### Analysis of Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 16, 18 Nov 2021

### Merge sort

- To sort A into B, both of length n
- If  $n \le 1$ , nothing to be done
- Otherwise
  - Sort A[:n//2] into L
  - Sort A[n//2:] into R
  - Merge L and R into B

### Merging two sorted lists A and B into C

- If A is empty, copy B into C
- If B is empty, copy A into C
- Otherwise, compare first elements of A and B
  - Move the smaller of the two to C
- Repeat till all elements of A and B have been moved

■ Merge A of length m, B of length n

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[j:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)

```
(m,n) = (len(A), len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
  if i == m:
    C.extend(B[i:])
    k = k + (n-j)
  elif i == n:
    C.extend(A[i:])
    k = k + (n-i)
  elif A[i] < B[j]:</pre>
    C.append(A[i])
    (i,k) = (i+1,k+1)
  else:
    C.append(B[j])
    (i,k) = (i+1,k+1)
return(C)
```

def merge(A,B):

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)
- Recall that  $m + n \le 2(\max(m, n))$

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif j == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)
- Recall that  $m + n \le 2(\max(m, n))$
- If  $m \approx n$ , merge take time O(n)

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif j == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

- Let T(n) be the time taken for input of size n
  - For simplicity, assume  $n = 2^k$  for some k

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- Let T(n) be the time taken for input of size n
  - For simplicity, assume  $n = 2^k$  for some k
- Recurrence
  - T(0) = T(1) = 1
  - T(n) = 2T(n/2) + n
    - Solve two subproblems of size n/2
    - Merge the solutions in time n/2 + n/2 = n

```
def mergesort(A):
  n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- Let T(n) be the time taken for input of size n
  - For simplicity, assume  $n = 2^k$  for some k
- Recurrence

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

- Solve two subproblems of size n/2
- Merge the solutions in time n/2 + n/2 = n
- Unwind the recurrence to solve

```
def mergesort(A):
  n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■ 
$$T(n) = 2T(n/2) + n$$
  
=  $2[2T(n/4) + n/2] + n$ 

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n=  $2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n=  $2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$ =  $2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■ 
$$T(n) = 2T(n/2) + n$$
  
 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$   
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$   
 $\vdots$   
 $= 2^kT(n/2^k) + kn$ 

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n  $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$   $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$   $\vdots$  $= 2^kT(n/2^k) + kn$
- When  $k = \log n$ ,  $T(n/2^k) = T(1) = 1$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■ 
$$T(n) = 2T(n/2) + n$$
  
 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$   
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$   
 $\vdots$   
 $= 2^kT(n/2^k) + kn$ 

- When  $k = \log n$ ,  $T(n/2^k) = T(1) = 1$
- $T(n) = 2^{\log n} T(1) + (\log n)n = n + n \log n$

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■ 
$$T(n) = 2T(n/2) + n$$
  
 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$   
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$   
 $\vdots$   
 $= 2^kT(n/2^k) + kn$ 

- When  $k = \log n$ ,  $T(n/2^k) = T(1) = 1$
- $T(n) = 2^{\log n} T(1) + (\log n)n = n + n \log n$
- Hence T(n) is  $O(n \log n)$

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

■ Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs

- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible

- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible
  - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j

- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible
  - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
  - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise discard the smaller of A[i], B[j]

- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible
  - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
  - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise discard the smaller of A[i], B[j]
  - List difference elements in A but not in B

- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible
  - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
  - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise
    discard the smaller of A[i], B[j]
  - List difference elements in A but not in B
- Merge needs to create a new list to hold the merged elements
  - No obvious way to efficiently merge two lists in place
  - Extra storage can be costly



- Merge sort takes time  $O(n \log n)$  so can be used effectively on large inputs
- Variations on merge are possible
  - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
  - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise
    discard the smaller of A[i], B[j]
  - List difference elements in A but not in B
- Merge needs to create a new list to hold the merged elements
  - No obvious way to efficiently merge two lists in place
  - Extra storage can be costly
- Inherently recursive
  - Recursive calls and returns are expensive

### Quicksort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 16, 18 Nov 2021

### Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
  - No obvious way to efficiently merge two lists in place
  - Extra storage can be costly
- Inherently recursive
  - Recursive calls and returns are expensive

### Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
  - No obvious way to efficiently merge two lists in place
  - Extra storage can be costly
- Inherently recursive
  - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
  - Consider an input of the form [0,2,4,6,1,3,5,9]

2 / 11

# Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
  - No obvious way to efficiently merge two lists in place
  - Extra storage can be costly
- Inherently recursive
  - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
  - Consider an input of the form [0,2,4,6,1,3,5,9]
- Can we divide the list so that everything on the left is smaller than everything on the right?
  - No need to merge!

2 / 11

■ Suppose the median of L is m

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)

3/11

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)
- So T(n) is  $O(n \log n)$

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)
- So T(n) is  $O(n \log n)$

■ How do we find the median?

Madhavan Mukund Quicksort PDSP Lecture 16 3/11

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)
- So T(n) is  $O(n \log n)$

- How do we find the median?
  - Sort and pick up the middle element

Madhavan Mukund Quicksort PDSP Lecture 16 3/11

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)
- So T(n) is  $O(n \log n)$

- How do we find the median?
  - Sort and pick up the middle element
  - But our aim is to sort the list!

3 / 11

Madhavan Mukund Quicksort PDSP Lecture 16

- Suppose the median of L is m
- Move all values  $\leq m$  to left half of L
  - Right half has values > m
- Recursively sort left and right halves
  - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
  - Rearrange in a single pass, time O(n)
- So T(n) is  $O(n \log n)$

- How do we find the median?
  - Sort and pick up the middle element
  - But our aim is to sort the list!
- Instead pick some value in L pivot
  - Split L with respect to the pivot element

Madhavan Mukund Quicksort PDSP Lecture 16 3 / 11

- Choose a pivot element
  - Typically the first element in the array

Madhavan Mukund Quicksort PDSP Lecture 16

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot

Madhavan Mukund Quicksort PDSP Lecture 16

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition

Madhavan Mukund Quicksort PDSP Lecture 16 4/11

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

Madhavan Mukund Quicksort PDSP Lecture 16 4/11

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

| 43 | 32 | 22 | 78 | 63 | 57 | 91 | 13 |
|----|----|----|----|----|----|----|----|

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

| 43 | 32 | 22 | 78 | 63 | 57 | 91 | 13 |
|----|----|----|----|----|----|----|----|
|----|----|----|----|----|----|----|----|

Identify pivot

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

| 4 | .3 | 32 | 22 | 78 | 63 | 57 | 91 | 13 |
|---|----|----|----|----|----|----|----|----|
|---|----|----|----|----|----|----|----|----|

- Identify pivot
- Mark lower elements and upper elements

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

| 43 32 | 22 78 | 63 5 | 7 91 | 13 |
|-------|-------|------|------|----|
|-------|-------|------|------|----|

- Identify pivot
- Mark lower elements and upper elements
- Rearrange the elements as lower-pivot-upper

- Choose a pivot element
  - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

| 43 | 32 | 22 | 78 | 63 | 57 | 91 | 13 |
|----|----|----|----|----|----|----|----|

- Identify pivot
- Mark lower elements and upper elements
- Rearrange the elements as lower-pivot-upper

Recursively sort the lower and upper partitions

■ Scan the list from left to right

Madhavan Mukund Quicksort PDSP Lecture 16 5/3

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified

5/11

Madhavan Mukund Quicksort PDSP Lecture 16

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element

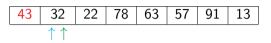
- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

| 43 | 32 | 22 | 78 | 63 | 57 | 91 | 13 |
|----|----|----|----|----|----|----|----|

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



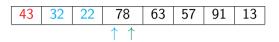
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

| 43 | 32 | 22                  | 78 | 63 | 57 | 91 | 13 |
|----|----|---------------------|----|----|----|----|----|
|    |    | $\uparrow \uparrow$ |    |    |    |    |    |

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



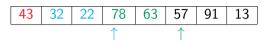
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

| 43 | 32 | 22 | 78         | 63         | 57 | 91 | 13 |
|----|----|----|------------|------------|----|----|----|
|    |    |    | $\uparrow$ | $\uparrow$ |    |    |    |

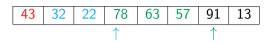
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



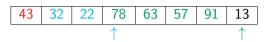
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



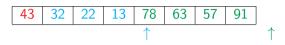
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



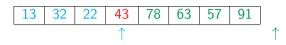
- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.



- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments
- After partitioning, exchange the pivot with the last element of the Lower segment

#### Quicksort code

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Classify the first unclassified element
  - If it is larger than the pivot, extend Upper to include this element
  - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
  lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### **Analysis**

■ Partitioning with respect to the pivot takes time O(n)

```
def guicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### **Analysis**

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

T(n) is  $O(n \log n)$ 

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot,lower,upper) = (L[1],l+1,l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

- T(n) is  $O(n \log n)$
- Worst case? Pivot is maximum or minimum
  - Partitions are of size 0, n-1

$$T(n) = T(n-1) + n$$

$$T(n) = n + (n-1) + \cdots + 1$$

$$T(n)$$
 is  $O(n^2)$ 

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
 quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### **Analysis**

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

- T(n) is  $O(n \log n)$
- Worst case? Pivot is maximum or minimum
  - Partitions are of size 0, n-1

$$T(n) = T(n-1) + n$$

$$T(n) = n + (n-1) + \cdots + 1$$

- T(n) is  $O(n^2)$
- Already sorted array: worst case!

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Analysis . . .

■ However, average case is  $O(n \log n)$ 

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Analysis . . .

- However, average case is  $O(n \log n)$
- Sorting is a rare situation where we can compute this
  - Values don't matter, only relative order is important
  - Analyze behaviour over permutations of  $\{1, 2, ..., n\}$
  - Each input permutation equally likely

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Analysis . . .

- However, average case is  $O(n \log n)$
- Sorting is a rare situation where we can compute this
  - Values don't matter, only relative order is important
  - Analyze behaviour over permutations of  $\{1, 2, ..., n\}$
  - Each input permutation equally likely
- Expected running time is  $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Randomization

 Any fixed choice of pivot allows us to construct worst case input

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot,lower,upper) = (L[1],l+1,l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step
- Expected running time is again  $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Quicksort in practice

- Can be implemented iteratively
  - Recursive calls disjoint segments, no recombination of results required
  - Explicitly track endpoints of each segment to be sorted

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

#### Quicksort in practice

- Can be implemented iteratively
  - Recursive calls disjoint segments, no recombination of results required
  - Explicitly track endpoints of each segment to be sorted
- In practice, quicksort is very fast

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

### Quicksort in practice

- Can be implemented iteratively
  - Recursive calls disjoint segments, no recombination of results required
  - Explicitly track endpoints of each segment to be sorted
- In practice, quicksort is very fast
- Very often the default algorithm used for in-built sort functions
  - Sorting a column in a spreadsheet
  - Library sort function in a programming language

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

■ The worst case complexity of quicksort is  $O(n^2)$ 

Madhavan Mukund Quicksort PDSP Lecture 16 11/11

- The worst case complexity of quicksort is  $O(n^2)$
- However, the average case is  $O(n \log n)$

Madhavan Mukund Quicksort PDSP Lecture 16 11/11

- The worst case complexity of quicksort is  $O(n^2)$
- However, the average case is  $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs

11 / 11

Madhavan Mukund Quicksort PDSP Lecture 16

- The worst case complexity of quicksort is  $O(n^2)$
- However, the average case is  $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively

11 / 11

Madhavan Mukund Quicksort PDSP Lecture 16

- The worst case complexity of quicksort is  $O(n^2)$
- However, the average case is  $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively
- Very fast in practice, and often used for built-in sorting functions
  - Good example of a situation when the worst case upper bound is pessimistic

11 / 11

Madhavan Mukund Quicksort PDSP Lecture 16

# Sorting: Concluding Remarks

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 16, 18 Nov 2021

- Often list values are tuples
  - Rows from a table, with multiple columns / attributes
  - A list of students, each student entry has a roll number, name, marks, ...

- Often list values are tuples
  - Rows from a table, with multiple columns / attributes
  - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number

- Often list values are tuples
  - Rows from a table, with multiple columns / attributes
  - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?

- Often list values are tuples
  - Rows from a table, with multiple columns / attributes
  - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications

- Often list values are tuples
  - Rows from a table, with multiple columns / attributes
  - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications
- Sorting on column B should not disturb sorting on column A

- The quicksort implementation we described is not stable
  - Swapping values while partitioning can disturb existing sorted order

- The quicksort implementation we described is not stable
  - Swapping values while partitioning can disturb existing sorted order
- Merge sort is stable if we merge carefully
  - Do not allow elements from the right to overtake elements on the left
  - While merging, prefer the left list while breaking ties

#### Other criteria

- Minimizing data movement
  - Imagine each element is a heavy carton
  - Reduce the effort of moving values around

• Quicksort is often the algorithm of choice, despite  $O(n^2)$  worst case

- Quicksort is often the algorithm of choice, despite  $O(n^2)$  worst case
- Merge sort is typically used for "external" sorting
  - Database tables that are too large to store in memory all at once
  - Retrieve in parts from the disk and write back

- Quicksort is often the algorithm of choice, despite  $O(n^2)$  worst case
- Merge sort is typically used for "external" sorting
  - Database tables that are too large to store in memory all at once
  - Retrieve in parts from the disk and write back
- Other  $O(n \log n)$  algorithms exist heapsort

- Quicksort is often the algorithm of choice, despite  $O(n^2)$  worst case
- Merge sort is typically used for "external" sorting
  - Database tables that are too large to store in memory all at once
  - Retrieve in parts from the disk and write back
- Other  $O(n \log n)$  algorithms exist heapsort
- Sometimes hybrid strategies are used
  - Use divide and conquer for large n
  - Switch to insertion sort when n becomes small (e.g., n < 16)