to go to a new line

Writing to a file
fh.write(s)

Write string s to file

Returns number of characters written

Include '\n' explicitly to go to a new line

fh.writelines(l)

Write a list of lines l to file

Must includes '\n' explicitly for each string

Closing a file

fh.close()

Flushes output buffer and decouples file handle

All pending writes copied to disk

Closing a file

fh.close()

Flushes output buffer and decouples file handle

All pending writes copied to disk

fh.flush()

Manually forces write to disk

Processing file line by line

contents = fh.readlines()  
for l in contents:  
 . . .

Even better

for l in fh.readlines():  
 . . .

Copying a file
infile = open("input.txt", "r")

outfile = open("output.txt", "w")

for line in infile.readlines():

 outfile.write(line)

infile.close()

outfile.close()

Copying a file
infile = open("input.txt", "r")

outfile = open("output.txt", "w")

contents = infile.readlines()

outfile.writelines(contents)

infile.close()

outfile.close()

Strip whitespace

s.rstrip() removes trailing whitespace

for line in contents:  
 s = line.rstrip()

s.lstrip() removes leading whitespace

s.strip() removes leading and trailing
whitespace

Splitting a string
Export spreadsheet as “comma separated value” text
file

Want to extract columns from a line of text

Split the line into chunks between commas

columns = s.split(",")

Can split using any separator string

Split into at most n chunks

columns = s.split(" : ", n)

Joining strings
Recombine a list of strings using a separator

columns = s.split(",")  
joinstring = ","  
csvline = joinstring.join(columns)

date = "16"  
month = "08"  
year = "2016"  
today = "-".join([date,month,year])

Formatted printing

Recall that we have limited control over how
print() displays output

Optional argument end="…" changes default
new line at the end of print

Optional argument sep="…" changes default
separator between items

String format() method

By example

>>> "First: {0}, second: {1}".format(47,11)  
'First: 47, second: 11’

>>> "Second: {1}, first: {0}".format(47,11)  
'Second: 11, first: 47’

Replace arguments by position in message string

format() method …

Can also replace arguments by name

>>> "One: {f}, two: {s}".format(f=47,s=11)  
'One: 47, two: 11'

>>> "One: {f}, two: {s}".format(s=11,f=47)  
‘One: 47, two: 11'

Now, real formatting

>>> "Value: {0:3d}".format(4)

3d describes how to display the value 4

d is a code specifies that 4 should be treated as
an integer value

3 is the width of the area to show 4

'Value: 4'

Now, real formatting
>>> "Value: {0:6.2f}".format(47.523)

6.2f describes how to display the value 47.523

f is a code specifies that 47.523 should be treated
as a floating point value

6 — width of the area to show 47.523

2 — number of digits to show after decimal point

"Value: 47.52"

Real formatting
Codes for other types of values

String, octal number, hexadecimal …

Other positioning information

Left justify

Add leading zeroes

Derived from printf() of C, see Python
documentation for details

Doing nothing
Recall: reading a number from the keyboard

while(True):  
 try:  
 userdata = input("Enter a number: ")  
 usernum = int(userdata)  
 except ValueError:  
 print("Not a number. Try again")  
 else:  
 break

Doing nothing
What if we just want to repeat the loop on an
error?

while(True):  
 try:  
 userdata = input("Enter a number: ")  
 usernum = int(userdata)  
 except ValueError:  
 # Do nothing  
 else:  
 break

Doing nothing
Blocks such as except:, else:, …cannot be empty

Use pass for a null statement

while(True):  
 try:  
 userdata = input("Enter a number: ")  
 usernum = int(userdata)  
 except ValueError:  
 pass  
 else:  
 break

Removing a list entry
Want to remove l[4]?

del(l[4])

Automatically contracts the list and shifts
elements in l[5:] left

Also works for dictionaries

del(d[k]) removes the key k and its associated
value

Undefining a value

In general, del(x) removes the value associated
with x, makes x undefined

x = 7  
del(x)  
y = x+5

NameError: name 'x' is not defined

Checking undefined name

Assign a value to x only if x is undefined

try:  
 x  
except NameError:  
 x = 5

The value None

None is a special value used to denote “nothing”

Use it to initialise a name and later check if it has
been assigned a valid value

x = None  
…

if x is not None:  
 y = x

Exactly one value None

x is None is same as 
x == None

Passing values to functions

Argument value is substituted for name

def power(x,n):

ans = 1

for i in range (0,n):

ans = ans*x

return(ans)

Like an implicit assignment statement

power(3,5)

↓

x = 3

n = 5

ans = 1

for i in range ...

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 2 / 1

Passing arguments by name

def power(x,n):

ans = 1

for i in range (0,n):

ans = ans*x

return(ans)

Call power(n=5,x=4)

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 3 / 1

Default arguments

Recall int(s) converts string to integer

int("76") is 76

int("A5") generates an error

Actually int(s,b) takes two
arguments, string s and base b

b has default value 10

int("A5",16) is 165 (10× 16 + 5)

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 4 / 1

Default arguments

Recall int(s) converts string to integer

int("76") is 76

int("A5") generates an error

Actually int(s,b) takes two
arguments, string s and base b

b has default value 10

int("A5",16) is 165 (10× 16 + 5)

def int(,b=10):

...

Default value is provided in function
definition

If parameter is omitted, default value is
used

Default value must be available at
definition time

def Quicksort(A,l=0,r=len(A):

does not work

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 4 / 1

Default arguments

def f(a,b,c=14,d=22):

...

f(13,12) is interpreted as
f(13,12,14,22)

f(13,12,16) is interpreted as
f(13,12,16,22)

Default values are identified by position,
must come at the end

Order is important

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 5 / 1

Function definitions

def associates a function body with a
name

Flexible, like other value assignments to
name

Definition can be conditional

if condition:

def f(a,b,c):

...

else:

def f(a,b,c):

....

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 6 / 1

Function definitions

def associates a function body with a
name

Flexible, like other value assignments to
name

Definition can be conditional

if condition:

def f(a,b,c):

...

else:

def f(a,b,c):

....

Can assign a function to a new name

def f(a,b,c):

...

g = f

Now g is another name for f

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 6 / 1

Passing functions as parameters

Apply f to x n times

def apply(f,x,n):

res = x

for i in range(n):

res = f(res)

return(res)

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 7 / 1

Passing functions as parameters

Apply f to x n times

def apply(f,x,n):

res = x

for i in range(n):

res = f(res)

return(res)

def square(x):

return(x*x)

apply(square,5,2)

square(square(5))

625
Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 7 / 1

Passing functions as parameters

Apply f to x n times

def apply(f,x,n):

res = x

for i in range(n):

res = f(res)

return(res)

def square(x):

return(x*x)

apply(square,5,2)

square(square(5))

625

Useful for customizing functions such as
sort

Define cmp(x,y) that returns -1 if x <

y, 0 if x == y and 1 if x > y

cmp("aab","ab") is -1 in dictionary
order

cmp("aab","ab") is 1 if we compare
by length

def mysort(l,cmp=defaultcmp):

Madhavan Mukund Programming and Data Structures with Python PDSP, 02 Dec 2021 7 / 1

